
Hardware Execution Throttling for Multi-core Resource Management ∗

Xiao Zhang Sandhya Dwarkadas Kai Shen

Department of Computer Science, University of Rochester

{xiao, sandhya, kshen}@cs.rochester.edu

Abstract

Modern processors provide mechanisms (such as duty-

cycle modulation and cache prefetcher adjustment) to

control the execution speed or resource usage efficiency

of an application. Although these mechanisms were orig-

inally designed for other purposes, we argue in this pa-

per that they can be an effective tool to support fair use

of shared on-chip resources on multi-cores. Compared

to existing approaches to achieve fairness (such as page

coloring and CPU scheduling quantum adjustment), the

execution throttling mechanisms have the advantage of

providing fine-grained control with little software system

change or undesirable side effect. Additionally, although

execution throttling slows down some of the running ap-

plications, it does not yield any loss of overall system

efficiency as long as the bottleneck resources are fully

utilized. We conducted experiments with several sequen-

tial and server benchmarks. Results indicate high fair-

ness with almost no efficiency degradation achieved by a

hybrid of two execution throttling mechanisms.

1 Introduction
Modern multi-core processors may suffer from poor

fairness with respect to utilizing shared on-chip re-

sources (including the last-level on-chip cache space and

the memory bandwidth). In particular, recent research ef-

forts have shown that uncontrolled on-chip resource shar-

ing can lead to large performance variations among co-

running applications [5,17]. Such poor performance iso-

lation makes an application’s performance hard to pre-

dict and consequently it hurts the system’s ability to pro-

vide quality-of-service support. Even worse, malicious

applications can take advantage of such obliviousness to

on-chip resource sharing to launch denial-of-service at-

tacks and starve other applications [10].

Much research has tried to tackle the issue of fair re-

source utilization on multi-core processors. Some re-

quire significant new hardware mechanisms that are not

available on commodity platforms [1, 3, 14, 17]. Without

extra hardware support, the operating system must resort
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to software techniques such as page coloring to achieve

cache partitioning [4, 9, 13, 15, 16] and CPU schedul-

ing quantum adjustment to achieve fair resource utiliza-

tion [5]. However, page coloring requires significant

changes in the operating system memory management,

places artificial constraints on system memory allocation

policies, and incurs expensive re-coloring (page copying)

costs in dynamic execution environments. CPU schedul-

ing quantum adjustment suffers from its inability to pro-

vide fine-grained quality of service guarantees.

In this paper, we argue that hardware execution throt-

tling can efficiently manage on-chip shared resources

with much less complexity and overhead than exist-

ing alternatives, while providing the necessary granu-

larity of quality of service. Specifically, we investigate

the use of existing hardware mechanisms to control the

cache/bandwidth consumption of a multi-core processor.

Commodity processors are deployed with mechanisms

(e.g., duty cycle modulation and dynamic voltage and

frequency scaling) to artificially slow down execution

speed for power/thermal management [7]. By throttling

down the execution speed of some of the cores, we can

control an application’s relative resource utilization to

achieve desired fairness or other quality-of-service ob-

jectives. In addition to direct throttling of CPU speed,

we also explore the existing mechanism of controlling

L1 and L2 cache hardware prefetchers. Different cache

prefetching configurations also allow us to manage an

application’s relative utilization of the shared memory

bandwidth and cache space.

2 Multi-core Resource Management

Mechanisms
2.1 Hardware Execution Throttling
One mechanism to throttle a CPU’s execution speed

available in today’s multi-core platforms is dynamic volt-

age and frequency scaling. However, on some multi-

core platforms, sibling cores often need to operate at the

same frequency [11]. Intel provides another mechanism

to throttle per-core execution speed, namely, duty-cycle

modulation [7]. Specifically, the operating system can

specify a portion (e.g., multiplier of 1/8) of regular CPU

cycles as duty cycles by writing to the logical processor’s

IA32 CLOCK MODULATION register. The processor

is effectively halted during non-duty cycles. Duty-cycle



Prefetchers Description

L1 IP Keeps track of instruction pointer and looks for

sequential load history.

L1 DCU When detecting multiple loads from the same line

within a time limit, prefetches the next line.

L2 Adjacent Line Prefetches the adjacent line of required data.

L2 Stream Looks at streams of data for regular patterns.

Table 1: Brief description of four L1/L2 cache prefetchers on

Intel Core 2 Duo processors [7].

modulation was originally designed for thermal manage-

ment and was also used to simulate an asymmetric CMP

in recent work [2].

