
Server Workload Analysis for Power Minimization using Consolidation

Akshat Verma Gargi Dasgupta Tapan Kumar Nayak Pradipta De Ravi Kothari

IBM India Research Lab

Abstract

Server consolidation has emerged as a promising tech-
nique to reduce the energy costs of a data center. In
this work, we present the first detailed analysis of an
enterprise server workload from the perspective of find-
ing characteristics for consolidation. We observe sig-
nificant potential for power savings if consolidation is
performed using off-peak values for application demand.
However, these savings come up with associated risks
due to consolidation, particularly when the correlation
between applications is not considered. We also inves-
tigate the stability in utilization trends for low-risk con-
solidation. Using the insights from the workload anal-
ysis, two new consolidation methods are designed that
achieve significant power savings, while containing the
performance risk of consolidation. We present an imple-
mentation of the methodologies in a consolidation plan-
ning tool and provide a comprehensive evaluation study
of the proposed methodologies.

1 Introduction

According to an estimate [2] based on trends from
American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE)[1], by 2014, Infras-
tructure and Energy (I&E) costs would contribute about
75% while IT would contribute a significantly smaller
25% towards the overall total cost of operating a data
center. While there may be a difference in opinion on
the relative proportion of I&E and IT costs, there is little
disagreement that I&E costs would comfortably be the
largest contributor to the cost of operating a data center.
Reducing the I&E costs is, or will soon be, a major ini-
tiative of most data centers. One promising approach,
prompted by virtualization and hardware-assisted isola-
tion, for reducing the I&E costs is server consolidation.

Server consolidation is based on the observation that
many enterprise servers do not maximally utilize the

available server resources all of the time. Co-locating ap-
plications, perhaps in individual virtual machines, thus
allows for a reduction in the total number of physical
servers, minimizesserver sprawlas well as the total data
center space requirements.

Consolidation reduces the total power consumed by
the applications because existing servers are not energy-
proportional, i.e., a significant amount of power is con-
sumed even at low levels of utilization [26]. Though
server features likevoltageandfrequency scalingmodify
this curve, there is still substantial power drawn atidle or
low utilization. Consolidation thus provides an oppor-
tunity to reduce the overall power consumed by operat-
ing the servers in a range with a more attractive perfor-
mance/Watt. For example, if two identical servers each
utilizing, say40% of the resources and drawing80% of
peak power were consolidated onto a single server, the
consolidated server would be able to deliver identical
performance at significantly less than the160%(80+80)
of the peak power. However, the key to effective consoli-
dation is to estimate the (time-varying) resource require-
ments of individual applications (virtual machines) and
to utilize these estimates along with the power profile of
the physical servers to determine the consolidation strat-
egy that can provide the best space-power benefits.

Server consolidation can be loosely broken into static,
semi-static and dynamic consolidation. In static con-
solidation, applications (or virtual machines) are placed
on physical servers for a long time period (e.g. months,
years), and not migrated continuously in reaction to
load changes. Semi-static refers to the mode of con-
solidating these applications on a daily or weekly ba-
sis. On the other hand, dynamic consolidation spans a
couple of hours and requires a runtime placement man-
ager to migrate virtual machines automatically in re-
sponse to workload variations. Many virtualization ven-
dors provide some tooling support for static consolida-
tion [10, 15] with third party providers providing add-
on features [9, 8] for inferring hardware constraints etc.

However, these tools essentially provide a policy-based
framework with user defined policies and the placement
intelligence is fairly simplistic. While multiple dynamic
placement frameworks have been researched, in practise,
administrators are often reluctant to migrate virtual ma-
chines automatically. Instead they prefer an offline or
semi-offline framework, to evaluate the proposed place-
ment and manually approve it. Hence, static and semi-
static consolidation, where consolidation is performed
daily or weekly is a much more appealing technique for
administrators in real data centers. Though consolidation
for minimizing server sprawl or power is not new, we are
not aware of any prior study that utilizes correlation be-
tween workloads in a systematic way for determining the
most effective static consolidation configuration.

1.1 Static Consolidation: What is new?

While dynamic workload placement has been a well
studied problem, it assumes that there is minimal change
in the resource requirement of the application during the
(typically short) consolidation interval and hence a sin-
gle resource size suffices. In the past, it has been as-
sumed that the same assumption holds for static consoli-
dation. However, for longer term consolidation there are
significant reasons why this assumption fails. First, over
a longer period of time, one is likely to see periods of
peak as well as reduced application demand. Should the
application size be taken to be the maximum, average or
some other statistic? Second, placement decisions made
based on historical data may not be accurate due to a
systematic drift in the load. Third, there is an oppor-
tunity to utilize correlation between resource utilization
on different virtual servers to influence the consolidation
decision. Finally, long term placement has additional ob-
jectives like workload balance on active servers.

In summary, a static consolidation framework needs
to deal with stochastic variables instead of fixed variables
and the behavior of these variables need to be completely
understood. We need to identify the right parameters
to size workloads for medium or long intervals and as-
sess their impact. It is also important to understand how
correlation between applications can be employed for a
more effective consolidation. The stability of various
workload parameters need to be studied thoroughly to
identify the risks involved in consolidation. Finally, ex-
isting placement methodologies need to be seen in light
of the results of the workload characterization and should
be modified, as needed.

1.2 Contribution

We present in this paper the first systematic server work-
load characterization of a large data center from the per-

spective of medium (semi-static) or long term (static)
consolidation. We study the distribution of the utiliza-
tion and occurrence of the peak utilization on servers rel-
ative to various percentiles and average metrics. We find
that the tail of the distribution does not decay quickly for
most servers implying that sizing applications based on
average utilization has high degree of risk. We also ob-
serve significant correlation between applications hosted
on different servers. We make the important observa-
tion that certain metrics like the90-percentile as well as
cross correlation between applications are fairly stable
over time.

We use the insights obtained from our workload char-
acterization to design two new consolidation methodolo-
gies, namelyCorrelation Based Placement (CBP)and
Peak Clustering based Placement (PCP). We implement
the methodologies in a consolidation planning tool and
evaluate the methodologies using traces from a live pro-
duction data center. Our evaluation clearly establishes
the superiority of the proposed algorithms. We also bring
out the various scenarios in which each methodology is
effective and show how to tune various parameters for
different workloads.

The rest of the paper is organized in the following
manner. We provide a background of server consolida-
tion and the need for a system-level workload charac-
terization in Sec. 2. A detailed workload characteriza-
tion of a large data center is presented in Sec. 3. We use
the insights from the workload characterization to design
new placement methodologies in Sec. 4. We present an
implementation and a careful evaluation of the proposed
methodologies in Sec. 5. We conclude the paper with a
summary of our key findings in Sec. 6.

