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Abstract

This paper studies performance control for high-
volume non-interactive systems, and uses IBM Tivoli
Netcool/Impact—a software product in the IT moni-
toring and management domain—as a concrete exam-
ple. High-volume non-interactive systems include a large
class of applications where requests or processing tasks
are generated automatically in high volume by software
tools rather than by interactive users, e.g., data stream
processing and search engine index update. These sys-
tems are becoming increasingly popular and their perfor-
mance characteristics are radically different from those
of typical online Web applications. Most notably, Web
applications are response time sensitive, whereas these
systems are throughput centric.

This paper presents a performance controller, TCC,
for throughput-centric systems. It takes a black-box
approach to probe the achievable maximum throughput
that does not saturate any bottleneck resource in a dis-
tributed system. Experiments show that TCC performs
robustly under different system topologies, handles dif-
ferent types of bottleneck resources (e.g., CPU, mem-
ory, disk, and network), and is reactive to resource con-
tentions caused by an uncontrolled external program.

1 Introduction

Performance control for online interactive Web appli-
cations has been a research topic for years, and tremen-
dous progress has been made in that area [2, 10, 23, 28].
By contrast, relatively little attention has been paid to
performance control for a large class of increasingly pop-
ular applications, where requests or processing tasks are
generated automatically in high volume by software tools
rather than by interactive users. Many emerging stream
processing systems [1] fall into this category, e.g., con-
tinuous analysis and distribution of news articles, as in
Google Reader [11] and System S [19].

Moreover, almost every high-volume interactive Web
application is supported behind the scene by a set of
high-volume non-interactive processes, e.g., Web crawl-
ing and index update in search engines [7], Web log min-
ing for portal personalization [22], video preprocessing
and format conversion in YouTube, and batch conversion
of rich-media Web sites for mobile phone users [3].

Beyond the Web domain, examples of high-volume
non-interactive systems include IT monitoring and man-
agement [15], overnight analysis of retail transaction
logs [5], film animation rendering [14], scientific appli-
cations [6], sensor networks for habitat monitoring [20],
network traffic analysis [26], and video surveillance [8].

The workloads and operating environments of these
high-volume non-interactive systems differ radically
from those of session-based online Web applications.
Most notably, Web applications usually use response
time to guide performance control [2, 23, 28], whereas
high-volume non-interactive systems are throughput cen-
tric and need not guarantee sub-second response time,
because there are no interactive users waiting for im-
mediate responses ofindividual requests. Instead, these
systems benefit more from high throughput, which helps
loweraverageresponse time and hardware requirements.

This paper studies performance control for high-
volume non-interactive systems, and uses IBM Tivoli
Netcool/Impact [16]—a software product in the IT moni-
toring and management domain—as a concrete example.

Today’s enterprise IT environments are extremely
complex. They often include resources from multiple
vendors and platforms. Every hardware, OS, middle-
ware, and application usually comes with its own siloed
monitoring and management tool. To provide a holis-
tic view of the entire IT environment while taking into
account dependencies between IT components, a feder-
ated IT Service Management (ITSM) system may use
a core event-processing engine such as Netcool/Impact
to drive and integrate various siloed software involved in
IT management.

An IT event broadly represents a piece of informa-
tion that need be processed by the ITSM system. For
instance, under normal operations, transaction response
time may be collected continuously to determine the ser-
vice quality. Monitoring tools can also generate events to
report problems, e.g., a database is down. When process-
ing an event, the event-processing engine may interact
with various third-party programs, e.g., retrieving cus-
tomer profile from a remote database and invoking an in-
stant messaging server to notify the system administrator
if a VIP customer is affected.

When a major IT component (e.g., core router) fails,
the rate of IT events may surge by several orders of mag-



nitude due to the domino effect of the failure. If the
event-processing engine tries to process all events con-
currently, either the engine itself or some third-party pro-
grams working with the engine may become severely
overloaded and suffer from thrashing. In this work, the
purpose of performance control is to dynamically adjust
the concurrency level in the event-processing engine so
as to maximize throughput while avoiding fully saturat-
ing either the engine itself or any third-party program
working with the engine, i.e., targeting 85-95% resource
utilization (as opposed to 100%) even during peak usage.

The main difficulty in achieving this goal is caused by
the diversity and proprietary nature of the multi-vendor
components used in a federated ITSM system. For prac-
tical reasons, we can only take a black-box approach and
cannot rely on many assumptions presumed by existing
performance control algorithms.

• We cannot aggressively maximize performance with-
out considering resource contention with external pro-
grams not under our control. Therefore, we cannot use
greedy parameter search [25].

• We cannot assume a priori knowledge of system topol-
ogy (e.g., three-tier), and hence cannot use solutions
based on static queueing models [23].

• We cannot assume knowledge of every external pro-
gram’s service-level objectives (as in [18]), or knowl-
edge of every component’s performance characteris-
tics, e.g., through offline profiling as in [24]. There-
fore, we cannot directly adopt these methods based on
classical control theory.