Execution throttling is not work-conserving since it

leaves resources partially idle while there are still ac-

tive tasks. Consequently, there is potential cause for con-

cern about lost efficiency in the pursuit of fairness. We

argue that careful execution throttling only affects the

relative resource use among co-running applications. It

should not degrade the overall system efficiency as long

as the bottleneck resource (shared cache space or mem-

ory bandwidth) is fully utilized.

Today’s commodity processors often perform hard-

ware prefetching, which helps hide memory latency by

taking advantage of bandwidth not being used by on-

demand misses. However, in a multi-core environ-

ment, the result might be contention with the on-demand

misses of concurrently executing threads. The hardware

prefetchers are usually configurable. For example, on

Intel Core 2 Duo processors, there are two L1 cache

prefetchers (DCU and IP prefetchers) and two L2 cache

prefetchers (adjacent line and stream prefetchers) [7].

Table 1 briefly describes the prefetchers on our test plat-

form. Each can be selectively turned on/off, providing

partial control over a thread’s bandwidth utilization.

Both duty-cyclemodulation and prefetcher adjustment

can be used to throttle an application’s execution speed.

The former directly controls the number of accesses to

the cache (the execution speed), thereby affecting cache

pressure and indirectly the bandwidth usage, while the

latter directly controls bandwidth usage, thereby affect-

ing cache pressure and indirectly affecting execution

speed. Adjusting the duty cycle alone might not result

in sufficient bandwidth reduction if the prefetching is ag-

gressive, while adjusting the prefetching alone might not

reduce cache pressure sufficiently. Both mechanisms can

be combined to arrive at fair resource allocation.

On our platform, configuring the duty cycle takes

265 + 350 (read plus write register) cycles; configuring

the prefetchers takes 298 + 2065 (read plus write regis-

ter) cycles. The control registers also specify other fea-

tures in addition to our control targets, so we need to read

their values before writing. The longer time for a new

prefetching configuration to take effect is possibly due to

clearing obsolete prefetch requests in queues. Roughly

speaking, the costs of configuring duty cycle modula-

tion and cache prefetcher are 0.2 and 0.8microseconds

respectively on our 3.0GHz machine.

Enabling these mechanisms requires very little oper-

ating system software modification. Our changes to the

Linux kernel source are∼40 lines of code in a single file.

2.2 Alternative Mechanisms
Cache Partitioning Page coloring, a technique orig-

inally proposed for cache conflict mitigation [8, 12], is

a software technique that manipulates mapping between

memory and cache. Memory pages that are mapped to

the same cache blocks are labeled to be in the same

color. By manipulating the allocation of colors to ap-

plications, the operating system can partition a cache at

page granularity (strictly speaking, at a granularity of

PageSize times CacheAssociativity). The maximum

number of colors that a platform can support is deter-

mined by CacheSize
PageSize×CacheAssociativity

.

Page coloring has recently been used to manage cache

allocation [4, 9, 13, 15] by isolating cache space usage

among applications. However, page coloring has a num-

ber of important drawbacks [16]. First, during dynamic

executions in multi-programmed environments, the re-

source manager may decide to change an application’

cache share due to a priority change or a change in the

set of simultaneously executing processes. This would

require re-coloring of a potentially large number of mem-

ory pages with each re-coloring typically requiring an ex-

pensive page copy. As a quantitative reference, copying a

single page costs around 3microseconds on our platform,

which is already much more expensive that the configu-

ration (or re-configuration) of hardware execution throt-

tling mentioned earlier.

The second drawback is that page coloring enforces

strict memory to cache mapping and introduces artificial

memory allocation constraints. For example, an applica-

tion allocated one eighth of all cache colors is also enti-

tled to only one eighth of the total memory space. This

artificial memory allocation constraint may force an ap-

plication to run out of its entitled memory space while

many free pages are still available in other colors.

Finally, compared to hardware execution throttling,

page coloring requires more significant changes in the

operating system memory management code. Our in-

complete implementation of page coloring (without full

support for page re-coloring) involves more than 700

lines of Linux source code changes in 10 files.

In addition to software-based cache management

mechanisms, several hardware-level mechanisms have

also been proposed [1, 14, 17]. They generally re-

quire adding new hardware counters/tags to monitor fine-

grained cache usage, and modify the cache replacement

policy based on applications’ resource entitlements. It is

also possible to implement associativity-based cache par-



titioning (called column caching in [3]), which is a trade-

off between control flexibility and deployment overhead.

While such hardware mechanisms could be beneficial,

we focus here on mechanisms available in today’s com-

modity platforms.