2 Background

In this section, we first present a generalized formulation
for server consolidation. The consolidation exercise can
be formally stated as follows. Let there beN applica-
tionsAi that we need to place onM physical serversSj

for the periodT . For each applicationAi, let C(Ai, t)
denote the resource required in order in order to meet its
SLA at timet. This paper does not deal with the prob-
lem of translating an application SLA to a resource value
and assumes thatC(Ai, t) are available from monitored
resource data. Let the capacity of a physical serverSj be
denoted byC(Sj) andX denote a specific consolidation
configuration to specify the placement of applications on
physical servers, i.e., an element ofX , sayxij = 1 if ap-
plicationAi is placed on serverSj and0 otherwise. Con-
solidation requires finding a configuration that optimizes
a given cost function. For example, if the objective of
consolidation is to optimize power, then we want to find
a configurationX that minimizesP (X), whereP (X)

is a real valued function that provides the power con-
sumed for a specific placement of applications. Further,
the placement should ensure that the resource require-
ments are all applications are met for the entire duration
T , i.e., ∀t ∈ T,

∑N

i=1 xijC(Ai, t) ≤ C(Sj). Further,
we need to ensure that all applications are placed, i.e.,
∑M

j=1 xij = 1.
Dynamic consolidation assumes thatT is very short,

leading to a single time-independent capacity demand
C(Ai) for each application. Hence, the capacity con-
straint is no longer stoachastic in nature. In dynamic con-
solidation, for the estimation ofC(Ai) andC(Sj), a pop-
ular metric in use is the RPE2 metric from IDEAS and
almost all the commonly used servers are bench marked
with a fixed RPE2 value [24]. TheRPE2 value of the
server is used forC(Sj) whereas the resource require-
ments of the application are estimated from the CPU uti-
lization of the server. More specifically, if virtualization
is not in use then the RPE2 of the host server multiplied
by the maximum CPU utilization of the server in the pe-
riod is used as an estimate of the resource requirements
(size) of the application. If virtualization is in use, then
the size is computed based on the entitlement of each vir-
tual server on its host physical server, the CPU utilization
of the virtual server, and the RPE2 of the host server.

Dynamic consolidation, due to its automated nature,
is not preferred by data center administrators. Instead,
they opt for static or semi-static consolidation strategies,
where they can manually verify and approve the new
configuration. However, for static or semi-static consol-
idation, the crux of the problem is to identify a size pa-
rameter that is useful for longer periods. Typically, an
administrator may migrate virtual machines at the end of
the day or on an identified day of the week. For such
long durations, it is imperative to use a size that is able
to save a lot of power (by consolidating on few power-
efficient machines) as well as ensure that no SLA capac-
ity violations would happen during periods of high load.
Hence, the two important objectives in static consolida-
tion are (i)Overall Power Consumptionand(ii) SLA Vi-
olation, defined as number of time instances, when the
capacity of server is less than the demand of all applica-
tions placed on it

∑N

i=1 xijC(Ai, t) > C(Sj).

2.1 Related Work

Existing research in workload modeling can be classi-
fied into (a) aggregate workload characterization and (b)
individual server utilization modeling. Aggregate work-
load characterization of a web server by Iyengeret al.
[19] and workload models of a large scale server farm by
Bentet al [3] fall in the first category. Individual server
utilization has been studied in [5, 16, 4]. In [5], Bohreret
al use peak-trough analysis of commercial web servers to

establish that the average CPU utilization for typical web
servers is fairly low. Similar observations on the peak-
trough nature of enterprise workloads have been made in
[16]. In [4], Bobroffet alperform trace analysis on com-
mercial web servers and outline a method to identify the
servers that are good candidates for dynamic placement.
However, none of these studies provide a characteriza-
tion of the inter-relationship between various workloads,
as required for static consolidation.

There is also a large body of work on energy manage-
ment in web clusters. Most of the cluster energy man-
agement literature addresses the problem of distributing
requests in a web server cluster in such a way that the per-
formance goals are met and the energy consumption is
minimized [6, 21, 25, 17]. There are a number of papers
that describe server or cluster level energy management
using independent [22, 13] or cooperative DVS tech-
niques [12, 18]. There are other efforts in reducing peak
power requirements at server and rack level by doing
dynamic budget allocation among sub-systems [14] or
blades [23]. The work closest to the semi-static or static
consolidation problem addressed in this paper are the dy-
namic consolidation methods proposed in [7, 26, 27, 4].
However, the relatively long duration for static consoli-
dation introduces a stochastic nature to individual appli-
cations that is not captured in any of these frameworks.

3 Server Workload Analysis

We first present the details of the workload analyzed in
this paper.

3.1 Trace Workload Details

The workload analyzed in this paper was collected from
the production data center of a multi-national Fortune
Global 500 company. The data center runs the core
business applications of the enterprise as well as a ser-
vice delivery portal. Each separate application suite was
run from its own server cluster with a dedicated appli-
cation team. Every application component in a suite ran
from a dedicated virtual server, with many virtual servers
hosted on a (typically) high end physical server. The
traces were collected by the MDMS monitoring frame-
work [20] deployed in the data center. The framework
used its own sensors to collect CPU utilization for all the
virtual servers with one entry every5 minutes. We use
traces collected over a90 day period in the year2007 for
our analysis. We use the terms server and application in-
terchangeably as each trace data corresponds to exactly
one virtual server and application component.

The tracing methodology depends on sensors de-
ployed in actual production servers over a long period.
Hence, the data was noisy in parts due to routine system

Suite-Name # of Servers # of Days
AppSuite-1 10 19
AppSuite-2 18 13
AppSuite-3 13 25
AppSuite-4 16 37

Table 1: Workload Details for each cluster

maintenance (server reboots, performance troubleshoot-
ing that terminated all daemons including the sensors).
Thus, the traces had missing or incorrect data for many
time intervals during the trace period. We used a sim-
ple interval graph technique to identify the longest con-
tiguous interval, where all the servers in one cluster had
monitored data available. Hence, for each server cluster
we identified a smaller period which had accurate mon-
itored data available and used these smaller periods for
our analysis.

The data center had a large number of clusters and we
have selected4 representative clusters (Table. 1) for this
analysis. ’AppSuite-1’, ’AppSuite-2’ and ’AppSuite-4’
had a2 tiered application with application server com-
ponents and DB server components. ’AppSuite-3’ was a
3-tiered application suite with a few web servers, a few
application servers, and a few DB servers. In most cases,
multiple application servers used a common DB server.
However, for ’AppSuite-2’, few application servers had
a dedicated DB servers assigned to them. There were no
restrictions on co-locating two or more components of
an application suite on the same physical server. The de-
tailed information about the applications running in the
data center and the virtual server to physical server map-
ping are withheld for privacy and business reasons.

3.2 Macro Workload Analysis

We begin our workload characterization study with
server utilization of individual servers. Due to space lim-
itations, we primarily report our observations on only
one server cluster ’AppSuite-1’, broadening our obser-
vations to other clusters only for important findings.

