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Introduction

» kernel / userspace dichotomy
- Interfaces dictate environment

 make kernel file systems run in userspace
In a complete and maintainable way

— full stack, no code forks or #1fdef

* file system is a protocol translator
- read(off,size,n) => blocks 001,476,711,999




Implementation status

 NetBSD kernel file system code runs
unmodified in a userspace process

» total of 13 kernel file systems
- cd9660, efs, ext2fs, fat, ffs, hfs+, Ifs, nfs, ntfs,
puffs, sysvbfs, tmpfs, udf
- disk, memory, network, "other”

* implementation shipped as source and
binary with NetBSD 5.0 and later




Terminology

rump: runnable userspace meta program
1) userspace program using kernel code
2) framework which enables above

rump kernel: part of rump with kernel code

host (OS): system running the rump(1)
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Motivation

* original motivation: kernel development
» additional benefits:

- security

— code reuse in userspace tools

- kernel code reuse on other systems




Contrasts

1)usermode OS, emulator, virtual machine,
second machine, turing machine, etc.

- acknowledge that we already have an OS

- vm simplifications, abstraction shortcuts, etc.

- direct host service (no additional userland)
2)userspace file systems (e.g. FUSE)

- reuse existing code, not write new code
against another interface
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Two modes
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Security

e common scenario: you get a USB stick
from a 3rd party

 plug stick into your system and attempt to
either read or write files

* suitably corrupt file system: crash
— Or wWorse

 mount as rump file system: isolate
damage to a process
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Development & Debugging

» kernel hacking is ... convoluted
- kernel hackers already know this

* rump allows more details from non-expert
user submitting bug report

- very important in an open source context

- users are rarely willing or in a situation to
setup a kernel development environment




Tools: fs-utils

* mtools, ntfsprogs, Itools, etc.
- self-contained apps to access fs in userspace
- different syntax
- file system driver reimplementation

o fs-utils (Ysmal 2008)

- standard POSIX utilities, rump fs driver
-examples: fsu_1ls /dev/sdOe -1ltr

— fsu mkdir fs.img -p /my/hier



Tools: makefs

* problem: create an installation image
- crossbuild => cannot use in-kernel fs & mount
* solution: makefs (Mewburn 2001)

- application which creates a file system image
from a directory tree

- modified copy of the FFS driver, >100h effort

 rump makefs uses fs-utils
- more supported file systems, much less eff
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Kernel Code

» almost all kernel code can run anywhere

 set of interfaces code depends on
determines default environment

-mal 1 oc() vs. knem al | oc()
* dependees have own set of dependencies

* need to find dependency closure starting
from file system code




Implementation Strategy

* use as much kernel code directly as is
practical

» use high-level services provided by host
- threading, synchronization, sockets, etc.

» alter system structure: regroup source
modules to minimize dependency hazards

- but avoid getting yelled at




Finding Closure
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Maintenance

* implementation duplicates interfaces and
relies on module boundaries

 how often does it break?
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"C Is portable”
"userspace programs are portable”
 NetBSD and Linux fs, mix&match

* there are detalls to take into account
- data types need to match
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Performance

e current approach: enhance performance
only inside rump

- do not modify the host system to provide non-
standard interfaces

 for ultraperformance, use in-kernel mount

e« common rump performance for FFS is
+5% of kernel mount performance

- depends on backend




Conclusions

» possible to run kernel fs code of a general
purpose OS in userspace

- alter system structure
* benefits
- avoid reimplementations
- security
- and kernel development

» implement it on $YourOS ;-)




Try it out!

* go to http://www.NetBSD.org/

 download 5.0 or -current & install
— or use LiveCD

* man rump
* submit bug reports
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