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Abstract
An analysis of performance characteristics of modern
disks finds that prefetching can improve the performance
of nonsequential read access patterns by an order of mag-
nitude or more, far more than demonstrated by prior
work. Using this analysis, we design prefetching al-
gorithms that make effective use of primary memory,
and can sometimes gain additional speedups by read-
ing unneeded data. We show when additional prefetching
memory is most critical for performance. A contention
controller automatically adjusts prefetching memory us-
age, preserving the benefits of prefetching while shar-
ing available memory with other applications. When
implemented in a library with some kernel changes,
our prefetching system improves performance for some
workloads of the GIMP image manipulation program
and the SQLite database by factors of 4.9x to 20x.

1 Introduction
Modern magnetic disks are, as is well known, dramati-
cally slower at random reads than sequential reads. Tech-
nological progress has exacerbated the problem; disk
throughput has increased by a factor of 60 to 85 over the
past twenty-five years, but seek times have decreased by
a factor of only 15.1 Disks are less and less like random-
access devices in terms of performance. Although flash
memory reduces the cost differential of random accesses
(at least for reads—many current SSD disks have ter-
rible performance on small random writes), disks con-
tinue to offer vast amounts of inexpensive storage. For
the foreseeable future, it will remain important to opti-
mize the performance of applications that access disk-
like devices—that is, devices with much faster sequential
than random access.

Operating systems heavily optimize their use of disks,
minimizing the volume of transferred data while oppor-
tunistically striving to make requests sequential. Large
buffer caches ensure that disk reads are only done when
necessary, write buffering helps to batch and minimize
writes, disk scheduling reorders disk requests to group
them and minimize seek distances, and readahead ex-
pands small read requests into more efficient large re-
quests by predicting applications’ future behavior. These
techniques apply well to workloads whose accesses are
already sequential or near-sequential, for which they

achieve performance near hardware capabilities. For
nonsequential access patterns, however, the techniques
break down. Readahead implementations, for example,
often turn off after detecting such patterns: future nonse-
quential accesses are by nature hard to predict, making
it more likely that prediction mistakes would pollute the
buffer cache with irrelevant data. Unfortunately, though
careful design of application on-disk data structures can
make common-case accesses sequential, many applica-
tions must sometimes access data nonsequentially—for
instance, to traverse a giant database by a non-primary
index—and any nonsequential access pattern is radically
slow.

The best solution to this performance problem is to
avoid critical-path disk access altogether, such as by ob-
taining enough memory to hold all application data. Fail-
ing that, distributing data over several disks or machines
can reduce the overall cost of random access by perform-
ing seeks in parallel [18]. However, these solutions may
not always apply—even resource-constrained users can
have large data sets—and any technique that speeds up
single-disk nonsequential accesses is likely to improve
the performance of distributed solutions.

We present an application-directed prefetching system
that speeds up application performance on single-disk
nonsequential reads by, in some cases, more than an or-
der of magnitude.

In application-directed prefetching systems, the appli-
cation informs the storage system of its intended upcom-
ing reads. (Databases, scientific workloads, and others
are easily able to calculate future accesses [13, 17].) Pre-
vious work on application-directed caching and prefetch-
ing demonstrated relatively low speedups for single-
process, single-disk workloads (average speedup 26%,
maximum 49%) [2, 18]. However, this work aimed to
overlap CPU time and I/O fetch time without greatly
increasing memory use, and thus prefetched relatively
little data from disk (16 blocks) just before a pro-
cess needed it. Our system, libprefetch, aims solely to
minimize I/O fetch time, a better choice given today’s
widened gap between processor and disk performance.
The prefetching system is aggressive, fetching as much
data as fits in available memory. It is also relatively
simple, fitting in well with existing operating system
techniques; most code is in a user-space library. Small,
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but critical, changes in kernel behavior help ensure that
prefetched data is kept until it is used. A contention con-
troller detects changes in available memory and compen-
sates by resizing the prefetching window, avoiding per-
formance collapse when prefetching applications com-
pete for memory and increasing performance when more
memory is available. Our measurements show substan-
tial speedups on test workloads, such as a 20x speedup
on a SQLite table scan of a data set that is twice the size
of memory. Running concurrent instances of applications
with libprefetch shows similar factors of improvement.

Our contributions include our motivating analysis of
seek time; our prefetching algorithm; the libprefetch in-
terface, which simplifies applications’ access to prefetch-
ing; the contention controller that prevents libprefetch
from monopolizing memory; and our evaluation. Sec-
tion 2 describes related work, after which Section 3 uses
disk benchmarks to systematically build up our prefetch-
ing algorithm. Section 4 describes the libprefetch inter-
face and its implementation. Finally, Sections 5 and 6
evaluate libprefetch’s performance and conclude.

2 Related Work
Fueled by the long-growing performance gulf between
disk and CPU speeds, considerable research effort has
been invested in improving disk read performance by
caching and prefetching. Prefetching work in particular
has been based on predicted, application-directed, and
inferred disk access patterns.

Disk Modeling Ruemmler and Wilkes [19] is the clas-
sic paper on disk performance modeling. Our seek time
observations complement those of Schlosser et al. [20];
like them, we use our observations to construct more ef-
fective ways to use a disk.

Predicting Accesses Operating systems have long em-
ployed predictive readahead algorithms to speed up se-
quential file access. This improves performance for many
workloads, but can retard performance if future accesses
are mispredicted. As a result, readahead algorithms usu-
ally don’t try to improve less predictable access patterns,
such as sequential reads of many small files or nonse-
quential reads of large files.

Dynamic history-based approaches [5, 8, 12, 14–16,
23, 27] infer access patterns from historical analysis, and
so are not limited to simple patterns. However, requiring
historical knowledge has limitations: performance is not
improved until a sufficient learning period has elapsed,
non-repetitive accesses are not improved at all, and the
historical analysis can impose significant memory and
processing overheads.

Application-Directed Accesses Cao et al. [2] and Pat-
terson et al. [18] present systems like libprefetch where

applications convey their access patterns to the file sys-
tem to increase disk read performance. While all three
systems prefetch data to reduce application runtime, the
past decade’s hardware progress has changed the ba-
sic disk performance bottlenecks. Whereas prior systems
prefetch to hide disk latency by overlapping CPU time
and I/O time, libprefetch prefetches data to minimize I/O
time and increase disk throughput by reducing seek dis-
tances. This approach permits much greater performance
increases on today’s computers. Specifically, the designs
of Cao et al.’s ACFS and Patterson et al.’s system are
based on the simplifying assumption that block fetch
time is fixed, independent of both the block’s location
relative to the disk head and the block’s absolute location
on disk. Based on this disk model, their derived optimal
prefetching rules state that 1) blocks must be prefetched
from disk in precisely application access order, and 2)
a block must be prefetched as soon as there is avail-
able RAM. Because RAM was so scarce in systems of
the time, this had the effect of retrieving data from disk
just before it was needed, although Cao et al. also note
that in practice request reordering can provide a signifi-
cant performance improvement for the disk. Their imple-
mentation consists of one piece that takes great care to
prefetch the very next block as soon as there is memory,
and a second piece that buffers 4 to 16 of these requests
to capitalize on disk ordering benefits. This approach is
no longer the best trade-off; increased RAM sizes and
larger performance gaps between disks and processors
make it more important to maximize disk throughput.
Libprefetch thus actively waits to request disk data un-
til it can prefetch enough blocks to fill a significant por-
tion of memory. For seek-limited applications on today’s
systems, minimizing seek distances by reordering large
numbers of blocks reduces I/O time and application run-
time significantly more than prior approaches.