3.2.1 CPU Utilization Distribution

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

Figure 1: CPU Utilization for AppSuite-1 with Time

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Utilization

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 2: Cumulative Distribution Function of CPU Uti-
lization for AppSuite-1

Fig. 1 shows the CPU utilization of each server
in ’AppSuite-1’, server1(top) through server10(bottom).
The important observation to make here is that all servers
barring server8 reach a CPU utilization of100% at some
point in time during the duration of the trace. This has an
important implication for consolidation.Observation 1:
If consolidation is performed by reserving the maximum
utilization for each application, the application may re-
quire capacity equal to the size of its current entitlement.
This observation is reinforced by taking a look at the Cu-
mulative Probability Distribution (CDF) of CPU utiliza-
tion (Fig. 2) for each server of ’AppSuite-1’. An inter-
esting observation in the CDF plot however is the large
skew in the distribution. For most of the applications,
the CPU utilization at90-percentile of the distribution is
less than half of the peak CPU utilization. Such a skew
can be utilized for a tighter consolidation by provisioning
less than peak resource consumed by each application.

We drill down further into the skew of the CPU utiliza-
tion distribution function in Fig. 3(a). We observe that
the 99-percentile CPU utilization value is significantly
less than the maximum CPU utilization in many cases.
This is also in line with observations on other enterprise
workloads made in [16]. Interestingly, the90-percentile
CPU utilization is about half or less of the maximum
CPU utilization for9 out of 10 servers. Interestingly,
the gap between the80 and90-percentile values is less
than10% CPU utilization in all cases and less than5%
in many cases. We also look at the other server clusters
in Fig. 3 and find the observations to hold there as well.
However, in the ’AppSuite-2’ cluster, a few servers have
high utilization (Servers 15 to 18) for most of the inter-
val. Hence, in these cases, both the80 and90-percentile
values are reasonably close to the peak CPU utilization.
The above findings lead us to our second important ob-
servation.Observation 2: If we could size an applica-
tion based on90-percentile CPU utilization instead of
maximum CPU utilization, it could lead to significant
savings.

We next observe the variability of the CPU utilization
for different servers. To measure the variability, we com-
puted the coefficient of variation (COV) for all the ap-

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Server Id

C
PU

 U
til

iz
at

io
n

(a) AppSuite-1 cluster

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

Server Id

C
PU

 U
til

iz
at

io
n

(b) AppSuite-2 cluster

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Server Id

C
PU

 U
til

iz
at

io
n

Mode
80−pcn
90−pcn
99−pcn
Max

(c) AppSuite-3 cluster

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

Server Id

C
PU

 U
til

iz
at

io
n

(d) AppSuite-4 cluster

Figure 3: Comparison of Peak, Mode and Percentile CPU Utilization

plications in a cluster. The coefficient of variation is a
normalized measure of dispersion of a probability distri-
bution and is defined asCOV = σ/µ, whereσ is the
standard deviation andµ is the mean of the distribution.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V

)

(a) AppSuite-1
0 2 4 6 8 10 12 14 16 18

0

0.5

1

1.5

2

2.5

3

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V

)

(b) AppSuite-2

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V

)

(c) AppSuite-3
0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n
(C

O
V

)

(d) AppSuite-4

Figure 4: Coefficient of Variation for all clusters. Servers
in each cluster are sorted by COV for easy comparison.

COV is a useful statistic for comparing the degree of
variation and equals1 for exponential distribution. Dis-
tributions with COV >1 (such as a hyper-exponential
distribution) are considered high-variance, while those
with COV <1 are considered low-variance. The coeffi-
cient of variations for all the clusters are shown in Fig. 4.
We observe that all clusters have at least a few appli-
cations with high-variance distributions and ’AppSuite-
3’ has the largest number of applications withCOV >1.
There are also applications with low-variance distribu-
tions. However, it is well known that combining a heavy

tailed distribution (COV >1) to another independent (or
positively correlated) distribution with an exponentially
decaying tail (COV =1) leads to an aggregate distribu-
tion, which is heavy-tailed. This leads to our third impor-
tant observation.Observation 3: If a statistical measure
that ignores the tail of the distribution is used for sizing
an application, the consolidated server may observe a
large number of SLA capacity violations.

3.2.2 Correlation

Our first few observations bring out the potential sav-
ings if applications were sized based on percentile val-
ues as opposed to peak values. However, sizing based on
a non-peak value may lead to significant SLA violations
if co-located applications peak together. Hence, we next
study the correlation between applications belonging to
the same application suite. The correlation between
a pair of applications with timeseries{x1, x2, . . . , xN}
and{y1, y2, . . . , yN} is represented by thePearson cor-
relation coefficient,

rxy =
N

∑

xiyi −
∑

xi

∑

yi
√

N
∑

x2
i − (

∑

xi)2
√

N
∑

y2
i − (

∑

yi)2
(1)

Fig. 5 shows the pair-wise correlation between the ap-
plications of ’App-Suite1’. One may observe that there
are many applications that have significant positive cor-
relation. On the other hand, there are also a few applica-
tions (e.g., on Server 3,8, and 10) that have minimal cor-
relation with other applications. The observations high-
light that (a) there is a risk of SLA violation if consolida-
tion methods are not aware of correlation and (b) there is

Server Id

S
er

ve
r

Id

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Inter-Server Correlation for AppSuite-1 cluster

potential for placing non-correlated applications to mit-
igate this risk. The other clusters have less correlation
between servers but there are still a significant number
of servers (more than25%) that exhibit correlation with
one or more other servers. One may observe that vir-
tual servers that are part of a multi-component applica-
tion have a high likelihood of being correlated. How-
ever, since in most cases, multiple (4 or 8) application
servers were sharing a common DB server, the correla-
tion was not strong. ’App-Suite2’ however had 4 (appli-
cation server, db server) pairs that were dedicated. As
a result, even though the workload to this suite had low
intrinsic correlation, the two-tier nature of the applica-
tion suite introduced correlation. Hence, multi-tier ap-
plications with a one-to-one mapping between servers in
different tiers are likely to exhibit correlation even for
workloads with no intrinsic correlation. This leads to our
next important observation.Observation 4: There are
both positively correlated and uncorrelated applications
in a typical server cluster. Hence, correlation needs to
be considered during placement to avoid SLA capacity
violations.
3.2.3 Temporal Distribution of Peaks

Server Id

T
im

e
(M

in
)

1 2 3 4 5 6 7 8 9 10

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 6: Duration of Peak CPU utilization (> 90-
percentile) for AppSuite-1 cluster. Dark lines indicate
sustained peaks.

We have used the correlation coefficient as an indi-
cator of the temporal similarity between two applica-
tions. However, correlation is a comprehensive metric
that captures temporal similarity between two applica-

tions at all levels (both peak and off peak). Capacity vi-
olations, though, occur when two applications sized by
an off-peak value peak together. Hence, we look at the
correlation between only the peaks for various applica-
tions in Fig. 6. We observe that there are apps with low
correlation, but whose peaks may be correlated. Further,
there also exists correlated apps whose peaks typically
do not occur at the same time (e.g., Server5 and7). This
leads to our next important observation.Observation 5:
Correlated Applications may not always peak together.
Similarly, non-correlated applications may also peak to-
gether in some cases.

3.3 Stability Analysis

Static and semi-static placement decisions are made for
extended periods of time. Hence, there is a need to ana-
lyze the stability of workload statistical properties to en-
sure the reliability of the placement decisions. In this
section, we study the workload periodicity, variation in
statistical properties like mean,90-percentile and corre-
lation co-efficient over the observation period.