• We cannot assume the ability to track resource con-
sumption of every component, or a prior knowledge
of the location or type of the bottleneck. Therefore,
we cannot adopt solutions that adjust program behav-
ior based on measured resource utilization level.

• We have no simple performance indicators to guide
tuning, such as packet loss in TCP [17] or response
time violation in interactive Web applications [2].

1.1 Throughput-guided Concurrency Control

The discussion below assumes that the number of
worker threads in the event-processing engine controls
the concurrency level. We explore the relationship be-
tween throughput and the event-processing concurrency
level to guide performance tuning (see Figure 1). With
too few threads, the throughput is low while system re-
sources are underutilized. As the number of threads
increases, the throughput initially increases almost lin-
early, and then gradually flattens, because the bottleneck
resource is near saturation. Once the bottleneck satu-
rates, adding more threads actually decreases through-
put because of the overhead in managing resource con-
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Figure 1: Basic idea of throughput-guided concurrency
control (TCC). The symbols①-⑦ show the controller’s
operation sequence. If memory is the bottleneck re-
source, the throughput may follow the dotted line and
then suddenly move into thrashing without a gradual
transition. This figure is further explained in Section 3.1.

tention. Finally, using an excessive number of threads
causes thrashing, and the throughput drops sharply.

We refer to our controller asTCC (throughput-guided
concurrency control). Intuitively, it works as follows.
Starting from an initial configuration, it tentatively adds
some threads (transition①➞② in Figure 1), and then
compares the throughput measured before and after the
change. If the throughput increases “significantly”, it
keeps adding threads (transitions②➞③➞④), until either
the throughput starts to decline or the improvement in
throughput becomes marginal (transition④➞⑤). It then
successively removes threads (transitions⑤➞⑥➞⑦),
until the throughput becomes a certain fraction (e.g.,
95%) of the maximum throughput achieved during the
exploration. The purpose is to reach a stable state that
delivers high throughput while not saturating the bottle-
neck resource.

We address several challenges to make this basic
idea practical. Because the exact shape of the thread-
throughput curve in Figure 1 varies in different envi-
ronments, a robust method is needed to determine when
the throughput “almost” flattens. If the controller adds
threads too aggressively, it may cause resource satura-
tion and gain unfair advantages when competing with
an uncontrolled external program. Another challenge
is to make quick control decisions based on noisy per-
formance measurement data, e.g., abnormal long pauses
caused by Java garbage collection. Our solutions to these
challenges are described in Section 3.

Our controller is flexible. It takes a black-box ap-
proach to maximize throughput while trying to avoid sat-
urating the bottleneck resource. It makes few assump-
tions about the operating environment. It need not know
system topology, performance characteristics of external
programs, resource utilization level, or exactly which re-
source is the bottleneck. It can handle both hardware
(e.g., CPU, memory, disk, or network) and software (e.g.,
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Figure 2: A radically simplified architecture diagram of Netcool/Impact (NCI). IT events flow from top to bottom.

database connection pool) bottleneck resources. Be-
cause of its flexibility, it may be broadly applied to high-
volume non-interactive systems [1, 6, 7, 19, 20, 22, 26].

We have implemented TCC and integrated it with IBM
Tivoli Netcool/Impact [16]. The Netcool suite [15] is
a set of software products that help implement a feder-
ated ITSM system, and Netcool/Impact is the stream-
ing event-processing engine of the Netcool suite. Ex-
periments demonstrate that TCC performs robustly un-
der different system topologies, handles different types
of bottleneck resources, and is reactive to resource con-
tentions caused by an uncontrolled external program.

The remainder of the paper is organized as follows.
Section 2 provides an overview of Netcool/Impact. Sec-
tions 3 and 4 present and evaluate TCC, respectively. Re-
lated work is discussed in Section 5. Section 6 concludes
the paper.

2 Overview of Netcool/Impact (NCI)

Our performance controller is generic, and its cur-
rent implementation can actually be configured to com-
pile and run independent of the Netcool/Impact prod-
uct. To make the discussion more concrete, however,
we choose to present it in the context of Netcool/Impact.
Netcool/Impact is a mature product with a large set of
features. Below, we briefly summarize those features
most relevant to our discussion. We simply refer to
Netcool/Impact as NCI.

NCI adopts a clustering architecture (see Figure 2).
The “master NCI server” is the data fetcher and load bal-
ancer. Its “event reader” pulls IT events from various
sources, while its “event listener” receives events pushed
from various sources. It processes some events in its lo-

cal “event-processing engine”, and dispatches the rest to
the “slave NCI servers” for load balancing. The “NCI
name server” manages members of the cluster. If the
master fails, a slave will be converted into master.

The “event-processing engine” executes user-supplied
programs written in the Impact Policy Language (IPL).
IPL is a proprietary scripting language specially de-
signed for event processing, emphasizing ease of use for
system administrators. With the help of various built-in
“external program adapters”, IPL scripts can easily inte-
grate with many third-party programs.