Both Patterson’s system and Cao’s ACFS explic-
itly addressed process coordination, especially important
since their implementations replaced the operating sys-
tem’s cache eviction policy. Libprefetch, in contrast, im-
plements prefetching in terms of existing operating sys-
tem mechanisms, so a less coordinated approach suf-
fices. Existing operating system algorithms balance I/O
among multiple processes, while libprefetch’s internal
contention controller automatically detects and adapts
to changes in available memory. In this regard, our ap-
proaches are complementary; something like ACFS’s
two-level caching might further improve prefetching per-
formance relative to Linux’s default policy.

Using a modest amount of RAM to cache prefetches,
Patterson et al. and Cao et al. achieved maximum single-
disk improvements of 55% (2.2x) and 49% (2x), respec-
tively. Patterson et al. used multiple disks to achieve ad-
ditional speedups, whereas libprefetch uses additional



RAM to achieve speedups of as much as 20x. For concur-
rent process performance Patterson et al. report a maxi-
mum performance improvement of 65% (2.9x), Cao et
al. 76% (4.2x); we see improvements of 4x to 23x.

Inferred Accesses Rather than requiring the applica-
tion to explicitly supply a list of future reads, a prefetch-
ing system can automatically generate the list—either
from application source code, using static analysis [1, 4,
25, 26], or from the running application, using specu-
lative execution [3, 7]. Static analysis can generate file
read lists, but data dependence and analytic imprecision
may limit these methods to simple constructs that do
not involve abstractions over I/O. Speculative-execution
prefetchers use spare CPU time to tell the operating sys-
tem what file data will be needed. Speculation can pro-
vide benefits for unmodified applications, and is espe-
cially useful when it is difficult to programmatically pro-
duce the access pattern. Libprefetch could serve as the
back end for a system that determined access patterns
using analysis or speculation, but the less-precise infor-
mation these methods obtain might reduce prefetching’s
effectiveness relative to our results.

Libprefetch’s performance benefits are competitive
with these other systems. For example, Chang et al. [3]
focus on parallel disk I/O systems that provide more I/O
bandwidth than is used by an unmodified application.
Libprefetch obtains more prefetching benefit with one
disk than Chang et al. find going to four.

Prefetching in Databases Lacking good OS sup-
port [21], applications like databases have long resorted
to raw disk partitions to, for example, implement their
own prefetch systems [22]. Better OS mechanisms, such
as libprefetch, may reduce the need for this duplication
of effort.

POSIX Asynchronous I/O The POSIX Asynchronous
I/O [10], posix fadvise, and posix madvise [9] inter-
faces allow applications to request prefetching, but cur-
rent implementations of these interfaces tend to treat
prefetching advice as mandatory and immediate. To
achieve good performance, applications must decide
when to request a prefetch, how much to prefetch, and
how to order requests. Libprefetch uses posix fadvise as
part of its implementation and manages these details in-
ternally.

3 The Impact of Modern Disk Character-
istics on Prefetching

Disk prefetching algorithms aim to improve the perfor-
mance of future disk reads by reading data before it is
needed. Since our prefetching algorithm will use precise
application information about future accesses, we need
not worry about detecting access patterns or trying to

predict what the application will use next. Instead, the
chief goal is to determine the fastest method to retrieve
the requested data from disk.

This section uses disk benchmarks to systematically
build up a prefetching algorithm that takes advantage of
the strengths, and as much as possible avoids the weak-
nesses, of modern I/O subsystems. The prefetching algo-
rithm must read at least the blocks needed by the applica-
tion, so there are only a few degrees of freedom available.
The prefetcher can reorder disk requests within the win-
dow of memory available for buffering, it can combine
disk requests, and it can read non-required data if that
would help. Different disk layout or block allocation al-
gorithms could also lead to better performance, but these
file system design techniques are orthogonal to the issues
we consider.

3.1 Seek Performance

Conventional disk scheduling algorithms do not know
what additional requests will arrive in the future, lead-
ing to a relatively small buffer of requests that can be
reordered. In contrast, a prefetching algorithm that does
know future accesses can use a reorder buffer as large as
available memory. A larger buffer can substantially re-
duce average seek distance. In this section, we measure
the actual cost of various seek distances on modern disks,
aiming to determine where seek distance matters and by
how much.

We measured the average time to seek various dis-
tances, both forward and backward. Because the seek op-
eration is below the disk interface abstraction, it is only
possible to measure a seek in conjunction with a read or
write operation. Therefore, the benchmarks start by read-
ing the first block of the disk to establish the disk head
location (or the last block, if seeking backward), then
read several blocks from the disk, each separated by the
seek distance being tested. With this test methodology, a
seek distance of zero means that we read sequential disk
locations with multiple requests, and a seek distance of
−1 block re-reads the same block repeatedly. All the tests
in this section use Direct I/O to skip the buffer cache, en-
suring that buffer cache hits do not optimize away the
effects we are trying to measure. See the evaluation sec-
tion for a description of our experimental setup.

The results of running this benchmark on two disks is
shown in Figure 1. The “Read” lines in the graphs, in-
cluded for comparison, show the time to read the given
amount of data, assuming maximum throughput. In ei-
ther direction, the cost of large (≥1MB) seeks is sub-
stantial, ranging from 5ms to 10ms; avoiding just 200 of
these seeks could reduce runtime by one to two seconds.
The cost is similar in either direction, except that seeks
with distance less than 1MB are faster when seeking for-
ward than seeking backward. This motivates the choice
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Figure 1: Average time to seek a given distance (forward or back-
ward) compared to maximum read throughput. The oscillations are due
to disk geometry combined with rotational latency. The grey region
highlights where seek time changes most dramatically.

of a Circular LOOK algorithm: scan forward servicing
requests until there are no requests past the head posi-
tion, then return to the request with the lowest offset and
repeat.