3.3.1 Periodicity analysis of utilization data

We first analyze the periodicity of the collected data. It
will help to find the repeating patterns, such as the pres-
ence of a periodic signal which has been buried under
noise. The usual method for deciding if a signal is peri-
odic and then estimating its period is the auto-correlation
function. For a discrete timeseries{x1, x2, . . . , xN}
with meanµ and varianceσ2, the auto-correlation func-
tion for any non-negative integerk < N is given by

R(k) =
1

(N − k)σ2

N−k
∑

n=1

[xn − µ] [xn+k − µ] , (2)

Essentially, the signal{xn} is being convolved with a
time-lagged version of itself and the peaks in the auto-
correlation indicate lag times at which the signal is rel-
atively highly correlated with itself; these can be inter-
preted as periods at which the signal repeats. To en-
hance the analysis, we also computed the magnitude
spectrum of the timeseries,|Xk|, where{Xk} is the Dis-
crete Fourier Transform (DFT) of{xn} and is defined by

Xk =
1

N

N
∑

n=1

xne−
2πi

N
(k−1)(n−1), 1 ≤ k ≤ N. (3)

We study the auto-correlation function and magnitude
spectrum of the utilization data for all the applications
and find that some servers exhibit nice periodic behav-
ior, whereas some servers do not follow any particular
pattern. Fig. 7 shows a periodic pattern with a time pe-
riod of one day as the lag between two consecutive peaks
in the auto-correlation function is one day and there is
a peak in the magnitude spectrum corresponding to it.

0 2 4 6 8 10 12
0

50

100

Time (Days)

U
til

iz
at

io
n

0 2 4 6 8 10 12

−0.5

0

0.5

1

Lag (Days)

A
ut

oC
or

re
la

tio
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

x 10
4

Frequency (HZ/(24*3600))

M
ag

ni
tu

de

Figure 7: The timeseries, auto-correlation and frequency
spectrum of this workload shows a periodicity of 1 day

0 2 4 6 8 10 12
0

50

Time (Days)

U
til

iz
at

io
n

0 2 4 6 8 10 12

−1
−0.5

0
0.5

Lag (Days)

A
ut

oC
or

re
la

tio
n

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5000

Frequency (HZ/(24*3600))

M
ag

ni
tu

de

1 2 3 4 5 6 7 8 9 10 11 12 13
0

10

20

30

40

50

Time

U
til

iz
at

io
n

mean
90−percentile

90−p Avg

Mean

Figure 8: The timeseries, auto-correlation and frequency
spectrum plot of the workload do not show any periodic-
ity, but the mean and 90-percentile values show stability.

0 2 4 6 8 10 12
0

50

100

Time (Days)

U
til

iz
at

io
n

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Time

U
til

iz
at

io
n

Mean
90−percentile

Mean Mov Avg

90−p Mov Avg

Mean

90−p Avg

Figure 9: The timeseries has no regular pattern and the
mean and 90-percentile statistics also vary significantly
over the time period, but the moving averages track the
statistic well.

This kind of workloads can be predicted with significant
reliability. Many applications do not show any periodic
pattern in the observed period, however, the statistical
properties remain consistent over a long period. To an-
alyze the consistency, we computed the mean and 90-
percentile statistics over several windows of length 1 day.
Fig. 8 shows that although the workload has no periodic
pattern, the mean and 90-percentile statistics remains sta-
ble over most part of the observed period. Hence, for
such workloads, the statistics can be estimated reliably.
A third category of applications neither show any peri-
odic behavior, nor any statistical consistency over a long
period. However, for these applications, the moving av-
erages follows the actual mean and 90-percentiles closely
over the observed period (Fig. 9) and can be used for esti-
mation. These observations lead to the following conclu-
sion. Observation 6: Some servers exhibit periodic be-
havior and the future pattern can be reliably forecasted
with a day or a week of data. For many non-periodic
servers, the statistical properties are fairly stable over
time. For highly variable servers, an adaptive prediction
method like MovingAverage should be used to estimate
the statistical properties.

3.3.2 Stability in Correlation

1 2 3 4 5 6 7 8 9 10

1
2

3
4

5
6

7
8

9
10

0

0.1

0.2

0.3

0.4

0.5

Server Id
Server Id

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
c
o

rr
 c

o
e

ff
ic

ie
n

ts

Figure 10: Stability of Correlation for App-Suite1 (Half
the values have been deleted for visual clarity)

We have observed that correlation between applica-
tions should be used while making placement decisions.
We next study the stability in correlation for AppSuite-1,
which has the highest correlation amongst all the clus-
ters. For this purpose, we compute the correlation be-
tween all pairs of applications for every day separately
during the whole duration of the trace and compute the
standard deviation across these daily correlation values.
We observe in Fig. 10 that the standard deviation is fairly
low, indicating the stability of correlation across time.
Observation 7: The correlation between the CPU uti-
lization of various servers is fairly stable across time.

4 Placement Methodologies

We now present various placement methodologies.

4.1 Workload-unaware Placement

We presented thepMapper power-aware application
placement methodology and system in [26] in the context
of a runtime placement controller.pMapper minimizes
fragmentation using an enhancement ofFirst Fit De-
creasing (FFD)bin-packing algorithm and uses a novel
Order Preservationproperty to select the right server
for any application being migrated in order to mini-
mize power. The algorithm optimizes the use of one
resource (typically CPU utilization) during packing and
treats other resources (e.g., memory, I/O) as constraints.
Hence, it always comes up with a feasible packing for all
resources but allocates only one resource in an optimized
manner. The methodology used bypMapper does not
focus on resource sizing of each VM for the next place-
ment interval, which is predicted by aPerformance Man-
ager. An important thing to note here is thatpMapper is
designed for short consolidation intervals. There are two
important implications of such an approach. Firstly, each
application is sized independently and a single number is
used to size an application. Secondly, as placement de-
cisions need to be aware of application migration costs,
few applications are migrated and the relocation decision
takes an existing (old) placement into account. However,
such an approach can still be applied forstatic consoli-
dation with much longer consolidation intervals. In such
a static placement scenario as the one considered in this
paper, thepMapper methodology is naturally adapted
by sizing an application based on the peak resource us-
age of the application in the (longer) placement period.
Note further that in the case of SLA governed data cen-
ters, one can use less strict sizing functions. For example,
if the SLA requires that resource requirements are met
for at least99% of the time, one could use aV M size
that ensures a tail violation probability of1%. Similarly,
one may also choose to size all applications based on a
metric like mode or median, if short-term violations are
acceptable. We term this family of placement method-
ologies using peak, percentile, mode etc. based sizing as
Existingplacement methodologies.

4.2 Correlation Based Placement

We now present our first methodology that leverages the
observations made from our workload analysis to place
applications in a more effective manner. This method-
ology aptly named as theCorrelation Based Placement
(CBP) is based on the following important observations.

