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Introduction

● kernel / userspace dichotomy
– interfaces dictate environment

● make kernel file systems run in userspace 
in a complete and maintainable way
– full stack, no code forks or #ifdef

● file system is a protocol translator
– read(off,size,n) => blocks 001,476,711,999



  

Implementation status

● NetBSD kernel file system code runs 
unmodified in a userspace process

● total of 13 kernel file systems
– cd9660, efs, ext2fs, fat, ffs, hfs+, lfs, nfs, ntfs, 

puffs, sysvbfs, tmpfs, udf
– disk, memory, network, ”other”

● implementation shipped as source and 
binary with NetBSD 5.0 and later



  

Terminology

rump: runnable userspace meta program
1) userspace program using kernel code
2) framework which enables above

rump kernel: part of rump with kernel code

host (OS): system running the rump(1)



  

Talk outline

motivation
use cases
implementation
evaluation



  

Motivation

● original motivation: kernel development
● additional benefits:

– security
– code reuse in userspace tools
– kernel code reuse on other systems



  

Contrasts

1)usermode OS, emulator, virtual machine, 
second machine, turing machine, etc.
– acknowledge that we already have an OS
– vm simplifications, abstraction shortcuts, etc.
– direct host service (no additional userland)

2)userspace file systems (e.g. FUSE)
– reuse existing code, not write new code 

against another interface
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Security

● common scenario: you get a USB stick 
from a 3rd party

● plug stick into your system and attempt to 
either read or write files

● suitably corrupt file system: crash
– or worse

● mount as rump file system: isolate 
damage to a process
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Development & Debugging

● kernel hacking is ... convoluted
– kernel hackers already know this

● rump allows more details from non-expert 
user submitting bug report
– very important in an open source context
– users are rarely willing or in a situation to 

setup a kernel development environment



  

Tools: fs-utils

● mtools, ntfsprogs, ltools, etc.
– self-contained apps to access fs in userspace
– different syntax
– file system driver reimplementation

● fs-utils (Ysmal 2008)
– standard POSIX utilities, rump fs driver
– examples: fsu_ls /dev/sd0e -ltr
– fsu_mkdir fs.img -p /my/hier



  

Tools: makefs

● problem: create an installation image
– crossbuild => cannot use in-kernel fs & mount

● solution: makefs (Mewburn 2001)
– application which creates a file system image 

from a directory tree
– modified copy of the FFS driver, >100h effort

● rump makefs uses fs-utils
– more supported file systems, much less effort
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Kernel Code

● almost all kernel code can run anywhere
● set of interfaces code depends on 

determines default environment
– malloc() vs. kmem_alloc()

● dependees have own set of dependencies
● need to find dependency closure starting 

from file system code



  

Implementation Strategy

● use as much kernel code directly as is 
practical

● use high-level services provided by host
– threading, synchronization, sockets, etc.

● alter system structure: regroup source 
modules to minimize dependency hazards
– but avoid getting yelled at
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Maintenance

entire kernel

rump

only rump

rump breakage
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commits

● implementation duplicates interfaces and 
relies on module boundaries

● how often does it break?

repository analysis Aug 2007 – Dec 2008



  

Portability
”C is portable”
”userspace programs are portable”
● NetBSD and Linux fs, mix&match
● there are details to take into account

– data types need to match

rump fs,
NetBSD x+1,
64bit time_t

”userland”,
OS ... y,

32bit time_t

foo(time_t *)



  

Performance

● current approach: enhance performance 
only inside rump
– do not modify the host system to provide non-

standard interfaces
● for ultraperformance, use in-kernel mount
● common rump performance for FFS is 
±5% of kernel mount performance
– depends on backend



  

Conclusions

● possible to run kernel fs code of a general 
purpose OS in userspace
– alter system structure

● benefits
– avoid reimplementations
– security
– and kernel development

● implement it on $YourOS ;-)



  

Try it out!

● go to http://www.NetBSD.org/
● download 5.0 or -current & install

– or use LiveCD
● man rump
● submit bug reports

http://www.NetBSD.org/
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