CPU Scheduling Quantum Adjustment Fedorova et

al. proposed a software method to maintain fair resource

usage on multi-cores [5]. They advocate adjusting the

CPU scheduling time quantum to increase or decrease

an application’s relative CPU share. By compensat-

ing/penalizing applications under/over fair cache usage,

the system tries to maintain equal cache miss rates across

all applications (which is considered fair). To derive the

fair cache miss rate, they profile an application’s behav-

ior with several different co-runners.

The key drawback of CPU scheduling quantum adjust-

ment is that it only achieves fairness at granularities com-

parable to the scheduling time quantum. This would lead

to unstable performance of fine-grained tasks (such as

individual requests in a server system).

3 Evaluation and Results Analysis
We enabled the duty-cycle modulation and cache

prefetcher adjustment mechanisms by modifying the

Linux 2.6.18 kernel. Our experiments were conducted

on an Intel Xeon 5160 3.0GHz “Woodcrest” dual-core

platform. The two cores share a single 4MB L2 cache

(16-way set-associative, 64-byte cache line, 14 cycle la-

tency, writeback).

Our evaluation benchmarks include three programs

from SPECCPU2000: swim, mcf, and equake. We also

employ two server-style benchmarks (SPECjbb2005 and

SPECweb99) in our evaluation. SPECjbb is configured

with four warehouses and a 500MB heap size. SPECweb

is hosted on the Apache web server 1.3.33. When run-

ning alone, swim, mcf, and equake take 136.1, 46.1, and

67.5 seconds respectively to complete. We bind each

server application to a single core to get its baseline per-

formance. SPECjbb delivers a throughput of 17794.4 op-

erations/second and SPECweb delivers a throughput of

361.5 web requests/second.

Optimization Goal and Policy Settings We measure

several approaches’ ability to achieve fairness and, in ad-

dition, evaluate their efficiency. There are several possi-

ble definitions of fair use of shared resources [6]. The

particular choice of fairness measure should not affect

the main purpose of our evaluation. In our evaluation,

we use communist fairness, or equal performance degra-

dation compared to a standalone run for the application.

Based on this fairness goal, we define an unfairness fac-

tor metric as the coefficient of variation (standard devi-

ation divided by the mean) of all applications’ perfor-

mance normalized to that of their individual standalone

run. We also define an overall system efficiencymetric as

the geometric mean of all applications’ normalized per-

formance.

We consider two execution throttling approaches. One

is based on the per-core duty cycle modulation. An-

other is a hybrid approach that employs both duty cycle

modulation and cache prefetcher adjustment. We imple-

ment two additional approaches in the Linux kernel for

the purpose of comparison: an ideal page coloring ap-

proach (one that uses a statically defined cache partition

point and incurs no page recoloring cost) and schedul-

ing quantum adjustment using an idle process to control

the amount of CPU time allocated to the application pro-

cess. As a base for comparison, we also consider de-

fault sharing—running two applications on a dual-core

processor under the default hardware/software resource

management.

For each approach other than default sharing, we man-

ually try all possible policy decisions (i.e., page color-

ing partitioning point, duty cycle modulation ratio, cache

prefetcher configuration, and idle process running time)

and report the result for the policy decision yielding the

best fairness. Since the parameter search space when

combining duty cycle modulation and prefetcher con-

figuration is large, we explore it in a genetic fashion.

Specifically, we first select default and a few duty cycle

modulation settings that achieve reasonably good fair-

ness and then tune their prefetchers to find a best config-

uration. In most cases, duty-cycle modulation and duty-

cycle & prefetch reach the same duty-cycle ratio except

for {swim, SPECjbb}. In this case, setting swim’s duty-

cycle to 5/8 has a similar throttling effect to disabling its

L2 stream prefetcher.

Figure 1 illustrates the page coloring-based cache par-

tition settings yielding the best fairness. Table 2 lists

the best-fairness policy settings for the hybrid hardware

throttling (duty cycle modulation and cache prefetcher

configuration) and scheduling quantum adjustment re-

spectively. All cache prefetchers on our platform are per-

core configurable except the L2 adjacent line prefetcher.

Best Fairness Figure 2 shows the fairness results (in

terms of the unfairness factor) when running each pos-

sible application pair on the two cores (running two in-

stances of the same application shows an unfairness fac-

tor close to 0 in all cases, so we do not present these

results in the figure). On average, the unfairness fac-

tor is 0.191, 0.028, 0.025, 0.027, and 0.017 for default

sharing, page coloring, scheduling quantum adjustment,

duty-cycle modulation, and duty-cycle & prefetch, re-

spectively. Default sharing demonstrates a higher unfair-

ness factor in several cases. The level of unfairness is a

function of the properties of the co-running applications.