• The peak resource usage of an application is signif-
icantly higher than the resource usage at most other

times (e.g., size at 90% cdf). (Fig. 2, 3)

• If we size applications by an off-peak metric and
place correlated applications together, there is a
high risk of SLA capacity violation.

• If two uncorrelated applications are placed together
and sized individually for a violation probability of
X%, the probability that both of them would violate
their sizes at the same time is(X2)%.

To take an example, consider two applicationsA1 and
A2. Assume that bothA1 andA2 have a maximum size
of 1000 RPE2 units with a90 percentile value of500
RPE2 units. Further, assume thatA1 and A2 are un-
correlated with each other. It is now easy to see that if
we placeA1 andA2 on a single server and allocate500
RPE2 units each to both the applications, the probabil-
ity that both of them would exceed their allocation at the
same time is only1%. Hence, provisioning based on90
percentile and placing uncorrelated applications together
can lead to a potential savings of50% over the peak-
based sizing method.CBP uses exactly these ideas to
size individual applications based on a tail bound instead
of the maximum size of the application. Further, it adds
co-location constraints between positively correlated ap-
plications so that two such applications are not placed on
the same server. The number of actual constraints added
can be controlled using a tunableCorrelation Cutoff .
Hence,CBP proceeds in very similar manner to the
pMapper algorithm with few key differences: (i) We
add co-location constraints between any two positively
correlated application pairs(Ai, A

′

i) that exhibit a cor-
relation coefficient above thecorrelationthreshold (ii)
We size applications based on a tail bound instead of the
maximum value and (iii) In the inner loop ofpMapper
where we find the most power-efficient serverSj that has
resources for an applicationAi, we also make a check if
none of the already placed applications onSj have a co-
location constraint withAi. If indeed there is such an
application, we mark the server ineligible and consider
the next server for placing the application.

It is easy to see thatCBP incurs an overhead in the
computation of correlation for all application pairs.

Theorem 1 GivenN applications and a timeseries with
d points,CBP takesO(N2d) time to find the new place-
ment.

We have proposed theCBP methodology that takes
an existing dynamic consolidation algorithm and adapts
it to work in a static or semi-static consolidation sce-
nario. CBP adds co-location constraints between cor-
related applications to ensure that an application can be
sized based on an off-peak value. However, it adds a hard
constraint between correlated applications.

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

C
P

U
 (

R
P

E
2

)

Time

Balanced
Skewed

Server Capacity

Server1

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

C
P

U
 (

R
P

E
2

)

Time

Balanced
Skewed

Server Capacity

Server 2

Figure 11: Fractional Optimal Solutions: Balanced and
Skewed

We now take a closer look at the problem to under-
stand the nature of the optimal solution. Consider a
set of6 applications that need to be placed on a set of
servers, each with a capacity of40. There are two poten-
tially fractional optimal solutions, as shown in Fig. 11.
A balanced solution would pack half of the timeseries in
the first server and the other (balanced) half in the other
server. A skewed solution would pack the first server
to the maximum capacity and pack the remaining appli-
cations in the second server.CBP and other dynamic
consolidation algorithms aim to approach the skewed op-
timal solution. However, from an administrative point
of view it may be preferred to have balanced workload
across all active servers.

A second problem withCBP may arise when there
are many correlated applications. In the above example,
if there are3 applications that are positively correlated,
we would need a minimum of3 servers to satisfy the co-
location constraints. Finally, computing the correlation
between all pairs of applications is expensive (quadratic
in nature) and may not be applicable for large number of
applications and trace periods. We address these issues
in another methodology next.

4.3 Peak Clustering Based Placement

We address the issues withCBP in a new consolida-
tion method calledPeak Clustering based Placement
(PCP). PCP is based on the following fundamental ob-
servations 1) Correlation between peaks of applications
is more important than correlation across the complete
timeseries of the applications. 2) A set of applications
that peak together are distributed evenly across all active
servers in the optimal solution. However, two applica-
tions with correlated peaks may still be co-located. 3)
Co-located applications that do peak together can use a
common buffer for their peaks and each have a reserva-

tion equal to an off peak value.

for server

3. Server Selection

1. Envelop

Servers

ALL VM
PLACED

Are

2. Cluster

VMServers

VM

Transformed

Clusters

N

DONE

for next server
4. Per−Cluster VM Shortlisting

5. VM Placement for server

Selected

VM

VM
Clusters

Candidate VMs

VM Allocation

Figure 12: Overall Placement Flow

PCP uses these ideas to first identify clusters of ap-
plications with correlated peaks. One may observe that
the number of such clusters may become very large if
we use the original timeseries with the complete range
of values. Hence,PCP uses a novel two-level envelop
of the original time-series of each application for cluster-
ing. The envelop has a single value to represent all CPU
utilization for the body of the distribution and another
value for all points in the tail of the distribution. On each
active server, it then reserves space for each cluster in
proportion to the size (lower level of envelop) of the ap-
plications in that cluster and keeps a buffer space equal to
the maximum peak across all clusters. Each application
cluster shortlists a set of applications for its reservation
andPCP does a final selection of applications for the
server. The overall flow ofPCP is described in Fig. 12.

PCapacity Used

P
D

F

CB Cmax

B

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

C
ap

ac
ity

 U
se

d

Time

CB

Cmax

Original Time Series
Envelop at PB = 0.67

(a) (b)
Figure 13: (a) Calculation of stepsCB , Cmax for En-
velop and (b) Envelop Creation

In step 1,PCP starts by using anEnvelop function
that transforms the original time series for each applica-
tion to a two-level envelop. Given any tail boundPB

(e.g., 10%), theEnvelop computes a valueCB such that
the probability that application’s CPU usage exceedsCB

is bounded byPB. It also identifies the maximum capac-

ity used by the application asCmax (Fig. 13). We then
transform the original timeseries by a two-level time se-
ries in the following manner. If at a given time, the capac-
ity used by the application is greater thanCB, we replace
it with Cmax. Otherwise, replace it withCB. Hence, the
body of the distribution is replaced byCB and is referred
to as size. The tail is replaced byCmax. The timeseries
for the transformed VM is stored as a set of ranges dur-
ing which the sizeCB is exceeded. The next step in
PCP is to cluster workloads based on the correlation
of their peak ranges. The clustering step uses a similar-
ity function to identify workloads with correlated peaks.
For each applicationAi, the similarity function is used
to identify if the envelop of the application is covered by
any existing cluster center. If no such cluster center ex-
ists, then a new cluster is started withAi as the cluster
center.

Step 3 in the overall flow ofPCP is to sort servers
based on their power efficiency. We define marginal
power efficiency for a server with capacityCapj running
at capacityρj as the slope of the capacity vs power curve
at ρj capacity and overall power efficiency of the server
as the ratio of the capacity of the serverCapj to the
peak power consumed by the server. The server selec-
tion method in our earlier work [26] used marginal power
efficiency as the metric to sort servers. Dynamic consol-
idation requires us to make changes in an incremental,
online manner from an existing configuration and hence,
marginal power efficiency is a good metric for server se-
lection. On the other hand, static consolidation may in-
volve multiple global changes and hence, we use overall
power efficiency to rank servers inPCP .