Seek time increases by roughly a factor of five from
around 112KB to roughly 1 to 5MB, shown as the high-
lighted regions in the graphs. In contrast, seek times for
distances above 5MB increase slowly (note the graph’s
log-scale x axis), by about a factor of two. Not consid-
ering the disk geometry effects visible as oscillations,
a disk scheduling algorithm should minimize seek dis-
tance; though not all seek reductions are equal, reduc-
ing medium seeks far below 1MB will have more impact
than reducing very large seeks to 1MB or more.

Figure 1 also shows the unexpected result that for dis-
tances up to 32KB, it may be cheaper to read that amount
of data than to seek. This suggests that adjacent requests
with small gaps might be serviced faster by requesting
the entire range of data and discarding the uninteresting
data. Our prefetching algorithm implements this feature,
which we call infill.

3.2 Effect of Reorder Buffer Size

To reorder disk requests, the prefetch system must buffer
data returned ahead of the application’s needs. Thus, the
window in which the prefetch system can reorder re-
quests is proportional to the amount of memory it can
use to store their results. So how much memory should
be used to reorder prefetch data? Is there a threshold
where more memory doesn’t improve runtime substan-
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Figure 2: Effect of reorder buffer size on runtime and average seek
distance for random reads. The test reads a total of 256MB of data.
Along the x axis, we vary the reorder buffer size (the amount of data
prefetched at once). Within each buffer, disk requests are sorted by log-
ical block number. Runtime changes most dramatically in the grey re-
gion, where average seek distance drops from 5.2MB to 112KB, the
boundaries of the highlighted region in Figure 1.

tially? The next benchmark tries to answer these ques-
tions by using various reorder buffer sizes. The bench-
mark is an artificial workload of 256MB of randomly
chosen accesses to a 256MB file; some blocks in the file
may be accessed multiple times and others may not be
accessed at all, but the test uses Direct I/O so all the re-
quests are satisfied from disk. Benchmarks for different
amounts of total data had similar results.

The benchmark proceeds through the 256MB work-
load one reorder buffer at a time, reading pages within
each buffer in C-LOOK order (that is, by increasing disk
position). Figure 2 shows how the size of the reorder
buffer affects runtime. The region of the graph between
reorder buffer sizes of 384KB and 18MB, highlighted in
grey, shows the most dramatic change in runtime. Exam-
ining the average seek distance of the resulting accesses
helps to explain the change within the grey region. As
the reorder buffer grows, the average seek distance in
the grey region decreases from 5.2MB to 112KB (dot-
ted line, right-hand y axis). This range of seek distances
is greyed in Figure 1 and corresponds to the region where
seek cost changes most dramatically.

However, increasing the reorder buffer beyond 18MB
still has a substantial effect, decreasing runtime from
37.6 seconds to 8.4 seconds, an additional speedup of
4.7x. This continued decrease in runtime is due in part
to the reduction in the number of disk passes needed to
retrieve the data, from about 14 with a reorder buffer
of 18MB down to one with a reorder buffer of 256MB.
This demonstrates that the prefetching algorithm should
prefetch as much as possible, but at least enough to re-
duce the average seek distance to 112KB, if possible.
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Figure 3: Effect of infill on runtime. The test reads a total of 256MB
of data. Along the x axis, we vary the maximum amount of extra
data read between requests. Infill of 32KB maximizes performance im-
provement; infill beyond 2MB can hurt performance.

3.3 Effect of Infill

Figure 1 suggested that reading and discarding small
gaps between requests might be faster than seeking over
those gaps. We modified the previous benchmark to
add infill, varying the maximum infill allowed. Figure 3
shows that infill of up to 32KB reduces runtime on Disk
2. This corresponds to the region of Figure 1 where seeks
take longer than similarly-sized maximum-throughput
reads. Infill amounts between 32KB and 2MB have no
additional effect, corresponding to the region of the seek
graph where seek time is equal to read time for an equiv-
alent amount of data. When infill is allowed to exceed
2MB, runtime increases, confirming that reads of this
size are more expensive than seeking. For the 16MB
reorder buffer dataset, infill has very little effect: as
Figure 2 shows, the average seek distance for this test
is 128KB, above the threshold where we expect infill
to help. On Disk 1, however, infill was performance-
neutral. Apparently its firmware makes infill largely re-
dundant.

In summary, our tests show that infill amounts up to
32KB can help performance on some disks, but only for
datasets that have a significant number of seeks less than
32KB in size.
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3.4 Other Techniques

Conventional wisdom says that read throughput is better
at the outer edge of disk platters (low logical block num-
bers), which we confirm on several disks in Figure 4. The
data for Disk 4 clearly shows the transitions between dif-
ferent areal densities (where the line steps down). The
global effect is significant, slowing by about 50% from
the first to the last logical block number. However, with
large disks, even large files will usually span a small frac-
tion of the disk, leading to a small speed difference be-
tween the beginning and end of a file.

It is also conventional wisdom that larger disk re-
quests achieve better throughput. We tested this by read-
ing a large amount of data (128MB) with a number of
differently-sized read requests. Initially, this benchmark
indicated that the size of read requests did not have an
impact on performance, although performance differed
when Linux’s readahead was enabled. Upon examining
block traces, we discovered that the request size issued to
the disk remained constant, even as the application issued
larger reads. With readahead enabled, large disk requests
were always issued; with readahead disabled, disk re-
quests were always 4KB in size. (It is odd that disabling
readahead would cause Linux to always issue 4KB disk
requests, even when the application requests much more
data in a single read call; we call this a bug.) Using Di-
rect I/O caused Linux to adhere to the request size we
issued. Figure 5 shows that request sizes below 64KB
do not achieve maximum throughput, although Linux’s
readahead code normally compensates for this.

3.5 Prefetching Algorithm

In summary, large reorder buffers lead to significant
speed improvements, so prefetching should use as much
memory as is available. Forward seeks can be faster than
backward seeks, so prefetching should use a C-LOOK
style algorithm for disk scheduling. Small amounts of in-
fill can be faster than seeking between requests on some
disks and have no negative effect on others, so infill
should be used. The request size can have a significant
impact on performance, but the I/O subsystem usually
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optimizes this parameter sufficiently. Thus, libprefetch’s
basic prefetching algorithm simply traverses an access
list one reorder buffer at a time, prefetching each buffer’s
data in disk order. Although further optimizations might
be possible—for example, for some access patterns it
may be more advantageous to prefetch a partial reorder
buffer—we currently implement the basic version.

The tests also help us understand how prefetching
can scale. The reorder buffer improves performance by
reducing average seek distance, but not all reductions
are equally valuable. For example, Figure 1 indicates
that reducing average seek distance 500x from 1GB to
2MB wouldn’t improve performance much. The amount
a given reorder buffer reduces average seek distance
depends on access pattern and file system layout, but
for uniform random accesses and sequential layout, we
can approximate the resulting seek distance analytically.
Given an N-page sequential file and a reorder buffer of
K pages (2 ≤ K � N), the expected average seek dis-
tance will be 2N(K−1)/K(K +1) pages.2 This distance
is roughly proportional to the ratio of file size to re-
order buffer size. Thus, increasing memory by some fac-
tor will reduce average seek distance by the same factor,
or, equivalently, produce the same seek distance when
processing a proportionally bigger file. The formula can
also be used to predict when seek distance will rise into
the unproductive region of Figure 2. For instance, assum-
ing 3GB of RAM available for prefetching and uniform
random accesses, a 384GB file will achieve an average
seek distance of 1MB, the rough “large seek” boundary.

