Hardware Execution Throttling
for Multicore Resource
Management

Xiao Zhang
Sandhya Dwarkadas
Kai Shen

()
l@ ﬂ]

&

UNIVERSITY of

ROCHESTER

The Multi-Core Challenge

» Multi-core chip
— Dominant on market

— Last level on-chip cache is
commonly shared by sibling cores,
however sharing is not well
controlled

» Challenge: Performance Isolation source: Htphn.ntel com
— Poor & unpredictable performance
— Denial of service attacks

A Full Solution Includes ...

 Good mechanism

— Should be both efficient and practical to
deploy
— Main focus of this talk

» Good policy to govern mechanism

— as important as mechanism, and not easy
— Omitted in this talk

Existing Mechanism(I):
Software based Page Coloring

Classic technique originally used to ~ ThreadAsfoctern

reduce cache miss, recently used

by OS to manage cache p

Partition cache at coarse
granularity Thread A -
No need for hardware

Memory page
Yy pag A1

artitioning
A2

A3

A4

Support Thread B

AS

Shared Cache

Existing Mechanism(ll):
Scheduling Quantum Adjustment

» Shorten the time quantum of app that
overuses cache

» May let core idle if there is no other active
thread available

Core 0 (HFTEEAAND (v) (RREEGAND (i) (NRREEGAN (idic
Coel TheadB TheadB | TheadB

time

5

New Mechanism:
Hardware Execution Throttling

* Throttle the execution speed of app that overuses
cache

— Duty cycle modulation
- CPU works only in duty cycles and stalls in non-duty cycles

 Allow per-core control (vs. per-processor control for existing
Dynamic Voltage Frequency Scaling)

— Enable/disable cache prefetchers

L1 prefetchers
— |P: keeps per-instruction load history to detect stride pattern
— DCU: prefetches next line when it detects multiple loads from the same line
within a time limit
« L2 prefetchers
— Adjacent line: Prefetches the adjacent line of required data
— Stream: looks at streams of data for regular patterns

Brief View of

Hardware Execution Throttling

- Comparison to page coloring

— Little complexity to kernel

« Code length: 40 lines in a single file (as a reference our page coloring
implementation takes 700+ lines of code crossing 10+ files)

— Lightweight to configure

+ Read plus write register: duty-cycle 265 + 350 cycles, prefetcher 298 + 2065
cycles, which is less than 1 microsecond on a 3Ghz CPU (as a reference re-
coloring a page takes 3 microseconds on the same CPU)

« Comparison to scheduling quantum adjustment
— More fine-grained controlling

Quantum adjustment Hardware execution throttling

CoreO_ idle """""""I """I""""
Core 1 [iThread B (D (s

»time

Evaluation

« Candidate mechanisms

— Page coloring
— Scheduling quantum adjustment
— Hardware execution throttling

Experiment setup

— Conducted on a 3.0 Ghz Intel dual-core processor

— 3 SPECCPU-2000 apps (swim, mcf, & equake) and 2
server-style apps (SPECjbb2005 & SPECweb99),
running all possible pair-wise co-schedule

Goal: evaluate their effectiveness in

providing performance fairness

For each mechanism, tune its configuration offline to
achieve best fairness

Fairness Comparison

Unfairness factor: coefficient of variation (deviation-
to-mean ratio, o / v) of co-running apps’ normalized

performances

On average all three
mechanisms are effective
In improving fairness

Case {swim, SPECweb}
Illustrates limitation of
page coloring

Unfairness factor

0.35

0.3

0.25

0.2}

0.15]

0.1

0.05]

.Default sharin

L | |Page coloring
E’Sched. quantum adjustment

P .Hardware throttling

g

I

Average

swim, SPECweb

Performance Comparison

System efficiency: geometric mean of co-running apps’
normalized performances

On average all three mechanisms achieve system
efficiency comparable to default sharing

Case where severe inter- B D<fault sharing

thread cache conflicts exist | [ElPagecooring]|
. DSched. quantum adjustment

favors Segregat|0n, eg 08 -Hardware throtting |- 1

{swim, mcf} T

Case where well-interleaved

cache accesses exist favors
sharing, e.g. {mcf, mcf}

Overall efficiency

o
o S
| |
] o
-
3 —

Drawbacks of Page Coloring

- Expensive re-coloring cost

— Prohibitive in a dynamic environment where
frequent re-coloring may be necessary ThreadAs footprint

» Complex memory management A
— Introduces artificial memory pressure

A2

A3

Thread A {
~ A4

Thread B < A5

N—

For more details on tackling these problems,
please read our Eurosys’09 paper:

Practical Page coloring based Multi-core Shared Cache
Cache Management Memory page

Drawback of
Scheduling Quantum Adjustment

Coarse-grained control at scheduling quantum
granularity may result in fluctuating service delays
for individual transactions

—=—8Sched. quantum adjustment

<O
= —— Hardware throttling
S 0.6 , |
o | 1 T T Il o 9 |
S Dol leleledte T 0001 4]
b I :" (| i 1“ I ,I' |‘ i .I' | f f I .'\ I.‘ | I ”‘ I'I |
E\ 0.5" ..'II :' | I :'I I\‘ I | i | : i I I‘I f " f I |‘I*
© :' || . [| AA [[Pl ':L.:‘:::-' ' I. | 'I. II‘ i 9‘#
| (€] | I | (1 7&. . [[| *, | * | L ';‘II
%/ SF‘ T \ T L] %?‘T ‘ Ii% | *%’6 | oy ||| * | (’;k | | “r" 'I 16 N [| '_*‘ |",¢>
Lo\ ‘ j“l 4 \ i 4 ol T I VI ?Z‘K Py A
—— O 4'—‘[\,"- IR | ‘%‘F | 1 q i *‘, | T@K’E | | AT I P api| i \
g_ i'.%:kl'o 'j’é%éi [H”*i \l,' (l% | 4 \ “;;l ;‘{e:\‘ C Bl T +I*:k‘ % [l T a ?f"u H’ %
dIIAN Y T It Q| A “‘t JRYORA [1 k| o D] ®
i IR Y LS| : | |'| oAl o ‘1(1 D 7T / ‘\I’::z; \ \P, | | P 1,‘.
© O3k | U (L e T LW e T
p— | || i | i | | | |4 44
5 + ; b | [1" | | ': | 'l
g ‘ = | Il | I,: |/ |)
5 0-2 | - i
-} | !) 4‘ | ’ I
-
w
= 0.1 12

1000 2000 3000 4000 5000
Time order in milliseconds

@

Summary

Hardware execution throttling mechanism for

multi-core cache management

Fine-grained control

Lightweight solution that cleverly reuses existing hardware
features

System efficiency is competitive to default sharing, largely
comparable to scheduling quantum adjustment, but
inferior to ideal page coloring

Future work
Investigate policy for online configuration

13