Peak2

CLUSTER 1

RESERVATION FOR

RESERVATION FOR

CLUSTER 2

RESERVATION FOR

CLUSTER 3

Server Capacity

Time

CP
U

Pe
ak

 B
uf

fe
r

Largest PeakPeak1

Figure 14: Server Reservation: Each cluster gets a pro-
portional reservation. There is a buffer for the maximum
peak across all clusters.

The final steps inPCP pack all the applications on
the minimal number of servers, while packing the more
power efficient servers first. The method picks the next
highest ranked server and selects a set of applications
from each cluster in a proportional manner. Given a
server with capacityCapj to pack and a set of applica-
tions yet to be placed, we calculate the sum of the sizes
(CB) of all remaining applications asTotalSize. For
each clusterMk, we calculate the sum of the sizesSizek

Analysis Period 120 hrs
Evaluation Period 24 hrs

PB for PCP 0.9
Correlation Cutoff for CBP 0.5

Table 2: Baseline Parameters

of its applications andPeakk as the sum of the peak
buffers(Cmax − CB) of its applications. We also calcu-
late MaxBuffer as the maximum of the peak buffers
across all clusters. Once these metrics are computed,
each clusterMk selects a set of applications such that the
overall sizeCandSizek and peak bufferCandBufferk

of the cluster is given by

CandSizek =
Sizek

TotalSize + MaxBuffer
(4)

CandBufferk ≤ MaxBuffer (5)

An example server reservation is described in Fig. 14.
In this example, there are three clusters and a propor-
tional reservation is made for each cluster that equals
CandSizek. Further, capacity is kept spare for peaks
and equals the maximum peak across all the three clus-
ters. Since the consolidation can only pick integral so-
lutions, each cluster returns a set of applications whose
sizes add up to its proportion or the last added appli-
cation may exceed its proportion. Hence, as a final se-
lection step, for each cluster that returnsk candidates,
we automatically select the first(k − 1) candidates and
add the last candidate to a tentative application pool.
We then globally select the candidates from the tentative
pool such that the capacity bounds of the server is not
violated. In order to reduce fragmentation, at all levels
of selection we break ties between applications by pre-
ferring the larger applications first. This allowsPCP
to strike a balance between reducing fragmentation costs
and proportionally selecting applications across different
clusters.

5 Experimental Evaluation

We have performed extensive experiments to evaluate the
proposed methodologies. We first detail out our evalua-
tion setup and then present some of our key findings.

5.1 Evaluation Setup

The methodologies have been implemented as part of an
Consolidation Planning Tool from IBM called Emerald
[11]. Emerald has built-in adapters to input trace data in
various formats, a module to collect the current server in-
ventory and a knowledge base that includes a catalog of
various server platforms, their RPE2 values and power

models(Power Vs CPU Utilization). The power mod-
els are derived from actual measurements on the servers
and are used by aPower Estimationmodule to estimate
the power drawn by any candidate placement. We feed
traces for the4 application suites described in Sec. 3 for
the evaluation study. Each server in this application suite
was either a virtual machine or a standalone server in the
data center. Hence, a single physical server may host one
or more of these virtual servers in the data center. In our
baseline setting, the physical servers were kept to be the
same as in the data center. Further, Emerald allows an
administrator to specify an analysis period for the traces
followed by an evaluation period, where the effectiveness
of the proposed placement is evaluated by thePower Es-
timationmodule.PCP uses a tail bound parameterPB

to create the envelop whereasCBP uses a correlation
cutoff parameter to identify if two applications are corre-
lated. The baseline settings of all experimental parame-
ters are listed in Table. 2.

We evaluate the performance of the proposed methods
in comparison withExistingmethods based on dynamic
consolidation. We run theExistingmethod with two dif-
ferent sizing functions: (i)PeakExistingsizes all appli-
cations based on their peak values and (ii)ModeExisting
sizes all applications based on the mode of the distribu-
tion. There are three different objectives of consolida-
tion: a)minimize power b) minimize risk of consolida-
tion (c) balance workload across active servers. We use
the number of capacity violations as the metric for risk.
To investigate load imbalance, we estimate the average
CPU utilization for all active servers during the evalu-
ation period and identify the server with the maximum
average CPU utilization. The difference between the
CPU utilization of the highest loaded server and the av-
erage utilization across all servers is taken as the metric
for load imbalance. We compare all the methodologies
along all these objectives. We also measured the running
time of various methodologies to assess their scalability.

In order to generalize our results and look at various
settings, we also experimented with changes in our base-
line setting. Since these methodologies need to deal with
fragmentation, we also simulate a placement where the
initial number of virtual servers on a physical server are
increased or decreased. Towards this purpose, we as-
sume that the virtual servers are placed on a different ca-
pacity server of the same platform, i.e., with more or less
processors as required for the simulation. Further, sea-
sonal variations were observed in many workloads and
hence, we increase and decrease the training period from
the baseline setting. Finally, we vary the tuning parame-
ters ofCBP andPCP and study their impact.

5.2 Performance Comparison

Power Consumed and SLA Violations: Fig. 15 shows

AppSuite−1 AppSuite−2 AppSuite−3 AppSuite−4
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
ow

er

Peak_Existing
Mode_Existing
CBP
PCP

(a)

AppSuite−1 AppSuite−2 AppSuite−3 AppSuite−4
0

50

100

150

200

250

300

V
io

la
tio

ns
 /

D
ay

Peak_Existing
Mode_Existing
CBP
PCP

(b)

Figure 15: (a) Power Consumed and (b) SLA violations
in all Clusters for various placement methodologies. Ab-
sence of bars indicate zero violation.

the power consumed in all4 clusters as a result of
placement recommendations made byPeakExisting,
ModeExisting, CBPand PCP and the corresponding
SLA violations. A striking observation is that the
PeakExistingmethodology saves no power in AppSuite-
1. Closer look at Fig. 3 reveals that barring one appli-
cation, all other applications in this cluster have a peak
CPU utilization of80% or more. Hence, a methodology
that sizes applications based on peaks is of no use in this
cluster. The overall power consumed byModeExisting
is typically the lowest as it sizes aggressively, while the
PeakExisting uses the maximum power. On the other
hand,PeakExistinghas the lowest violations (typically
zero) whereasModeExistinghas the highest violations.
Both CBP and PCP lie mid-way between these extremes,
with PCP attaining about(20 − 40)% lower power con-
sumption than CBP and significantly lower violations.

Another observation is thatCBP saves significant
power in comparison toPeakExisting in all clusters
other than AppSuite-1, while it faces very high viola-
tions for AppSuite-2. To understand this, we recall from
Sec. 3 that the AppSuite-1 cluster has high correlation,
AppSuite-2 has medium correlation and the remaining
two clusters have a low correlation. As a result,CBP
adds many co-location constraints in AppSuite-1 leading
to a large number of active servers and not saving any
power. In contrast, the medium correlation in AppSuite-
2 results in CBP not making recommendations to sepa-
rate these workloads. However, even though the work-
loads are not correlated, their peaks show up in the same
time interval, leading to high violations byCBP . This
peak correlation behavior is exploited only in the PCP

algorithm which decides to judiciously separate offend-
ing workloads if their simultaneous peaks can risk over-
shooting the server capacity, thereby causing violations.
Thus PCP sees a nominal number of violations per hour
in all clusters.