4 Libprefetch
The libprefetch library implements our prefetching al-
gorithm underneath a callback-based interface that eas-
ily integrates into applications. Libprefetch calls an ap-
plication’s callback when it needs more prefetching in-
formation. The callback can compute the application’s
list of future accesses and pass it to libprefetch’s re-
quest prefetching function. The computed list can re-
place or augment the current access list.

struct access entry { #define PF APPEND 1
loff t pageOffset; #define PF SET 2
int fd; #define PF SET FROM MARK 4
bool mark; #define PF DONE 8

};

typedef void (*callback t)(void * arg,
int lastMarkedFD, loff t lastMarkedOffset,
int requestedFD, loff t requestedOffset);

ssize t request prefetching(client t c, const struct access entry * a,
size t n, int type);

client t register client(callback t cb, void * arg);
int unregister client(client t c);

region t register region(client t c, int fd, loff t start, loff t end);
int unregister region(client t c, region t r);

int ignore accesses(client t c);
int unignore accesses(client t c);

Figure 6: Libprefetch interface. Applications create a client with
register client, then declare regions of files where accesses will be
prefetched using register region. When libprefetch needs an updated
access list it calls back into the application with the registered call-
back function. This callback updates the access list with calls to re-
quest prefetching. Finally, ignore accesses lets the application read
data from a prefetchable region without affecting the access list.

Libprefetch periodically asks the kernel to prefetch a
portion of the access list; how much to prefetch depends
on available memory. As the access list is consumed, or
if actual accesses diverge from it, libprefetch calls back
into the application to extend the list. Libprefetch tracks
the application’s progress through the list by overrid-
ing the C library’s implementations of read, readv, and
pread.

Figure 6 summarizes the libprefetch interface. The rest
of this section discusses libprefetch in more detail, in-
cluding a design rationale and important aspects of its
implementation.

4.1 Callbacks

Libprefetch’s callback-based design achieves the follow-
ing goals:
• The interface should minimize interference with ap-

plication logic.
• The application should not have to guess when to

make new prefetch requests. Therefore, libprefetch
should actively request new prefetch information
from the application. Lower-level components like
libprefetch or the system’s buffer cache manager
best know when prior prefetching results have com-
pleted, indicating the need for additional prefetch-
ing, or when a read request blocks, indicating that
the application’s access list was inaccurate.

This model lets applications isolate most access-list man-
agement logic in a self-contained callback function. Of
course, an application that prefers to actively manage the
access list can do so.

Libprefetch issues a callback from its implementation
of read, readv, or pread. The callback is passed sev-



eral arguments indicating the application’s position in
the access list. (This further isolates prefetching from
application logic, since the application need not explic-
itly track this position.) These arguments include a user-
specified void *, the file descriptor and offset of the ac-
cess that triggered the callback, and the file descriptor
and offset of the most recently accessed marked page.
Marked pages are application-specified access-list land-
marks that can be more useful to the callback than the
current position. For example, consider a database ac-
cessing data via an index. The index’s pages are accessed
once each in a predictable, often sequential, order, but the
data pages may be accessed seemingly randomly (and
multiple times each, if the data set doesn’t fit in mem-
ory). This makes libprefetch’s position in the index por-
tion of the access list more useful for planning purposes
than its position in the data page portion. The database
thus marks index pages within its access list, allowing its
callback to quickly determine the most recently read in-
dex page, and therefore how far reading has progressed.
Note that the most recent marked page need not have ac-
tually been read, as long as subsequent pages were read.
This can happen, for example, when an index page was
already in an application-level cache. Libprefetch cor-
rectly handles such small divergences from a predicted
access list.

In addition to providing a means to specify the call-
back function, the register client interface would let
multiple threads within an application specify their own
access lists. Our current implementation of libprefetch
does not support multiple clients per process, though we
expect this feature would be easy to implement for clients
with non-overlapping file regions.

4.2 The Access List

The application interface for specifying future accesses
was designed to achieve three goals:
• The basic interface for requesting prefetching

should be the simplest sensible interface that can
represent arbitrary access patterns, such as a list of
future accesses in access order.
• Prefetching should work both within and across

files.
• The application should be able to define its access

pattern incrementally. The data structures required
to specify a large pattern would take up memory
that could otherwise be used for data. More funda-
mentally, some applications only gradually discover
their access patterns.

The application specifies its access list by filling in an
array of access entry structures with the file descriptor
and offset for each intended access. An arbitrary sub-
set of these structures can be marked. If the applica-
tion will access block A, then block B, and then block

A again, it simply adds those three entries to the array.
It passes this array to libprefetch’s request prefetching
function. Each call to request prefetching can either re-
place the current list, append to the list, or replace the
portion of the current list following the most-recently-
accessed marked entry. Libprefetch adjusts its idea of the
application’s current position based on the new list. The
number of accepted entries is returned; once libprefetch’s
access-list buffer fills up, this will be less than the num-
ber passed in. When the application has transferred its
entire access list to libprefetch, or libprefetch has indi-
cated that its buffer is full, the application signals that it
is done updating the list.

Libprefetch assumes that the sequence of file reads
within registered file regions is complete—all read re-
quests to registered regions should correspond to access-
list entries. Accesses to non-registered regions are ig-
nored; applications can manage these regions with other
mechanisms. If the application accesses a file offset
within a registered region but not in the access list, lib-
prefetch assumes the application has changed the access
plan and issues a callback to update the access list. How-
ever, the application can tell libprefetch to ignore a series
of accesses. This is useful to avoid callback recursion:
sometimes a callback must itself read prefetchable data
while calculating the upcoming access list.

4.3 Callback Example

Figure 7 presents pseudocode for a sample callback,
demonstrating how libprefetch is used. This callback is
similar to the one used in our GIMP benchmark (Sec-
tion 5.3). GIMP divides images into square regions of
pixels called tiles; during image transformations, it iter-
ates through the tiles in both row- and column-major or-
der, both of which could cause nonsequential access. The
pseudocode prefetches an image’s tile data in the current
access order (img->accessOrder).

