
vPath: Precise Discovery of
Request Processing Paths from Black-Box

Observations of Thread and Network Activities

June 18, 2009

Pennsylvania Sta
te University
IBM T.J. Watson
Research Center

Byung Chul Tak
Chunqiang Tang

Chun Zhang
Sriram Govindan

Bhuvan Urgaonkar
Rong N. Chang

★

★

★

★

★
★

★
★

★
★

★
★

2/21

HYPERVISOR

HYPERVISOR HYPERVISOR
Dispatcher

Thread Stage 1 Stage 2 Stage 3

Multi-threaded Multi-staged Architecture

Request-Processing Path Discovery

  Enterprise server architecture

  Three-tiered architecture

•  Increasing complexity from heterogeneity

  Virtualization

web server

web server

web server

WEB TIER

app server

app server

app server

DATABASE
 TIER

LDAP
Authentication

messages

User Request

MIDDLE TIER

VM2

VM3

VM1

VM2 VM3 VM1

VM2

VM1

3/21
Motivation

  Request-Processing Path information is critic
al to managing distributed applications

  Debugging, analysis, auditing, billing …

  Challenges in obtaining and exploiting the inf
ormation

  Develop application-specific middleware

  Understand logs generated by the middleware

  Pinpoint the root cause of the problem

4/21
Existing Solutions

  Statistical inference

  Use available logs to infer the paths

  Probabilistic guarantee of accuracy

  Dependent on the availability of logs

  Instrumentation-based approach (E.g.,
Tivoli)

  Modify the application to include some form of user requ

est ID

  Often limited by the lack of source code availability

  Deep understanding is required

5/21
vPath Technique

  vPath discovers:

  Precise end-to-end request-processing path in a

 virtualized environment

  Without instrumentation on middleware or app
lications

  Contributions

  New approach to the path discovery problem

•  Leverage common programming patterns in thread an
d communication

  Prototype implementation of the concepts

  Demonstration of accuracy and completeness

6/21
Key Concept of vPath

  Causal Relationships

  Two types of causality

Receive
Request X

Send
Request Y

Send
Response X

Receive
Response Y

Receive
Request Y

Send
Response Y

Process 1 Process 2

TCP
Connection 1

TCP
Connection 2

Internal Causality External Causality

7/21
Source of Difficulty

  Message flow

  Message is used up at arrival

  Totally new message is assembled
•  Two messages share no common ID

  Known options
•  Guess  statistical inference

•  Insert ID  instrumentation

  Can we correlate incoming and outgoing me
ssages?

  We consider the execution model

8/21
Execution Models

  Application Model

  Thread pattern in Multi-threaded Model

•  Single thread is dedicated to the request until final res
ponse is sent out

  Communication Model

  Synchronous communication

•  One thread sends a messages and blocks until it rec
eives the reply

Dispatcher
Thread

Worker Thread pool

Request
Sub-Request

9/21
Identifying Internal Causality

  Causality is carried on to the thread

  We identify thread from VMM

Identify the thread from the Virtual Machine Monitor

Process 1

Send
Request Y

Send
Response X

TCP
Connection 1

Thread

Receive
Request X

Receive
Response Y

10/21
Identifying External Causality

  We use TCP socket information

  (Source IP, port, Destination IP, port) is compare

d and connected

•  We read socket information on Receive and Send eve
nts

Send
Request Y

Receive
Response Y

Receive
Request Y

Send
Response Y

TCP
Connection

ex: [130.203.8.23:38294, 130.203.8.23:3314]

11/21

GUEST VM

user
process

kernel

CPU Hardware

XEN VMM

Implementation

  System Call Interception

  Intercept system calls

 by modifying Xen VMM

  For each system call,

 get thread identifier
•  EBP register value

 (stack address)

System Call
Handler

INT80h Handler
Pointer

INT80h instruction

My Handler

interrupt descriptor table so
ftw

ar
e

tr
ap

12/21
vPath Implementation 2/2

  Socket info extraction

  socket – (source IP, port, destination IP, port)

•  This uniquely identifies TCP connection
•  This enables us to correlate events across componen

ts

  Custom hypercall
•  On every target system call, this hypercall is invoked
•  It delivers socket information from Guest Kernel to Xe

n VMM

13/21
Path Data Processing

  Log Format

  From System Call Interception

  From Hypercall

  Example

  Path Discovery Algorithm

0733 Dom1 002780 cr3:04254000 ebp:bfe37034 eax:3 ebx:12
0734 R Dom1 sd:12 L:130.203.8.24:41845 R:130.203.8.25:8009
0735 Dom1 002781 cr3:04254000 ebp:bfe34b34 eax:146 ebx:11
0736 S Dom1 sd:11 L:130.203.8.24:80 R:130.203.65.112:2395
0737 Dom2 002780 cr3:04254000 ebp:bff2203f eax:3 ebx:12
0738 R Dom2 sd:12 L:130.203.8.24:41811 R:130.203.8.25:8009
0739 Dom1 002781 cr3:04254000 ebp:bfe34b34 eax:146 ebx:11
0740 S Dom1 sd:11 L:130.203.8.24:80 R:130.203.65.113:3411

Event # Domain # CR3 EBP EAX EBX Time Stamp

OP Type
(R/S)

Event # Domain #
Socket

Descriptor #
Local

IP Addr & Port
Remote

IP Addr & Port

14/21
vPath Prototype Components

  Components

  Online Monitoring Part

•  System call interception at Xen VMM
–  Xen 3.1.0 for x86 32-bit Architecture

– Guest Linux kernel 2.6.18

•  Information collection for feeding to the analyzer

  vPath Log Analyzer
•  Algorithms for preprocessing

•  Path construction logic

15/21
Evaluation Set-up

  Workloads

  TPC-W – representing Java-based applications

  RUBiS(PHP version)

  vApp – custom C socket programming

  MediaWiki

  System Set-up for TPC-W & RUBiS

  Separate VMs for each application

RUBiS(PHP) MySQL

Apache

JBoss2

MySQL

JBoss1

16/21
TPC-W

  Discovered Path for TPC-W

Apache

JBoss2

MySQL

JBoss1

Client Request

Large Number
of Requests and

Replies
between

JBoss & MySQL Partial Reply
Partial Reply

Partial Reply
Partial Reply

17/21
RUBiS

  Discovered Path for RUBiS

RUBiS(PHP) MySQL

Client Request

Reply

Exactly 3
Round Trips

About 50
Consecutive

recv()

Sending Large
Data Here

18/21
Overhead

  vPath overhead on TPC-W response time

Response Time (Sec)

F(X)

CDF of TPC-W Response Time

6%
107%

19/21
Dissection of vPath Overhead

  Worst case overhead measurement
Response Time (in Sec)

0.7%
3.3%
19.3%
23.9%

1.7%
4.5%
16.6%
19.1%

Throughput (in req/sec)

20/21
Limitations

  vPath works for Multi-threaded model

  Unable to apply to event-driven or SEDA model

•  We argue that multi-threaded model is dominant

  Accesing socket information

  Current implementation uses hypercall

•  Modification of the para-virtualized guest VM

•  Each system call incurs another mode-switch

21/21
Conclusion and Future work

  Proposal of vPath technique

  Accurate and non-intrusive technique of path dis

covery in a virtualized environment

  vPath exploits multi-threaded nature of applicatio
ns and communication patterns

  Low run-time overhead

  Future Work

  Implementation of pure VMM-based approach

  More study on behaviors of various apps

  Collecting resource consumptions per path

22/21

Thank you

