
1

Hardware Execution Throttling
for Multicore Resource

Management

Xiao Zhang

Sandhya Dwarkadas

Kai Shen

2

The Multi-Core Challenge

•  Multi-core chip
–  Dominant on market
–  Last level on-chip cache is

commonly shared by sibling cores,
however sharing is not well
controlled

•  Challenge: Performance Isolation
–  Poor & unpredictable performance
–  Denial of service attacks

source: http://www.intel.com

3

A Full Solution Includes …

•  Good mechanism
– Should be both efficient and practical to

deploy

– Main focus of this talk

•  Good policy to govern mechanism
– as important as mechanism, and not easy

– Omitted in this talk

Existing Mechanism(I):
Software based Page Coloring

Thread A

Thread B

Shared Cache

Way-1 Way-n …………

Memory page
A1

A2

A3

A4

A5

Thread A’s footprint •  Classic technique originally used to
reduce cache miss, recently used
by OS to manage cache partitioning

•  Partition cache at coarse
granularity

•  No need for hardware
support

5

Existing Mechanism(II):
Scheduling Quantum Adjustment

•  Shorten the time quantum of app that
overuses cache

•  May let core idle if there is no other active
thread available

 Thread B

Thread A idle

 Thread B

Thread A idle

 Thread B

Thread A idle Core 0

Core 1

time

New Mechanism:
Hardware Execution Throttling

•  Throttle the execution speed of app that overuses
cache
–  Duty cycle modulation

•  CPU works only in duty cycles and stalls in non-duty cycles

•  Allow per-core control (vs. per-processor control for existing
Dynamic Voltage Frequency Scaling)

–  Enable/disable cache prefetchers
•  L1 prefetchers

–  IP: keeps per-instruction load history to detect stride pattern

–  DCU: prefetches next line when it detects multiple loads from the same line
within a time limit

•  L2 prefetchers
–  Adjacent line: Prefetches the adjacent line of required data

–  Stream: looks at streams of data for regular patterns

7

Brief View of
Hardware Execution Throttling

•  Comparison to page coloring
–  Little complexity to kernel

•  Code length: 40 lines in a single file (as a reference our page coloring
implementation takes 700+ lines of code crossing 10+ files)

–  Lightweight to configure
•  Read plus write register: duty-cycle 265 + 350 cycles, prefetcher 298 + 2065

cycles, which is less than 1 microsecond on a 3Ghz CPU (as a reference re-
coloring a page takes 3 microseconds on the same CPU)

•  Comparison to scheduling quantum adjustment
–  More fine-grained controlling

 Thread B

Core 0

Core 1

Thread A idle

Quantum adjustment Hardware execution throttling

time

8

Evaluation
•  Candidate mechanisms

–  Page coloring
–  Scheduling quantum adjustment
–  Hardware execution throttling

•  Experiment setup
–  Conducted on a 3.0 Ghz Intel dual-core processor
–  3 SPECCPU-2000 apps (swim, mcf, & equake) and 2

server-style apps (SPECjbb2005 & SPECweb99),
running all possible pair-wise co-schedule

•  Goal: evaluate their effectiveness in
providing performance fairness
–  For each mechanism, tune its configuration offline to

achieve best fairness

9

Fairness Comparison

•  On average all three
mechanisms are effective
in improving fairness

•  Case {swim, SPECweb}
illustrates limitation of
page coloring

•  Unfairness factor: coefficient of variation (deviation-
to-mean ratio, σ / μ) of co-running apps’ normalized
performances

10

Performance Comparison
•  System efficiency: geometric mean of co-running apps’

normalized performances
•  On average all three mechanisms achieve system

efficiency comparable to default sharing

•  Case where severe inter-
thread cache conflicts exist
favors segregation, e.g.
{swim, mcf}

•  Case where well-interleaved
cache accesses exist favors
sharing, e.g. {mcf, mcf}

Drawbacks of Page Coloring
•  Expensive re-coloring cost

– Prohibitive in a dynamic environment where
frequent re-coloring may be necessary

•  Complex memory management
–  Introduces artificial memory pressure

Thread A

Thread B

Shared Cache

Way-1 Way-n …………

Memory page

A1

A2

A3

A4

A5

Thread A’s footprint

For more details on tackling these problems,
please read our Eurosys’09 paper:
Practical Page coloring based Multi-core
Cache Management

12

Drawback of
Scheduling Quantum Adjustment

•  Coarse-grained control at scheduling quantum
granularity may result in fluctuating service delays
for individual transactions

13

Summary

•  Hardware execution throttling mechanism for
multi-core cache management
–  Fine-grained control
–  Lightweight solution that cleverly reuses existing hardware

features
–  System efficiency is competitive to default sharing, largely

comparable to scheduling quantum adjustment, but
inferior to ideal page coloring

•  Future work
–  Investigate policy for online configuration