The callback first uses its arguments to determine the
application’s position in its access pattern (lines 4–5).
Next, it traverses tile information structures to determine
future accesses (line 6). For each future access, the call-
back records the file descriptor, offset, and whether the
access is considered marked (lines 7–9). Access entries
accumulate in an array and are passed to libprefetch in
batches (line 10). If libprefetch’s access-list buffer fills
up, the callback returns (lines 12, 15–16). The callback’s
first call to request prefetching clears the old access list
and sets it to the new value (line 3); subsequent calls ap-
pend to the access list under construction (line 13). Fi-
nally, the callback informs libprefetch about any remain-
ing access entries and signals completion (line 18).



void callback(state, markFd, markOffset, reqFd, reqOffset) {
1: struct access entry accesses[BATCH SIZE];
2: int accepted, full, n = 0;
3: int mode = PF SET;
4: tileInfo t *tile = getTileInfo(reqFd, reqOffset);
5: imageInfo t *img = tile->imageInfo;

6: for (; !lastTile(tile); tile = nextTile(tile, img->accessOrder) ) {
7: accesses[n].page offset = tile->swap offset;
8: accesses[n].fd = img->swap file;
9: accesses[n++].marked = 0;
10: if (n == BATCH SIZE) {
11: accepted = request prefetching(state->client,

accesses, n, mode);
12: full = (accepted < n);
13: mode = PF APPEND;
14: n = 0;
15: if (full)
16: break;
17: } }
18: request prefetching(state->client, accesses, n,

mode | PF DONE);
}

Figure 7: Pseudocode for a libprefetch callback function.

4.4 Interface Discussion

We evaluated several alternatives before arriving at the
libprefetch interface. Previous designs’ deficiencies may
illuminate libprefetch’s virtues.

The initial version of libprefetch stored several flags
for each access-list entry, including a flag that indicated
the page would be used only once (it should be evicted
immediately after use). In several cases, after some un-
productive debugging, we found that we had incorrectly
set the flag. By tracking progress through the access list,
the next iteration of libprefetch made it possible to auto-
matically detect pages that aren’t useful in the short-term
future, so we removed this ability to accidentally induce
poor performance.

An earlier attempt to enhance prefetching tried to ex-
pand the methodology used by readahead, namely infer-
ring future accesses from current accesses. Readahead
infers future accesses by assuming that several sequential
accesses will be followed by further sequential accesses.
Our extension of this concept, fdepend, allowed the ap-
plication to make explicit the temporal relationships be-
tween different regions of files. With fdepend, an appli-
cation might inform the kernel that after accessing data
in range A, it would access data in range B, but no longer
access data in range C. This mechanism introduced prob-
lems that we later solved in libprefetch. For example, be-
cause it wasn’t clear which relationships would be use-
ful in advance of a particular instant of execution, ap-
plications would specify all relationships up front. This
caused large startup delays as an application enumerated
all the relationships; in addition, storing all the relation-
ships required substantial memory. Libprefetch’s access
list is both simpler for applications to generate and easier
to specify incrementally.

4.5 Implementation

Libprefetch is mostly implemented as a user-level li-
brary. This choice both demonstrates the benefits pos-
sible with minimal kernel changes and avoids end-
runs around our operating system’s existing caching and
prefetching policies. An application using libprefetch
might issue different file-system-related system calls
than the unmodified application, but as far as the operat-
ing system is concerned, it is doing nothing out of the or-
dinary. The kernel need not change its policy for manag-
ing different applications’ conflicting needs. (Neverthe-
less, a kernel implementation could integrate further with
existing code, would have better access to buffer cache
state and file system layout, and might offer speed ad-
vantages by reducing system call overhead.) Infill, how-
ever, is implemented as a kernel modification. Infill is
not strictly a prefetching optimization, but a faster way
to read specific patterns of blocks.

Each time libprefetch intercepts a read from the ap-
plication, it first checks whether the read corresponds to
a registered region. If so, it uses a new system call, fin-
core, to see whether the requested page(s) are already in
the buffer cache. If there is a miss in the buffer cache,
a page has been prematurely evicted or the application
has strayed from its access list. In either case, libprefetch
issues a new round of prefetch requests, possibly calling
into the application first to update the access list. The fin-
core system call was inspired by mincore; it takes a file
descriptor, an offset and length, and the address of a bit
vector as input, and fills in the bit vector with the state of
the requested pages of the file (in memory or not).

When libprefetch decides that it should prefetch more
data, it first consults the contention controller (described
below) to determine the size of its reorder buffer for this
round of prefetching. Then it walks the access list un-
til it has seen the appropriate number of unique pages.
Once the set of pages to be prefetched is determined,
libprefetch evicts any pages from the previous round of
prefetching that are not in the current prefetch set and
asks the kernel to prefetch, in file offset order, the new set
of pages. This process is where libprefetch differs most
from previous prefetching systems. Instead of overlap-
ping I/O and CPU time, libprefetch blocks the applica-
tion while it fetches many disk blocks. This makes sense,
particularly for nonsequential access patterns, because
sorted and batched requests are usually faster than in-
order requests. Prefetching from a separate thread would
allow the main thread to continue once its next request
was in memory, but as soon as the main thread made a
request located near the end of the sorted reorder buffer,
it would block for the rest of the prefetching phase any-
way.

Libprefetch makes prefetch requests using posix -
fadvise, a rarely-used system call that does for files



what madvise does for memory. It takes a file descrip-
tor, an offset and length, and “advice” about that re-
gion of the file. Libprefetch uses two pieces of advice:
POSIX FADV WILLNEED informs the kernel that the
given range of the file should be brought into the buffer
cache, and POSIX FADV DONTNEED informs it that
the given range of the file is no longer needed and can be
dropped from the buffer cache.

We found some weaknesses in the Linux implemen-
tation of posix fadvise. The WILLNEED advice has no
effect on file data that is already in memory; for example,
if a given page is next on the eviction list before WILL-
NEED advice, it will still be next on the eviction list after
that advice. We therefore changed posix fadvise to move
already-in-memory pages to the same place in the LRU
list they would have been inserted had they just come
from disk. The implementation of DONTNEED also has
pitfalls. Linux suggests applications flush changes be-
fore issuing DONTNEED advice because dirty pages are
not guaranteed to be evicted. However, it tries to assist
with this requirement by starting an asynchronous write-
back of dirty data in the file upon receiving DONTNEED
advice. Unfortunately, it starts this write-back even if
the to-be-evicted data is not dirty. Because of this unex-
pected behavior, we found it faster to DONTNEED pages
in large batches instead of incrementally.

