

Rump File Systems
Kernel Code Reborn

Antti Kantee
pooka@cs.hut.fi

Helsinki University of Technology

USENIX Annual Technical Conference,
San Diego, USA

June 2009

mailto:pooka@cs.hut.fi

Introduction

● kernel / userspace dichotomy
– interfaces dictate environment

● make kernel file systems run in userspace
in a complete and maintainable way
– full stack, no code forks or #ifdef

● file system is a protocol translator
– read(off,size,n) => blocks 001,476,711,999

Implementation status

● NetBSD kernel file system code runs
unmodified in a userspace process

● total of 13 kernel file systems
– cd9660, efs, ext2fs, fat, ffs, hfs+, lfs, nfs, ntfs,

puffs, sysvbfs, tmpfs, udf
– disk, memory, network, ”other”

● implementation shipped as source and
binary with NetBSD 5.0 and later

Terminology

rump: runnable userspace meta program
1) userspace program using kernel code
2) framework which enables above

rump kernel: part of rump with kernel code

host (OS): system running the rump(1)

Talk outline

motivation
use cases
implementation
evaluation

Motivation

● original motivation: kernel development
● additional benefits:

– security
– code reuse in userspace tools
– kernel code reuse on other systems

Contrasts

1)usermode OS, emulator, virtual machine,
second machine, turing machine, etc.
– acknowledge that we already have an OS
– vm simplifications, abstraction shortcuts, etc.
– direct host service (no additional userland)

2)userspace file systems (e.g. FUSE)
– reuse existing code, not write new code

against another interface

Talk outline

motivation
use cases
implementation
evaluation

Two modes
mounted server
(transparent, privileges)

application library
(explicit, unpriviledged)

application

rump

kernel fs

application

rump

kernel fs

userspace
file server

userspace
file system

syscall

 process 1 process 2 process 1

user

kernel

Security

● common scenario: you get a USB stick
from a 3rd party

● plug stick into your system and attempt to
either read or write files

● suitably corrupt file system: crash
– or worse

● mount as rump file system: isolate
damage to a process

Security

● common scenario: you get a USB stick
from a 3rd party

● plug stick into your system and attempt to
either read or write files

● suitably corrupt file system: crash
– or worse

● mount as rump file system: isolate
damage to a process

kernel

file server,
kernel fs

X

Development & Debugging

● kernel hacking is ... convoluted
– kernel hackers already know this

● rump allows more details from non-expert
user submitting bug report
– very important in an open source context
– users are rarely willing or in a situation to

setup a kernel development environment

Tools: fs-utils

● mtools, ntfsprogs, ltools, etc.
– self-contained apps to access fs in userspace
– different syntax
– file system driver reimplementation

● fs-utils (Ysmal 2008)
– standard POSIX utilities, rump fs driver
– examples: fsu_ls /dev/sd0e -ltr
– fsu_mkdir fs.img -p /my/hier

Tools: makefs

● problem: create an installation image
– crossbuild => cannot use in-kernel fs & mount

● solution: makefs (Mewburn 2001)
– application which creates a file system image

from a directory tree
– modified copy of the FFS driver, >100h effort

● rump makefs uses fs-utils
– more supported file systems, much less effort

Talk outline

motivation
use cases
implementation
evaluation

Kernel Code

● almost all kernel code can run anywhere
● set of interfaces code depends on

determines default environment
– malloc() vs. kmem_alloc()

● dependees have own set of dependencies
● need to find dependency closure starting

from file system code

Implementation Strategy

● use as much kernel code directly as is
practical

● use high-level services provided by host
– threading, synchronization, sockets, etc.

● alter system structure: regroup source
modules to minimize dependency hazards
– but avoid getting yelled at

Finding Closure

file system

vfs
routines

memory
allocator atomic ops

thread
support

virtual
memory

locking

name
cache

disk driver

scheduling

buffer
cache

string
manipulation

host service

reimplemented

pseudo
file systems

Talk outline

motivation
use cases
implementation
evaluation

Maintenance

entire kernel

rump

only rump

rump breakage
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

commits

● implementation duplicates interfaces and
relies on module boundaries

● how often does it break?

repository analysis Aug 2007 – Dec 2008

Portability
”C is portable”
”userspace programs are portable”
● NetBSD and Linux fs, mix&match
● there are details to take into account

– data types need to match

rump fs,
NetBSD x+1,
64bit time_t

”userland”,
OS ... y,

32bit time_t

foo(time_t *)

Performance

● current approach: enhance performance
only inside rump
– do not modify the host system to provide non-

standard interfaces
● for ultraperformance, use in-kernel mount
● common rump performance for FFS is
±5% of kernel mount performance
– depends on backend

Conclusions

● possible to run kernel fs code of a general
purpose OS in userspace
– alter system structure

● benefits
– avoid reimplementations
– security
– and kernel development

● implement it on $YourOS ;-)

Try it out!

● go to http://www.NetBSD.org/
● download 5.0 or -current & install

– or use LiveCD
● man rump
● submit bug reports

http://www.NetBSD.org/

Try it out!

● go to http://www.NetBSD.org/
● download 5.0 or -current & install

– or use LiveCD
● man rump
● submit bug reports

Questions?

http://www.NetBSD.org/