If their cache and bandwidth usage requirements are sim-

ilar, the unfairness factor is low. If the requirements are
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Figure 1: Cache partition settings under page coloring to

achieve best fairness. Our experimental platform supports at

most 64 colors and therefore the shared 4MB L2 cache is di-

vided into 64 shares. Results are shown for all possible appli-

cation pairs from our five benchmarks (pairing an application

with itself results in the cache being partitioned in half).

significantly different, and if the sum of the requirements

exceeds the available resource, the unfairness factor is

high due to uncontrolled usage.

Ideal page coloring-based cache partitioning also

shows some variation in the unfairness factor across

benchmark pairs. In particular, {swim, SPECweb}
shows a comparatively higher unfairness factor due to

two competing effects. Under page coloring, if swim

was entitled to a very small portion of the cache space,

its mapped memory pages might be less than its required

memory footprint, resulting in thrashing (page swap-

ping to disk). If swim’s cache usage is not curtailed,

SPECweb’s normalized performance is significantly af-

fected. These competing constraints result in page color-

ing not achieving good fairness (overall efficiency is also

lower than with default sharing) in this case.

While both page coloring and execution throttling

achieve better fairness than default sharing, the combi-

nation of duty cycle modulation and prefetching control

achieves a uniformly low unfairness factor below 0.03.

This uniform fairness is achieved without the additional

(not accounted for; we elaborate further later in this sec-

tion) overheads of page coloring. One can extend these

fairness goals to additional management objectives like

proportional resource allocation.

The scheduling quantum adjustment obtains similar

low unfairness factor to hardware throttling. However,

these results are calculated based on coarse-grained per-

formance measurement (i.e., at the scale of whole appli-

cation execution). When examined at finer granularity,

performance fluctuates (see Figure 4; we elaborate fur-

ther later in this section), suggesting unstable fairness.

Efficiency At Best Fairness Figure 3 shows evaluation

results on the overall system efficiency (when the best

Hardware throttling Scheduling

Co-running Duty-cycle Non-default cache quantum

applications modulation prefetcher setup adjustment

swim 5/8 Default 100/30

mcf Default Default NA

swim 7/8 Default 100/20

equake Default Enable L1 DCU NA

swim Default Disable L2 stream 100/40

SPECjbb Default Default NA

swim 6/8 Default 100/30

SPECweb Default Default NA

mcf Default Disable L2 adjacent line NA

equake 6/8 Disable L2 adjacent line 100/25

mcf Default Default NA

SPECjbb Default Default NA

mcf Default Disable L2 adj. & stream 100/5

SPECweb Default Disable L2 adjacent line NA

equake 6/8 Enable L1 DCU 100/30

SPECjbb Default Enable L1 DCU NA

equake 7/8 Default 100/30

SPECweb Default Default NA

SPECjbb Default Disable L2 stream NA

SPECweb Default Default NA

Table 2: Configurations of hardware throttling and scheduling
quantum adjustment to achieve best fairness. The duty-cycle

modulation must be a multiplier of 1/8 on our platform. The

default hardware throttling configuration is full execution speed

(or 8/8), plus enabled L1 IP, disabled L1 DCU, enabled L2 ad-

jacent line, and enabled L2 stream prefetchers. The schedul-

ing quantum adjustment adds an idle process to squeeze one’s

CPU share. For example, “100/30” means every round, the

application and idle process alternate, running for 100 and 30

milliseconds, respectively. “NA” implies no idle process was

used. Results are shown for all possible application pairs from

our five benchmarks (pairing an application with itself results

in the use of default configurations).

fairness is achieved under each approach). Here we also

include the efficiency results of running two identical ap-

plications. Note that fairness can be trivially achieved

for these cases by all mechanisms (i.e., equal cache par-

titioning under page coloring, equal setups on both cores

for execution throttling and prefetching, no scheduling

quantum adjustment). However, as the results demon-

strate, system efficiency for some of the approaches

varies. Note that for the prefetcher adjustment, we may

choose a (identical) non-default prefetcher setting for ef-

ficiency gain. Specifically, we do so in two instances:

for {mcf, mcf}, we enable the L1 DCU prefetcher and

disable the L2 adjacent line prefetcher; for {SPECjbb,
SPECjbb}, we enable the L1 DCU prefetcher and dis-

able the L2 stream prefetcher. On average, the efficiency

of all approaches is similar (roughly 0.65). Specific cases

where significant differences occur are discussed below.

For {mcf, equake} and {equake, SPECjbb}, equake
aggressively accesses the L2 cache and makes its co-

runner suffer intensive cache conflicts. Our miss ratio

profile shows that equake is not cache space sensitive,

demonstrating only a 2% increase in cache miss ratio

when varying the L2 cache space from 4MB to 512KB.
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of running two identical applications.