Our modifications supply posix fadvise with addi-
tional functionality: libprefetch uses the system call to
intentionally reorder the buffer cache’s eviction list. Lib-
prefetch already uses DONTNEED advice to discard
pages it no longer needs, but ordering the eviction list
further improves performance in the face of memory
pressure. After prefetching a set of pages in disk order,
libprefetch again advises the kernel that it WILLNEED
that data, but in reverse access order. If memory pressure
causes some pages to be evicted, the evicted pages will
now be those needed furthest in the future. This enables
the application to make as much progress as possible be-
fore libprefetch must re-prefetch evicted pages.3

Together, fincore and our modified posix fadvise give
libprefetch enough access to buffer cache state to work
effectively. fincore lets libprefetch query the state of par-
ticular pages, and posix fadvise lets it bring in pages
from disk, evict them from the buffer cache, and reorder
the LRU list. Since these operations are all done from
user space, existing kernel mechanisms can account for
resource usage and provide fairness among processes.
An efficient system call that translated file offsets to
the corresponding on-disk block numbers would improve
libprefetch’s support for nonsequential file layouts.

Libprefetch is approximately 2,400 lines of com-
mented code, including several disabled features that
showed no benefit. The kernel changes for posix fadvise
and fincore are 130 lines long.

4.6 Concurrent Execution

As described so far, libprefetch monopolizes both disk
bandwidth and the buffer cache. Of course, this behav-
ior could seriously degrade other applications’ perfor-
mance. In this section we discuss modifications to libpre-
fetch that improve fairness and application performance
even with multiple uncoordinated applications running
concurrently.

Disk contention is the easier problem to solve: Linux’s
default fairness mechanisms work effectively as is. From
the point of view of the operating system, disk con-
tention caused by libprefetch is indistinguishable from
contention caused by any other application. Further disk
access coordination could yield better performance, but
might raise other issues, such as fairness, denial of ser-
vice, and security concerns.

The buffer cache, however, requires a different ap-
proach. As discussed, libprefetch should use the maxi-
mum buffer cache space available. An early implementa-
tion simply queried the operating system for the amount
of buffer cache space and used half of it (half showed
the best performance in experiments). However, this did
not account for other applications using the buffer cache,
and in benchmarks with more than one application lib-
prefetch’s attempt to dominate the buffer cache severely
degraded performance. The current libprefetch explic-
itly addresses buffer-cache contention, but manages to
do so without explicit coordination among processes.
The key insight is that buffer cache management can be
reformulated as a congestion-control problem. Libpre-
fetch uses an additive-increase, multiplicative-decrease
(AIMD) strategy, also used by TCP for network conges-
tion control, to adapt to changes in available memory.

Libprefetch infers a contention signal when it finds
that some of the pages it prefetched have been prema-
turely evicted. This should happen only under memory
pressure, so libprefetch lowers its reorder buffer size with
a multiplicative decrease. Conversely, when libprefetch
consumes all of the pages it prefetched without any of
them being prematurely evicted, it increases its reorder
buffer size by an additive constant.

Because libprefetch knows the maximum size of the
buffer cache (from the /proc file system), it starts out
using most of available cache space, instead of using a
slow-start phase. We always limit libprefetch’s reorder
buffer to 90% (experimentally determined) of the RAM
available for the buffer cache. Furthermore, since the
contention controller can only adjust the reorder buffer
size during a round of prefetching, it is somewhat ag-
gressive in its upward adjustment, adding 10% of the
maximum buffer cache space to the reorder buffer size;
it halves the reorder buffer size to decrease. A quick
evaluation of alternative values shows that libprefetch is
not particularly sensitive to AIMD constants. The result



performs well: concurrently-running libprefetch-enabled
applications transparently coordinate to achieve good
performance, and libprefetch applications do not signifi-
cantly degrade the performance of other applications.

4.7 Disk Request Infill

To implement infill, we modified the general Linux I/O
scheduler framework and its pluggable CFQ scheduler
(about 800 lines of changes). Linux’s I/O schedulers al-
ready have the ability to merge adjacent requests, but
they cannot merge non-adjacent ones. Upon receiving a
new request, Linux looks for a queued request to merge
with the incoming one. If no request is found, our mod-
ified scheduler then looks for the queued request nearest
the new one. If the nearest request is within the maximum
infill distance, we create a dummy request and merge it
with the queued request. The incoming request is now
adjacent to the expanded request and the two are merged.

While the I/O scheduler has infill requests in its queue,
a new request may arrive that overlaps an infill request.
The scheduling framework did not handle overlapped re-
quests, so we explicitly link new requests to any queued
infill requests that they overlap. When the infill request
completes, the new request is serviced from the infill re-
quest’s data.

5 Evaluation
In this section we evaluate libprefetch’s impact on three
different kinds of workloads: sequential, “strided,” and
nonsequential. Linux’s readahead mechanism already
does a good job of optimizing sequential workloads; for
these we expect at most a modest improvement with lib-
prefetch. A strided workload consists of groups of se-
quential accesses separated by large seeks. Linux does
not specifically try to detect strided access patterns and
does little to improve their performance (unless the run
of sequential accesses is substantial). Readahead is of no
help to nonsequential access patterns, and we expect the
biggest improvement with this workload. Our strided and
nonsequential access patterns come from benchmarks of
real applications, namely the GNU Image Manipulation
Program (GIMP) and the SQLite database. This shows
that libprefetch significantly improves real application
performance.

When evaluating these workloads, we vary the amount
of data accessed relative to the amount of RAM, showing
how relative reorder buffer size affects prefetching im-
provements. In addition, we examine the impact of infill
and the performance of multiple uncoordinated applica-
tions running concurrently.

5.1 Methodology

All the benchmarks in this section were run on a Dell
Precision 380 with a 3.2GHz Pentium 4 CPU with 2MB
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Figure 8: Speedup with libprefetch when reading a file sequentially.
Due to file layout issues, some files can be retrieved more quickly; this
benchmark shows both a fast and slow file. The slowdown on the fast
file, 6 seconds for the 4GB test, is mostly due to libprefetch’s CPU
overhead. The slow file runtimes range from 6 s to 365 s for stock and
6 s to 220 s for libprefetch.

of L2 cache (hyperthreading disabled), a Silicon Image
3132-2 SATA Controller, and 512MB of RAM. Log out-
put was written to another machine via sshfs. Tests use
a modified Linux 2.6.20 kernel on the Ubuntu v8.04 dis-
tribution. The small size of main memory was chosen
so that our tests of stock software would complete in a
reasonable amount of time (a single stock 4GB SQLite
test takes almost ten hours). As mentioned in Section 3.5,
we believe libprefetch’s speedup relative to unoptimized
accesses is constant for a given ratio of data set size
to prefetching memory, at least for uniform random ac-
cesses. Unless otherwise noted, these tests used Disk 1,
a 500GB 7200 RPM SATA2 disk with a 32MB buffer
and 8.5ms average seek time (Seagate ST3500320AS,
firmware SD1A). Disk 2 is Disk 1 with older firmware,
version SD15.