A surprising result observed is thatPCP consumes
less power thanModeExisting for AppSuite-3. Re-
call that the server selection methodology inExisting
methodology explores locally to reduce migration cost.
On the other hand, server selection inPCP can ex-
plore new placements that entail a large number of mi-
grations. Since AppSuite-3 was lightly loaded, consoli-
dation would require large number of migrations. Hence,
PCP came up with a different server selection than other
methodology for this particular cluster, leading to addi-
tional power savings.

 0

 0.5

 1

 1.5

 2

 2.5

 3

V
io

la
tio

n
S

iz
e

(F
ra

ct
io

n
of

 S
er

ve
r)

App-suite1 App-suite2 App-suite3 App-suite4

Average Violation
Largest Violation

0.1
0.2

Figure 16: Violations forMode Existing on all active
servers

We observed in Fig. 15 thatModeExisting has the
potential to save a lot of power but may incur a large
number of violations. The correlation in the first two
clusters of AppSuite-1 and AppSuite-2 especially im-
pactsModeExisting, leading to very high violations. Re-
sults show that among the9 active servers in all clus-
ters,5 of them faced SLA capacity violations. We study
the size of the violations in the placement computed by
ModeExistingin Fig. 16. In practise, administrators al-
low a buffer capacity (typically 10% of the server) and
hope that any peaks can be served from this buffer ca-
pacity. We observe that even a buffer capacity of20%
is not able to handle the burstiness of the workload.
Amongst5 servers, the average violation exceeds20%
of the server capacity in4 servers and the peak viola-
tion exceeds the size of the server itself in all the servers.
Hence, a workload-unaware strategy that uses a buffer
capacity to handle peaks is not feasible in practise.

Workload Balancing: We next investigate the load
balance across the active servers achieved by var-
ious methodologies in Fig. 17. We observe that
ModeExisting and CBP have servers that are always
overloaded (average utilization of highest loaded server
is 100%) for AppSuite-1 and AppSuite-2. Such a place-
ment is not suitable in practise. Further, for all method-
ologies other thanPCP , there is a large imbalance be-
tween the average utilization of the highest loaded server

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

S
er

ve
r

U
til

iz
at

io
n Average

Max

Average

Max

Average

Max

Average

Max

App-Suite1 App-Suite2 App-Suite3 App-Suite4

Peak_Existing
Mode_Existing

CBP
PCP

Figure 17: Average and Maximum Utilization of Servers

Cluster Existing PCP CBP
(No. of Apps) (ms) (ms) (ms)

AppSuite-1 (10) 10.1 47.7 34
AppSuite-3 (13) 13.5 55.2 55
AppSuite-4 (16) 30.1 39.8 81
AppSuite-2 (18) 21.2 47.7 107

Table 3: Running Time for various methodologies

and the average utilization of the cluster. This is a direct
consequence of the design of algorithms, wherePCP
favors balancing and the other algorithms favor creating
a skew.

Running Time: We study the running time of vari-
ous methods in Table 3. The CBP algorithm very clearly
says a super-linear relationship with the number of ap-
plications (N) because of theN2 correlation co-efficient
computation between all pairs of applications. TheEx-
istingmethod in general scales linearly with the increase
in number of applications.PCP has a dependence on
(a) the number of applications, (b) the number of peak
ranges in a cluster and (c) the number of clusters it cre-
ates. Recapitulate that AppSuite-3 has the highestCoV
(Fig. 4), which manifests in a large number of peak
ranges. As a result, AppSuite-3 has the highest running
time, even though the number of applicationsN is only
13. Overall,PCP has a running time that is double of
Existing and fairly stable. The running time ofCBP
on the other hand increases super-linearly with the num-
ber of applicationsN .

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 P
ow

er

Number of Physical Servers

CBP
PCP

 0
 50

 100
 150
 200
 250
 300

 5 6 7 8 9 10 11 12 13

D
ai

ly
 V

io
la

tio
ns

Number of Physical Servers

CBP
PCP

(a) Power (b) Violations

Figure 18: Impact of change in virtual servers per physi-
cal server in AppSuite-2

Fragmentation: We next investigate the ability of
CBP and PCP to deal with fragmentation (ratio of
application capacityC(Ai) to server capacityC(Sj)).
We change the original servers in the data center and
simulate placement on a larger number of lower ca-
pacity servers. Fig 18 shows the behavior ofCBP
andPCP with increase in number of physical servers
for AppSuite-2, which has the largest number of virtual

servers.CBP adds a fixed number of co-location con-
straints and needs at least as many servers as the max-
imum number of constraints added to any application.
Hence, it suffers when few high capacity servers are
available. On the other hand,PCP tries to proportion-
ally allocate applications from each cluster (of applica-
tions with correlated peaks) and hence should perform
better when many applications can be packed on few
high capacity servers. Both these intuitions are validated
in Fig. 18 asCBP performs better with increase in num-
ber of servers andPCP fares worse. However, in both
the cases,CBP suffers more violations thanPCP . In
summary,CBP is more suited when large applications
are placed on low or medium capacity servers, whereas
PCP is more suitable for consolidating a large number
of applications on few high-end servers.

5.3 Tuning CBP

0.2 0.3 0.35 0.5 0.65 0.8
0

5

10

15

CBP Correlation Threshold

V
io

la
tio

ns
 /

D
ay

PCP Violations/Day

0.2 0.3 0.35 0.5 0.65 0.8
0

0.2

0.4

0.6

0.8

1

CBP Correlation Threshold

P
ow

er
 C

on
su

m
ed

PCP Power Consumed

(a) Violations (b) Power
Figure 19: Power drawn and SLA Violations for CBP
with changing correlation cutoff in AppSuite-4

The performance ofCBP depends on the correlation
cutoff parameter that is used to decide if correlation con-
straints need to be added between a pair of applications.
Fig. 19 shows CBP performance with different thresh-
olds, with the corresponding PCP metric shown as a ref-
erence line for AppSuite-4. Using a very low correlation
threshold (0.2) creates constraints even between weakly
correlated workloads thereby reducing the SLA viola-
tions (to even below that of PCP). However this comes
at a cost of increasing the number of active servers,
thereby consuming50% more power than PCP. On the
other hand, using a high correlation threshold (0.8) cre-
ates constraints only when workloads exhibit very high
degree of correlation. As a result, the power consumed
can be lowered belowPCP at the cost of higher viola-
tions. We recommend an operating range(0.35 − 5) for
significant power savings with reasonable number of vi-
olations. However one may set the threshold to0.2 for
critical applications and0.8 for best-effort applications.
We do observe that even thoughCBP can achieve either
significant power savings or low violations, it is not able
to achieve the trade-off as well asPCP .