By constraining equake to a small portion of the L2

cache, page coloring can effectively prevent pollution of

the co-runner’s cached data without hurting equake’s per-

formance. Hardware throttling approaches do not fun-

damentally solve inter-application cache conflicts and

need to slow down equake’s execution dramatically to

achieve “fair” cache sharing. In these cases, hardware

throttling has roughly 10% efficiency degradation while

page coloring improves efficiency by 23∼30% relative

to default sharing. The scheduling quantum adjustment

also achieves better efficiency than hardware throttling in

these two cases. This is because equake is less vulnerable

to inter-application cache conflicts than the other appli-

cation. By introducing an idle process to reduce equake’s

co-running time with the other application, it greatly mit-

igates the negative cache conflict impact on the other ap-

plication and therefore boosts overall efficiency. Similar

analysis also applies to {swim, mcf}.

For {mcf, mcf}, page coloring shows about 30% de-

graded efficiency relative to default sharing. mcf is a

cache-space-sensitive application. Under page coloring,

each instance of mcf gets half the cache space. When it

runs alone, mcf has a 17% cache miss ratio when given

4MB L2 cache and that number increases to 35% with

a 2MB L2 cache. Under sharing, two mcfs’ data ac-

cesses are well interleaved such that each gets better per-

formance than that using a 2MB cache. Since the two

instances are equally aggressive in requesting cache re-

sources with default sharing, the unfairness factor re-

mains low. By tuning the prefetching, hardware throt-

tling can improve efficiency by 6% over the default.

Costs of Dynamic Page Re-Coloring The high effi-

ciency of page coloring is obtained assuming a somewhat

ideal page coloring mechanism, meaning that the cache

partition point is statically determined and no page recol-

oring is needed. In reality, a dynamic environmentwould

involve adjusting cache colors and partition points based

on changes in the execution environment. Without extra

hardware support, re-coloring a page means copying a

memory page and it usually takes several micro-seconds

on typical commodity platforms (3 microseconds on our

test platform). Assuming an application must re-color

half of its working set every scheduling quantum (default

100 milliseconds in Linux), our five benchmarks would

incur 18–180% slowdown due to page re-coloring (the

smallest working set is around 50MB (equake) and the

largest around 500MB+ (SPECjbb)). This would more

than negate any efficiency gain by page coloring.

Instability of Scheduling Quantum Adjustment

While scheduling quantum adjustment achieves fair-

ness at coarse granularities comparable to the schedul-

ing quantum size, it may cause fluctuating performance

for fine-grained tasks such as individual requests in a

server system. As a demonstration, we run SPECjbb

and swim on a dual-core chip. Consider a hypothet-

ical resource management scenario where we need to
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Figure 4: SPECjbb’s performance when its co-runner swim

is regulated using two different approaches: scheduling quan-

tum adjustment (default 100-millisecond quantum) and hard-

ware throttling. Each point in the plot represents performance

measured over a 50-millisecond window.

slow down swim by a factor of two. We compare two

approaches—the first adds an equal-priority idle pro-

cess on swim’s core; the second throttles the duty cy-

cle at swim’s core to half the full speed. Figure 4 il-

lustrates SPECjbb’s performance over time under these

two approaches. For scheduling quantum adjustment,

SPECjbb’s performance fluctuates dramatically because

it highly depends on whether its co-runner is the idle pro-

cess or swim. In comparison, hardware throttling leads

to more stable performance behaviors due to its fine-

grained execution speed regulation.

4 Conclusion
This paper investigates the use of hardware-assisted

execution throttling (duty cycle modulation combined

with L1/L2 cache prefetcher configuration) for regu-

lating fairness in modern multi-core processors. We

compare against page coloring-based cache partitioning

and scheduling time quantum adjustment. Our results

demonstrate that simple hardware-assisted techniques to

throttle an application’s execution speed can achieve

high fairness at fine granularity without the drawbacks

of page re-coloring costs.

In this work, we have focused on demonstrating the

relative benefits of the various resource control mech-

anisms. Built on a good mechanism, it may still be

challenging to identify the best control policy during

online execution and exhaustive search of all possi-

ble control policies may be very expensive. In such

cases, our hardware execution throttling approaches are

far more appealing than page coloring due to our sub-

stantially cheaper re-configuration costs. Nevertheless,

more efficient techniques to identify the best control pol-

icy are desirable. In future work, we plan to explore

feedback-driven policy control via continuous tracking

of low-level performance counters such as cache miss

ratio and instructions per cycle executed, in addition to

application-level metrics of execution progress.
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