Some of the benchmarks in Section 3 used additional
disks. Disk 3 is a 500GB 7200 RPM SATA2 disk with
a 16MB buffer and 8.9ms average seek time (Western
Digital WD5000AAKS) in a HP Pavilion Elite D5000T
with a 2.66GHz Core 2 Quad Q9450 and 8GB of RAM,
and Disk 4 is a 320GB 7200 RPM SATA2 disk with
a 16MB buffer and 8.5ms average seek time (Seagate
ST3320620AS) in a Dell Optiplex GX280 with a 2.8GHz
Pentium 4 CPU, 1MB of L2 cache (hyperthreading dis-
abled), a Silicon Image 3132-2 SATA Controller, and
512MB of RAM.

5.2 Sequential Access

Our sequential benchmark program reads a file from
beginning to end. It is similar to cat file > /dev/null,
but is libprefetch-enabled and can change various Linux
readahead options. We observed, and confirmed with dd,
great variance in sequential read performance on differ-
ent files, from 20MB/s to 110MB/s. These differences
are due to file fragmentation. For example, the fastest file
has a significantly longer average consecutive block run



than the slowest file (3.8MB vs. 14KB).
For the slowest file, Figure 8 shows that libprefetch

achieves improvements similar to previous prefetching
work. We believe that Linux readahead is slower than
libprefetch in this case because libprefetch sends many
more requests to the disk scheduler at once, giving it
more opportunity to reorder and batch disk requests.
With the fast file, libprefetch is slightly slower than
readahead. Examining the system and user time for the
tests shows that the majority of the difference can be at-
tributed to the additional CPU overhead that libprefetch
incurs, which we have not yet tried to optimize.

5.3 Strided Access

Our strided benchmarks use the GNU Image Manipula-
tion Program (GIMP) to blur large images, a workload
similar to common tasks in high-resolution print or film
work. GIMP divides the image into square tiles and pro-
cesses them in passes, either by row or by column. When
GIMP’s memory requirement for tiles grows beyond its
internal cache size, it overflows them to a swap file. The
swap file access patterns manifest themselves as strided
disk accesses when a row pass reads the output of a col-
umn pass or vice versa. To blur an image, GIMP makes
three strided passes over the swap file. While it is feasible
to correctly detect and readahead these kinds of access
patterns, Linux does not attempt to do so.

We changed the GIMP tile cache to allow processing
functions to declare their access patterns: they specify the
order (row or column) in which they will process a set of
images. Multiple image passes are also expressible. We
exposed this interface to GIMP plugins and modified the
blur plugin to use this infrastructure (the modification
was simple). The core GIMP functions use a common
abstraction to make image passes, which we also modi-
fied to use the access pattern infrastructure. We changed
a total of 679 lines: 285 for the plugin architecture, 40
to specify patterns in the blur plugin, 11 to alter the core
image pass abstraction, and 343 to implement the libpre-
fetch callback.

We benchmarked the time to blur a square RGBA im-
age of the given size. Blur uses two copies of the image
for most of the operation and three to finish, so memory
requirements are higher than just the raw image size. We
set the GIMP’s internal cache to 100MB to prevent sig-
nificant amounts of double buffering in the GIMP and the
operating system’s buffer cache; we do not use less than
100MB so that GIMP’s internal cache can contain up
to three working image rows or columns for our largest
test image. GIMP mallocs space for its file cache, so lib-
prefetch does not attempt to use any of that 100MB of
memory per GIMP instance. The GIMP benchmark is
read/write, whereas our other benchmarks are read-only.

The results are shown in Figure 9. When the image
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Figure 9: Speedup with libprefetch for GIMP to blur various sized
images. When GIMP uses the disk, libprefetch reduces runtime by a
factor of 2 to 5. Stock runtimes range from 28 seconds for the 128MB
workload to almost 7.5 hours for the 12GB workload; the intermediate
size of 1GB takes 38 minutes. The libprefetch runtime also starts at 28
seconds, but only climbs to 3 hours; the 1GB size takes 5 minutes.

size is small, all the data is held in the GIMP’s internal
cache and the operating system’s buffer cache, so there
is no disk access to optimize; stock and libprefetch run-
times are equal. As the image size increases from 192MB
to 1GB, disk access increases and libprefetch achieves
greater speedups. Libprefetch retrieves data from mul-
tiple rows (columns) before striding to the next part of
those rows (columns). This amortizes the cost of the
strided access pattern across the retrieval of multiple
rows (or columns), achieving a speedup of up to 5x. As
the image size increases, however, the number of rows
or columns that can be retrieved in one pass decreases.
The results for images greater than 1GB in size show this
gradual decrease in speedup.

5.4 Nonsequential Access

Our nonsequential benchmark issues a query to a SQLite
database. The dataset in the database is TPC-C like [6]
with the addition of a secondary index by zip code on the
customer table. We used datasets with 7 to 218 ware-
houses, yielding sizes between 132MB and 4110MB for
the combination of the customer table and zip code in-
dex. Additionally, we configured SQLite to use 4KB
pages (instead of the default 1KB pages) to match the
storage unit and reduce false sharing.

The benchmark performs the query SELECT *
FROM customer ORDER BY c zip. (Runtime on this
query was within a few percent on stock SQLite and
stock MySQL.) For this query, each resulting row will be
in a random file location relative to the previous row, in-
ducing a large number of seeks. Consequently, we expect
the query to have poor performance. When the dataset
fits entirely in memory, each disk page only needs to be
read once, after which the rest of the workload will be
serviced from the buffer cache. However, if the dataset is
larger than memory, pages will be read from disk multi-
ple times (each page holds multiple rows).

The SQLite callback for libprefetch examines the off-
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Figure 10: Speedup with libprefetch for SQLite when scanning a ta-
ble by a secondary index. The initial 14x approximate speedup peaks
at 20.3x, then falls to 7.7x. Stock runtime starts at about 3 minutes,
climbs to 100 minutes by the 1GB test, and runs for nearly 10 hours
for the 4GB test. Libprefetch’s runtime starts at 12 seconds and is only
77 minutes for the 4GB test; the 1GB test takes 7.5 minutes.

set for the current position and determines if it belongs
to an index. If so, the callback iterates the index and tells
libprefetch about the table data that the index points to.
From then on, the callback marks the index pages and
uses them to track its progress. This modification adds
less than 500 lines of code.

Figure 10 shows the speedups for the nonsequential
SQLite benchmark with 132MB to 4GB of data. The
initial improvement of roughly 14x is because libpre-
fetch is able to load the entire dataset in sequential order,
whereas SQLite loads the data on demand (in random
order) as it traverses the zip code index. As the dataset
approaches the size of memory, the speedup decreases
because libprefetch starts to require multiple passes over
the disk. Then, between roughly 512MB and 768MB, we
see a sharp increase in speedup: stock SQLite requires
progressively more time due to a sharp decline in the
buffer cache hit ratio as the dataset size exceeds the size
of memory. As the dataset grows even larger, the den-
sity of libprefetch’s passes over the disk decreases, caus-
ing higher average seek distance and decreasing benefits
from libprefetch.

