
Satori:

Grzegorz Miłoś, Derek Murray, Steven Hand Michael Fetterman

University of Cambridge



Outline

• Motivation for page sharing

• Existing systems (a.k.a. state of the art)

• Satori overview

• Implementation

• Performance results



Motivation
• Virtualisation becomes ubiquitous

• Provisioning computer systems with memory

‣ is expensive (hardware cost)
‣ consumes power (running cost)
‣ is inflexible (limited # of slots, limited chip size)

“The number of virtualized PCs is expected to grow 
from less than 5 million in 2007 to 660 million by 

2011”

Source: Gartner, 2008



Motivation

• Homogeneous VMs common

• Identical OSes use identical data:
‣ binaries (kernel + programs)
‣ libraries
‣ configuration files
‣ some data files

• Amount of sharable memory

‣ up to 70-80% for synthetic workloads
‣ ~21% for Linux kernel compilation



Motivation

• Memory sharing reduces VM footprint

• Memory overhead of subsequent 
homogenous VMs is smaller

• Extra memory can be used to

‣ increase page cache size, and thus reduce 
paging I/O rate
‣ increase # of VMs on the host
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Satori key objectives

3. Reclaim memory efficiently

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly
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memory paging algorithm
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Satori key objectives

3. Reclaim memory efficiently

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly

Satori monitors virtual I/O devices
➙ no periodic scanning

VMs receive sharing entitlements
in proportion to # pages shared

Memory managed exclusively by the VMs
sharing exposed to the VMs



• Intuition: most (non-zero) duplicates 
originate from VM page caches

• Sharing-aware block devices observe I/O 
reads to build up knowledge of page caches

Sharing-aware block devs

VMphysical disk

sharing-aware 
block dev I/O buffer

page

I/O data
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Sharing entitlements

• Satori tracks the owners of shared     
pseudo-physical pages

• Entitlement proportional to the                   
# of pages shared & # of pages reclaimed

VM memory

HW memory

VM1

entitlement ⅔

VM2
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Implementation in Xen

• Changes in the Xen hypervisor (5351 LoC)
‣ low-level sharing support
‣ sharing entitlement computation
‣ fault handling

• Changes in Domain 0 (3894 LoC)
‣ sharing-aware block devices
‣management tools

• Changes in Domain U (2306 LoC)
‣ repayment FIFO (volatile pgs from IBM CMM)



Performance results

• Sharing-aware block devices interpose on 
data read path

• Worst-case overhead for sequential reads

• Negligible for non-sequential reads

• Kernel compilation macro-benchmark: 
without Satori: 780s, with Satori 779s

Overheads

hashing 0.2%
hashing + IPC 34.8%



Performance results
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Performance results
Performance impact − reads
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Performance results
Performance impact − httpd
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Performance results

• Detection cheap and effective

‣ less than 1% overhead (except IPC)
‣ duplicates detected immediately
‣more effective than scanning

• No physical I/O if data already present in any 
virtual machine memory

• Surplus memory improves overall system 
performance

One slide summary



Conclusions
• Satori implements enlightened page sharing

• Satori is efficient (low overheads)

• Satori is effective (high coverage)

• Satori is fair (proportional entitlements)

• Satori maintains isolation (security and perf)

Thanks!
gm281@cam.ac.uk

http://www.cl.cam.ac.uk/~gm281
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