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HYPERVISOR 

HYPERVISOR HYPERVISOR 
Dispatcher 
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Multi-threaded Multi-staged Architecture 

Request-Processing Path Discovery 


  Enterprise server architecture 

  Three-tiered architecture 

•  Increasing complexity from heterogeneity 
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Motivation 


  Request-Processing Path information is critic
al to managing distributed applications 

  Debugging, analysis, auditing, billing … 


  Challenges in obtaining and exploiting the inf
ormation 

  Develop application-specific middleware 


  Understand logs generated by the middleware 


  Pinpoint the root cause of the problem
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Existing Solutions 


  Statistical inference 

  Use available logs to infer the paths 


  Probabilistic guarantee of accuracy 


  Dependent on the availability of logs 


  Instrumentation-based approach (E.g., 
Tivoli) 

  Modify the application to include some form of user requ

est ID 


  Often limited by the lack of source code availability 


  Deep understanding is required 
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vPath Technique 


  vPath discovers: 

  Precise end-to-end request-processing path in a

 virtualized environment 


  Without instrumentation on middleware or app
lications



  Contributions 

  New approach to the path discovery problem 

•  Leverage common programming patterns in thread an
d communication 


  Prototype implementation of the concepts 


  Demonstration of accuracy and completeness 
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Key Concept of vPath 


  Causal Relationships 

  Two types of causality 
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Source of Difficulty 


  Message flow 

  Message is used up at arrival 


  Totally new message is assembled 
•  Two messages share no common ID 


  Known options 
•  Guess  statistical inference 

•  Insert ID  instrumentation 


  Can we correlate incoming and outgoing me
ssages? 

  We consider the execution model
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Execution Models 


  Application Model 

  Thread pattern in Multi-threaded Model 

•  Single thread is dedicated to the request until final res
ponse is sent out 


  Communication Model 

  Synchronous communication 

•  One thread sends a messages and blocks until it rec
eives the reply


Dispatcher 
Thread 

Worker Thread pool 

Request 
Sub-Request 
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Identifying Internal Causality 


  Causality is carried on to the thread 

  We identify thread from VMM 

Identify the thread from the Virtual Machine Monitor 
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Identifying External Causality 


  We use TCP socket information 

  (Source IP, port, Destination IP, port) is compare

d and connected 

•  We read socket information on Receive and Send eve
nts 

Send 
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Receive 
Response Y 

Receive 
Request Y 
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TCP 
Connection 

ex: [130.203.8.23:38294, 130.203.8.23:3314] 
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GUEST VM 

user 
process 

kernel 

CPU Hardware 

XEN VMM 

Implementation 


  System Call Interception 

  Intercept system calls 

  by modifying Xen VMM 


  For each system call, 

   get thread identifier 
•  EBP register value 
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vPath Implementation 2/2 


  Socket info extraction 

  socket – (source IP, port, destination IP, port) 

•  This uniquely identifies TCP connection 
•  This enables us to correlate events across componen

ts 


  Custom hypercall 
•  On every target system call, this hypercall is invoked 
•  It delivers socket information from Guest Kernel to Xe

n VMM 
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Path Data Processing 


  Log Format 

  From System Call Interception 


  From Hypercall 


  Example 


  Path Discovery Algorithm 

0733  Dom1      002780      cr3:04254000     ebp:bfe37034      eax:3      ebx:12 
0734  R   Dom1   sd:12   L:130.203.8.24:41845   R:130.203.8.25:8009 
0735  Dom1      002781      cr3:04254000     ebp:bfe34b34      eax:146   ebx:11 
0736  S   Dom1   sd:11   L:130.203.8.24:80   R:130.203.65.112:2395 
0737  Dom2      002780      cr3:04254000     ebp:bff2203f      eax:3      ebx:12 
0738  R   Dom2   sd:12   L:130.203.8.24:41811   R:130.203.8.25:8009 
0739  Dom1      002781      cr3:04254000     ebp:bfe34b34      eax:146   ebx:11 
0740  S   Dom1   sd:11   L:130.203.8.24:80   R:130.203.65.113:3411 

Event # Domain # CR3 EBP EAX EBX Time Stamp 

OP Type 
(R/S) 

Event # Domain # 
Socket 

Descriptor # 
Local 

IP Addr & Port 
Remote 

IP Addr & Port 
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vPath Prototype Components 


  Components 

  Online Monitoring Part 

•  System call interception at Xen VMM 
–  Xen 3.1.0 for x86 32-bit Architecture 

– Guest Linux kernel 2.6.18 

•  Information collection for feeding to the analyzer 


  vPath Log Analyzer 
•  Algorithms for preprocessing 

•  Path construction logic 
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Evaluation Set-up 


  Workloads 

  TPC-W – representing Java-based applications 

  RUBiS(PHP version) 

  vApp – custom C socket programming 

  MediaWiki 


  System Set-up for TPC-W & RUBiS 

  Separate VMs for each application 

RUBiS(PHP) MySQL 

Apache 

JBoss2 

MySQL 

JBoss1 
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TPC-W 


  Discovered Path for TPC-W 
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RUBiS 
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Overhead 


  vPath overhead on TPC-W response time 

Response Time (Sec) 

F(X) 

CDF of TPC-W Response Time 

6% 
107% 
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Dissection of vPath Overhead



  Worst case overhead measurement 
Response Time (in Sec) 

0.7% 
3.3% 
19.3% 
23.9% 

1.7% 
4.5% 
16.6% 
19.1% 

Throughput (in req/sec) 
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Limitations 


  vPath works for Multi-threaded model 

  Unable to apply to event-driven or SEDA model 

•  We argue that multi-threaded model is dominant 


  Accesing socket information 

  Current implementation uses hypercall 

•  Modification of the para-virtualized guest VM 

•  Each system call incurs another mode-switch 
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Conclusion and Future work 


  Proposal of vPath technique 

  Accurate and non-intrusive technique of path dis

covery in a virtualized environment 


  vPath exploits multi-threaded nature of applicatio
ns and communication patterns 


  Low run-time overhead 


  Future Work 

  Implementation of pure VMM-based approach 


  More study on behaviors of various apps 


  Collecting resource consumptions per path 
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Thank you 