Libprefetch processed the 4GB data set in just under
77 minutes. This is roughly 400 times slower than the
128MB data set, which took 11.6 s; processing time in-
creased by about 13x more than data set size. Some ex-
pensive seeks are simply unavoidable. However, the lib-
prefetch time is still 7.7x faster than stock SQLite.

5.5 Infill

Infill has no significant effect on the sequential or strided
benchmarks because they have few infill opportunities.
The large seeks in the strided access pattern are too large
for infill to be a win. Similarly, stock SQLite with infill
shows no significant speedup; the gaps between most re-
quests are too large for infill to apply.

The effect of infill on SQLite when using libprefetch
is shown in Figure 11. Disk 2 shows a substantial im-
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Figure 11: Speedup due to infill for Disk 1 and Disk 2. All tests used
libprefetch. A firmware upgrade mostly alleviated the need for infill,
though a modest effect is still observed.

provement for many of the tests, up to 2.3x beyond
the speedups that libprefetch achieves. Libprefetch’s re-
ordering shrinks the average gap between requests to the
point where infill can improve performance. But as the
dataset size increases, the density of requests in a given
libprefetch pass across the disk decreases; as a result, in-
fill’s applicability also decreases.

As noted earlier, Disk 1 and Disk 2 are the same disk:
Disk 1 has newer firmware. While there is a notice-
able difference in the infill speedup on these two disks,
the difference in runtime when both libprefetch and in-
fill are used is less than 10%. It appears that the up-
dated firmware takes advantage of the hardware effect
that leads to infill being useful. The 3GB test is some-
how an exception, achieving a 1.7x speedup from infill
on Disk 1. Except for that point, the maximum speedup
from infill for Disk 1 is 1.049x. That is on par with the
maximum infill speedup we saw on Disk 3, 1.084x.

Infill will never be helpful for some access patterns
because there simply isn’t any opportunity to apply it.
For other access patterns, when infill is used with libpre-
fetch, it can either dramatically increase performance or
provide a modest improvement, depending on the disk.
None of our experiments showed a substantial negative
impact from infill.

5.6 Concurrent Applications

We evaluated libprefetch’s effect on concurrent work-
loads first by running multiple concurrent instances of
our benchmarks. Each instance used its own data file, so
prefetching in one instance didn’t help any other. Fig-
ure 12 shows the runtime for 1 to 3 concurrent execu-
tions of both the SQLite and GIMP benchmarks (512MB
datasets). Both with and without libprefetch, the runtime
of the GIMP benchmark scales with the number of in-
stances. The libprefetch versions run 3x to 4x faster than
the stock versions. Stock SQLite scales more slowly than
the number of instances; two SQLite instances take over
7x as long as a single instance, and three take more than
13x as long as one. Libprefetch improves SQLite’s scal-
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Figure 13: Runtime of GIMP, with and without libprefetch, measured
concurrently with CPU- and memory-intensive microbenchmarks.

ing behavior; two SQLites take nearly 4x as long as one,
and three take almost 8x as long as one. The libprefetch
speedup over stock SQLite is 23.5x for two and 21.5x for
three concurrent instances.

While libprefetch SQLite scales better than stock,
libprefetch GIMP does not. We believe this is due to
the amount of memory available for reorder buffers.
Whereas each SQLite process occupies about 20MB of
memory, each GIMP process occupies about 150MB
(predominantly for its tile cache). On a machine with
500MB of memory available after bootup and three test
processes, the memory available for reorder buffers is
less than 50MB for GIMP versus 440MB for SQLite.

We also confirmed that libprefetch’s AIMD contention
controller has the intended effect. With the contention
controller disabled, each libprefetch process tried to use
the entire buffer cache, causing many pages to be evicted
before use. The tests ran for several times the stock run-
time before we we gave up and killed them. The AIMD
mechanism is effective and necessary with our approach
to contention management.

We tested resource contention more directly by run-
ning GIMP and SQLite concurrently with two resource-
heavy benchmarks, md5sum and mem-walk. Md5sum
calculates the MD5 checksum of a 2.13GB file; mem-
walk allocates 100MB of memory and then reads each
page in turn, cycling through the pages for a speci-
fied number of iterations. Figure 13 shows the runtime
for these two microbenchmarks run concurrently with

GIMP, both with and without libprefetch. When running
md5sum and GIMP concurrently, md5sum is faster with
the libprefetch-enabled version of the GIMP. This is be-
cause the libprefetch-enabled GIMP has lower disk uti-
lization, yielding more time for md5sum to use the disk.

An opposite effect comes into play when running
the GIMP concurrently with the mem-walk benchmark.
Since the same amount of CPU time is spent over a
shorter total time, GIMP with libprefetch has a higher
CPU utilization. Mem-walk takes about 25% longer with
the libprefetch-enabled GIMP because it is scheduled
less frequently. This slowdown is not specific to libpre-
fetch; any CPU-intensive application would have a sim-
ilar effect. The libprefetch speedup that GIMP gets with
mem-walk is not as high as with md5sum, partly due
to higher CPU contention and partly due to the smaller
amount of memory available to libprefetch. Results for
md5sum and mem-walk run concurrently with SQLite
are similar.

6 Conclusion
An analysis of the performance characteristics of mod-
ern disks led us to a new approach to prefetching. Our
prefetching algorithm minimizes the number of expen-
sive seeks and leads to a substantial performance boost
for nonsequential workloads. Libprefetch, a relatively
simple library that implements this technique, can speed
up real-world instances of nonsequential disk access, in-
cluding image processing and database table scans, by as
much as 4.9x and 20x, respectively, for workloads that
do not fit in main memory. Furthermore, a simple con-
tention controller enables this new prefetching algorithm
to peacefully coexist with multiple instances of itself as
well as other applications.

Acknowledgments
The authors thank the anonymous reviewers for their
valuable feedback, and our shepherd, Geoff Kuenning,
who was very generous with his time. This work was
supported by the National Science Foundation under
grants NSF-0430425, NSF-0427202, and NSF-0546892.
Eddie Kohler is also supported by a Microsoft Research
New Faculty Fellowship and a Sloan Research Fellow-
ship.

Notes
1For instance, the Apple Hard Disk 20SC, introduced in 1985, had

an average access time of 65 to 85 msec and a maximum transfer speed
of 1.25 MB/s [11]. The specifications for our disk (Seagate Barracuda
7200.11) quote an average access time of 4.16 msec and sustained
transfer speed up to 105 MB/s [24].

2This formula was derived using uniform random real numbers, ig-
noring quantization effects, and is most precise when 5≤ K� N.

3Because prefetching and readahead are speculative, prefetched
pages are inserted into the LRU list at a lower priority (at the head



of the inactive list) than pages that were explicitly read. This can lead
to discrepancies between the LRU list order and the access list order.
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