Rump File Systems
Kernel Code Reborn

Antti Kantee
pooka@cs.hut.fi
Helsinki University of Technology

USENIX Annual Technical Conference,
San Diego, USA
June 2009

mailto:pooka@cs.hut.fi

Introduction

» kernel / userspace dichotomy
- Interfaces dictate environment

 make kernel file systems run in userspace
In a complete and maintainable way

— full stack, no code forks or #1fdef

* file system is a protocol translator
- read(off,size,n) => blocks 001,476,711,999

Implementation status

 NetBSD kernel file system code runs
unmodified in a userspace process

» total of 13 kernel file systems
- cd9660, efs, ext2fs, fat, ffs, hfs+, Ifs, nfs, ntfs,
puffs, sysvbfs, tmpfs, udf
- disk, memory, network, "other”

* implementation shipped as source and
binary with NetBSD 5.0 and later

Terminology

rump: runnable userspace meta program
1) userspace program using kernel code
2) framework which enables above

rump kernel: part of rump with kernel code

host (OS): system running the rump(1)

Talk outline

motivation
use cases
Implementation
evaluation

\ (A
/C\)'j\ L2

Motivation

* original motivation: kernel development
» additional benefits:

- security

— code reuse in userspace tools

- kernel code reuse on other systems

Contrasts

1)usermode OS, emulator, virtual machine,
second machine, turing machine, etc.

- acknowledge that we already have an OS

- vm simplifications, abstraction shortcuts, etc.

- direct host service (no additional userland)
2)userspace file systems (e.g. FUSE)

- reuse existing code, not write new code
against another interface

Talk outline

motivation
use cases
Implementation
evaluation

Two modes

mounted server application library
(transparent, privileges) (explicit, unpriviledged)
process 1 process 2 process 1
[rump [rump

[application} [kernel fs } [kernel fs }

T T

userspace [application}
file server
s v N
syscall
he 5
userspace
\file system |

Security

e common scenario: you get a USB stick
from a 3rd party

 plug stick into your system and attempt to
either read or write files

* suitably corrupt file system: crash
— Or wWorse

 mount as rump file system: isolate
damage to a process

Security

 common scenario: you get a USB stick
from a 3rd party

* plug stick into your system and attempt to
either read or write files

+ suitably corrupt file system: crash | | kemel
— O worse %

 mount as rump file system: isolate
damage to a process

file server, W
kernel fs

Development & Debugging

» kernel hacking is ... convoluted
- kernel hackers already know this

* rump allows more details from non-expert
user submitting bug report

- very important in an open source context

- users are rarely willing or in a situation to
setup a kernel development environment

Tools: fs-utils

* mtools, ntfsprogs, Itools, etc.
- self-contained apps to access fs in userspace
- different syntax
- file system driver reimplementation

o fs-utils (Ysmal 2008)

- standard POSIX utilities, rump fs driver
-examples: fsu_1ls /dev/sdOe -1ltr

— fsu mkdir fs.img -p /my/hier

Tools: makefs

* problem: create an installation image
- crossbuild => cannot use in-kernel fs & mount
* solution: makefs (Mewburn 2001)

- application which creates a file system image
from a directory tree

- modified copy of the FFS driver, >100h effort

 rump makefs uses fs-utils
- more supported file systems, much less eff

Talk outline

motivation
use cases
implementation
evaluation

Kernel Code

» almost all kernel code can run anywhere

 set of interfaces code depends on
determines default environment

-mal 1 oc() vs. knem al | oc()
* dependees have own set of dependencies

* need to find dependency closure starting
from file system code

Implementation Strategy

* use as much kernel code directly as is
practical

» use high-level services provided by host
- threading, synchronization, sockets, etc.

» alter system structure: regroup source
modules to minimize dependency hazards

- but avoid getting yelled at

Finding Closure

/ vfs pseudo virtual
routines file systems memory
»—*—

memory } atomic ops }

’ allocator

thread :
f|Ie system locking]< support scheduling]
‘ buffer disk driver
cache

host service

name) string
cache manipulation

Talk outline

motivation
use cases
implementation
evaluation

hhh

Maintenance

* implementation duplicates interfaces and
relies on module boundaries

 how often does it break?

entire kernel [
rump Il
only rump B

rump breakage |
0 1000 2000 3000 4000 5000 6000 7000 80

. ’ _ .
M repository analysis Aug 2

"C Is portable”
"userspace programs are portable”
 NetBSD and Linux fs, mix&match

* there are detalls to take into account
- data types need to match

/ b}) b))
userland’,

OS ...y,

32bitti me t
<

N

4

<

Portability

foo(time t *)

>

y
rump fs,
NetBSD x+1,

64bittinme t |

N

Performance

e current approach: enhance performance
only inside rump

- do not modify the host system to provide non-
standard interfaces

 for ultraperformance, use in-kernel mount

e« common rump performance for FFS is
+5% of kernel mount performance

- depends on backend

Conclusions

» possible to run kernel fs code of a general
purpose OS in userspace

- alter system structure
* benefits
- avoid reimplementations
- security
- and kernel development

» implement it on $YourOS ;-)

Try it out!

* go to http://www.NetBSD.org/

 download 5.0 or -current & install
— or use LiveCD

* man rump
* submit bug reports

http://www.NetBSD.org/

Try it out!

* go to http://www.NetBSD.org/

 download 5.0 or -current & install
— or use LiveCD

* man rump
* submit bug reports

Questions?

http://www.NetBSD.org/

