
Satori:

Grzegorz Miłoś, Derek Murray, Steven Hand Michael Fetterman

University of Cambridge

Outline

• Motivation for page sharing

• Existing systems (a.k.a. state of the art)

• Satori overview

• Implementation

• Performance results

Motivation
• Virtualisation becomes ubiquitous

• Provisioning computer systems with memory

‣ is expensive (hardware cost)
‣ consumes power (running cost)
‣ is inflexible (limited # of slots, limited chip size)

“The number of virtualized PCs is expected to grow
from less than 5 million in 2007 to 660 million by

2011”

Source: Gartner, 2008

Motivation

• Homogeneous VMs common

• Identical OSes use identical data:
‣ binaries (kernel + programs)
‣ libraries
‣ configuration files
‣ some data files

• Amount of sharable memory

‣ up to 70-80% for synthetic workloads
‣ ~21% for Linux kernel compilation

Motivation

• Memory sharing reduces VM footprint

• Memory overhead of subsequent
homogenous VMs is smaller

• Extra memory can be used to

‣ increase page cache size, and thus reduce
paging I/O rate
‣ increase # of VMs on the host

Sharing cycle

page

duplicates

Sharing cycle

page

duplicates

shared
page

share

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

share

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicatescredit

share

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicatescredit

share

write

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicatescreditde

bi
t

share

write

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Sharing cycle

page

duplicates

shared
page

reclaimed
duplicates

private
page creditde

bi
t

share

write

copy

Satori key objectives

Satori key objectives

1. Detect sharing quickly and cheaply

Satori key objectives

1. Detect sharing quickly and cheaply
Hypervisor scans guest memory

and compares fingerprints

Satori key objectives

1. Detect sharing quickly and cheaply
Satori monitors virtual I/O devices

➙ no periodic scanning

Satori key objectives

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly

Satori monitors virtual I/O devices
➙ no periodic scanning

Satori key objectives

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly
Hypervisor manages common

pool of surplus memory

Satori monitors virtual I/O devices
➙ no periodic scanning

Satori key objectives

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly

Satori monitors virtual I/O devices
➙ no periodic scanning

VMs receive sharing entitlements
in proportion to # pages shared

Satori key objectives

3. Reclaim memory efficiently

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly

Satori monitors virtual I/O devices
➙ no periodic scanning

VMs receive sharing entitlements
in proportion to # pages shared

Satori key objectives

3. Reclaim memory efficiently

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly

Hypervisor implements secondary
memory paging algorithm

Satori monitors virtual I/O devices
➙ no periodic scanning

VMs receive sharing entitlements
in proportion to # pages shared

Satori key objectives

3. Reclaim memory efficiently

1. Detect sharing quickly and cheaply

2. Distribute memory savings fairly

Satori monitors virtual I/O devices
➙ no periodic scanning

VMs receive sharing entitlements
in proportion to # pages shared

Memory managed exclusively by the VMs
sharing exposed to the VMs

• Intuition: most (non-zero) duplicates
originate from VM page caches

• Sharing-aware block devices observe I/O
reads to build up knowledge of page caches

Sharing-aware block devs

VMphysical disk

sharing-aware
block dev I/O buffer

page

I/O data

Sharing entitlements

• Satori tracks the owners of shared
pseudo-physical pages

• Entitlement proportional to the
of pages shared & # of pages reclaimed

VM memory

HW memory

VM1 VM2

entitlement 0 0

Sharing entitlements

• Satori tracks the owners of shared
pseudo-physical pages

• Entitlement proportional to the
of pages shared & # of pages reclaimed

VM memory

HW memory

VM1 VM2

entitlement ½ ½

Sharing entitlements

• Satori tracks the owners of shared
pseudo-physical pages

• Entitlement proportional to the
of pages shared & # of pages reclaimed

VM memory

HW memory

VM1 VM2

entitlement ½ ½

Sharing entitlements

• Satori tracks the owners of shared
pseudo-physical pages

• Entitlement proportional to the
of pages shared & # of pages reclaimed

VM memory

HW memory

VM1

entitlement ⅔

VM2

Memory transfer

Memory transfer
credit

Memory transfer
credit

VM

balloon

Memory transfer
credit

VM

balloon

Memory transfer
credit

VM

balloon

Memory transfer
creditde

bi
t

VM

balloon

Memory transfer
creditde

bi
t

VM

balloon

VM

repayment
FIFO

Memory transfer
creditde

bi
t

VM

balloon

VM

repayment
FIFO

Implementation in Xen

• Changes in the Xen hypervisor (5351 LoC)
‣ low-level sharing support
‣ sharing entitlement computation
‣ fault handling

• Changes in Domain 0 (3894 LoC)
‣ sharing-aware block devices
‣management tools

• Changes in Domain U (2306 LoC)
‣ repayment FIFO (volatile pgs from IBM CMM)

Performance results

• Sharing-aware block devices interpose on
data read path

• Worst-case overhead for sequential reads

• Negligible for non-sequential reads

• Kernel compilation macro-benchmark:
without Satori: 780s, with Satori 779s

Overheads

hashing 0.2%
hashing + IPC 34.8%

Performance results
Detection effectiveness

0!

5000!

10000!

15000!

20000!

25000!

30000!

35000!

40000!

45000!

0! 2! 4! 6! 8! 10! 12! 14! 16! 18! 20! 22! 24! 26! 28! 30!

P
a
g
e

s!

Time (mins)!

Kernel Compilation (512MB)!

Potential!

Satori!

Performance results
Detection effectiveness

0!

2000!

4000!

6000!

8000!

10000!

12000!

14000!

16000!

18000!

0! 5! 10! 15! 20! 25! 30! 35! 40! 45! 50! 55! 60!

P
a
g
e

s!

Time (mins)!

Kernel Compilation (512MB)!

Satori!

VMware!

Performance results
Performance impact − reads

Read progress in VM1

Read progress in VM2

0.22s

0 2 4 6 8s

Performance results
Performance impact − httpd

0!

50!

100!

150!

200!

250!

0! 20! 40! 60! 80! 100! 120! 140! 160! 180! 200! 220! 240!

R
e

sp
o

n
se

 r
a
te

 (
re

q
s/

s)
!

Time (s)!

Httpd performance!

Satori!

VMware without Tools!

VMware with Tools!

Performance results

• Detection cheap and effective

‣ less than 1% overhead (except IPC)
‣ duplicates detected immediately
‣more effective than scanning

• No physical I/O if data already present in any
virtual machine memory

• Surplus memory improves overall system
performance

One slide summary

Conclusions
• Satori implements enlightened page sharing

• Satori is efficient (low overheads)

• Satori is effective (high coverage)

• Satori is fair (proportional entitlements)

• Satori maintains isolation (security and perf)

Thanks!
gm281@cam.ac.uk

http://www.cl.cam.ac.uk/~gm281

mailto:gm281@cam.ac.uk
mailto:gm281@cam.ac.uk
mailto:gm281@cam.ac.uk
mailto:gm281@cam.ac.uk