5.4 Tuning PCP
The important configuration parameters forPCP are
the length of the training period and the tail boundPB

used for creating envelopes. We first show the impact of

0 50 100 150 200 250

0

50

100

Learning Period (Hours)

N
um

be
r

of
 V

io
la

tio
ns

0 5 10 15 20 25

0

50

100

150

200

250

Learning Period (Hours)

N
um

be
r

of
 V

io
la

tio
ns

(a) (b)
Figure 20: Performance of PCP with change in train-
ing period: (a)AppSuite-2 with weekly periodicity
(b)AppSuite-4 with daily periodicity

available history (length of training period) on the per-
formance ofPCP . Fig. 20 shows SLA violations of
AppSuite-2 and AppSuite-4 ofPCP with change in the
analysis period. We observe that without adequate his-
tory of workload repeatability,PCP can have very high
number of violations. However, once adequate history is
available, the number of violations fall to0 for both the
clusters. We have included AppSuite-2 and AppSuite-4
because the first cluster has a daily pattern whereas the
second cluster has a weekly pattern. We observe that
PCP is able to infer the characteristics of the work-
load in about half of the length of the period. Hence,
for AppSuite-2, it takes about half a day of training data
to reduce violations, whereas for AppSuite-4, we require
about4 days of training data. We also observe that the
impact of historical trends happens in a discrete manner.
Hence, for AppSuite-4, the availability of2 full days of
data leads to a significant decrease in violations as di-
urnal trends are available. However, any further data is
not useful until we reach5 days, when weekly trends be-
come available. A key strength ofPCP is that a user can
easily determine the length of training period for a server
cluster using a few sample runs and then store only the
relevant history for future analysis. We next investigate

0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

PCP Tail Bound

V
io

la
tio

ns
 /

D
ay

0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

PCP Tail Bound

N
or

m
al

iz
ed

 P
ow

er

(a) (b)
Figure 21: Performance of PCP with change in tail
bound: (a) Hourly Violations (b) Power Consumed

the impact of the tail bound on the performance ofPCP
in Fig. 21. A high tail bound inPCP leads to a conser-
vative size and smaller durations of peak activity. Hence,
a high tail bound may lead to lesser violations but may
lead to a higher power consumption. We observe this in-
tuition holds in the experiments, as the violations fall to
0 for a tail bound of0.95 but at the cost of higher power.
Hence, the administrator can choose a bound based on
the criticality of the applications in the cluster.

6 Conclusion

In this work, we have presented the server workload
analysis of a large data center. We have investigated
a large number of characteristics relevant for medium
(semi-static) to long term (static) consolidation in or-
der to save power. The workload study shows that there
is a large potential for power savings by using off-peak
metrics for sizing applications. However, correlation be-
tween applications can lead to significant capacity vio-
lations if consolidation methodologies do not take them
into account. We design two new consolidation method-
ologiesCBP andPCP that use an off-peak metric for
sizing and another metric to ensure that peaks do not
lead to violations. Our experimental evaluation shows
that PCP achieves superior power savings, low viola-
tions and good load balance across active servers. Our
work opens up further research in re-design of placement
methods in light of the workload characteristics observed
in our work.

7 Acknowledgements
We would like to thank our shepherd Mahadev Satya-
narayanan and anonymous reviewers for insighted com-
ments that have helped improve the paper.

References

[1] ASHRAE Technical Committee 9.9. Datacom equipment
power trends and cooling applications, 2005.

[2] C. Belady. In the data center, power
and cooling costs more than the it equip-
ment it supports. http://www.electronics-
cooling.com/articles/2007/feb/a3/, 2007.

[3] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao.
Characterization of a large web site population with im-
plications for content delivery. InWWW, 2004.

[4] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement
of virtual machines for managing sla violations. InIM,
2007.

[5] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller,
Michael Kistler, Charles Lefurgy, Chandler McDowell,
and Ram Rajamony. The case for power management in
web servers. InProc. Power aware computing, 2002.

[6] J. Chase and R. Doyle. Balance of Power: Energy Man-
agement for Server Clusters. InProc. HotOS, 2001.

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat,
and R. Doyle. Managing energy and server resources in
hosting centers. InProc. ACM SOSP, 2001.

[8] Cloud computing software for data centers from Cassatt.
http://www.cassatt.com/products.htm.

[9] Server Consolidation and Virtualization Analysis
by CiRBA. http://www.cirba.com/.

[10] VMWare Guided Consolidation.
http://www.vmware.com/products/vi/vc/features.html.

[11] G. Dasgupta, A. Sharma, A. Verma, A. Neogi, and
R. Kothari. Emerald: A tool to help data centers go green.
In Under Review, 2008.

[12] E. Elnozahy, M. Kistler, and R. Rajamony. Energy- effi-
cient server clusters. InProceedings of the Workshop on
Power-Aware Computing Systems., 2002.

[13] M. Elnozahy, M. Kistler, and R. Rajamony. Energy con-
servation policies for web servers. InProc. of USENIX
Symposium on Internet Technologies and Systems, 2003.

[14] W. Felter, K. Rajamani, T. Keller, and C. Rusu.
A performance-conserving approach for reducing peak
power consumption in server systems. InProc. of Inter-
national Conference on Supercomputing, 2005.

[15] Virtual Iron: True Server Virtualization for Everyone.
http://www.virtualiron.com/.

[16] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Workload analysis and demand prediction of enterprise
data center applications. InIISWC, 2007.

[17] T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and
R. Bianchini. Energy conservation in heterogeneous
server clusters. InPPoPP, 2005.

[18] Tibor Horvath. Dynamic voltage scaling in multitier web
servers with end-to-end delay control.IEEE Trans. Com-
put., 56(4), 2007.

[19] A. K. Iyengar, M. S. Squillante, and L. Zhang. Analy-
sis and characterization of large-scale web server access
patterns and performance. InInt’l World Wide Web Con-
ference, 1999.

[20] Bharat Krishnamurthy, Anindya Neogi, Bikram Sen-
gupta, and Raghavendra Singh. Data tagging architecture
for system monitoring in dynamic environments. InProc.
NOMS, 2008.

[21] K. Rajamani and C. Lefurgy. On evaluating request-
distribution schemes for saving energy in server clusters.
In Proc. ISPASS, 2003.

[22] Karthick Rajamani, Heather Hanson, Juan Rubio, Soraya
Ghiasi, and Freeman L. Rawson III. Application-aware
power management. InIISWC, pages 39–48, 2006.

[23] Parthasarathy Ranganathan, Phil Leech, David Irwin, and
Jeffrey Chase. Ensemble-level power management for
dense blade servers. InProc. of International Symposium
on Computer Architecture, 2006.

[24] About IDEAS Relative Performance Estimate 2 (RPE2).
http://www.ideasinternational.com/performance/.

[25] Cosmin Rusu, Alexandre Ferreira, Claudio Scordino, and
Aaron Watson. Energy-efficient real-time heterogeneous
server clusters. InProceedings of RTAS, 2006.

[26] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and
migration cost aware application placement in virtualized
servers. InProc. of ACM/IFIP/Usenix Middleware, 2008.

[27] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic
placement of hpc applications. InProc. of ACM ICS,
2008.