Each NCI server (master or slave) uses a pool of
threads to process events and runs a performance con-
troller to determine for itself the appropriate thread pool
size. When an event arrives, the NCI server goes through
a list of admin-specified matching rules to identify the
IPL script that will be used to process the event. The
event waits in a queue until an event-processing thread
becomes available, and then the thread is dispatched to
interpret the IPL script with the event as input.

In a large IT environment, monitoring events (e.g.,
CPU utilization reports) are generated continuously at a
high rate even under normal operations. Some events are
filtered locally, while the rest are collected in realtime,
e.g., to the Netcool/OMNIbus ObjectServer [15], which
buffers events and feeds them to the master NCI server
in batches, e.g., one batch every five seconds. Events are
not sent to the master individually for the sake of effi-
ciency. Similarly, a slave NCI server fetches events in
batches from the master.

Because events are fetched in batches, an NCI server
often holds a large number of unprocessed events. If the
server tries to process all of them concurrently, either



the server itself or some third-party programs working
with the server will become severely overloaded and suf-
fer from thrashing. Moreover, it needs to carefully con-
trol the concurrency level of event processing so that it
achieves high throughput while sharing resources with a
competing program in a friendly manner.

Our performance control goal is to maximize event-
processing throughput while avoiding saturating NCI or
any third-party program working with NCI. Even dur-
ing peak usage, the utilization level of the bottleneck re-
source should be controlled, e.g., between 85% and 95%,
instead of 100%. We must avoid saturating the master
NCI server because it hosts other services such as “oper-
ator view” (see Figure 2), which provides a customizable
dashboard for administrators to look into the details of IT
events. In addition, we must avoid saturating third-party
programs working with NCI, because they may serve
clients other than NCI, including interactive users.

In light of today’s complex and heterogeneous IT en-
vironments, the success of the NCI product to a great ex-
tent owes to its common adapter platform that helps in-
tegrate various distributed data sources and siloed mon-
itoring and management tools. Because of the diversity
and proprietary nature of these third-party external pro-
grams working with NCI, we can only take a black-box
approach and cannot rely on many assumptions that are
presumed by existing performance control algorithms (as
those listed in Section 1) .

3 Our Performance Control Algorithm
This section presents our controller TCC in detail. We

start with a description of TCC’s state transition dia-
gram, and then use queuing models to analyze TCC and
demonstrate that it can achieve high resource utilization.
We then derive the friendly resource sharing conditions
for TCC. We also present a statistical method that min-
imizes measurement samples needed for making control
decisions. Finally, we put all the pieces together to guide
the selection of TCC’s parameters.

3.1 State Transition Diagram
TCC operates according to the state-transition diagram

in Figure 3. Most of the time, it stays in the “steady”
state, using a constant number of threads to process
events that continuously arrive in batches. The number
of threads is optimal if those threads can drive the bot-
tleneck resource to a high utilization level (e.g., 85-95%)
while avoiding fully saturating it.

Periodically, TCC gets out of the steady state to ex-
plore whether a better configuration exists. It moves into
the “base” state and reduces the number of threads by
w%, which will serve as the exploration starting point①
in Figure 1. (How to select parameters such asw% will
be discussed in Section 3.5.) TCC stays in the “base”
state for a short period of time to measure the event-
processing throughput. It then increases the number of
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Figure 3: Simplified state-transition diagram of TCC.

threads byp% and moves into the “add-thread” state. If
thisp% increase in threads helps improve throughput by
q% or more, it stays in the add-thread state and repeat-
edly add threads byp% each time. Eventually, the bottle-
neck resource is near saturation so that ap% increase in
threads no longer gives aq% or more increase in through-
put. It then moves into the “max” state.

TCC takes more measurement samples in the “max”
state in order to calculate a more accurate baseline
throughput. It then moves into the “remove-thread” state
to repeatedly removes threads byr% each time so long
as the throughput does not drop below 95% of the highest
throughput achieved during the current tuning cycle.

When the throughput finally drops below the 95%
threshold, it adds back threads removed in the last round,
and moves into the steady state. It stays in the steady
state for a relatively long period of time, using an opti-
mal number of threads to process events. It restarts the
next round of exploration either after a timeout or when
the throughput changes significantly, which indicates a
change in the operating environment.

If memory is the bottleneck, throughput may follow
the dotted line in Figure 1, and then suddenly moves into
thrashing when TCC adds threads. TCC will detect the
decline in throughput, revoke the threads just added, and
continue to remove more threads until the throughput be-
comes 95% of the measured maximum throughput. This
prevents the system from moving into thrashing.

3.2 High Resource Utilization

In this section, we use queuing models to demon-
strate that, for common event processing scenarios, TCC
can achieve high resource utilization (and hence high
throughput) while avoiding resource saturation. The dis-
cussion below assumes that TCC uses the default con-
figuration: p=25%, q=14%, andw=39%. (Section 3.5
discusses parameter selection.) Our queueing models as-
sume the ITSM system consists of one NCI server and
some third-party external programs. We are interested in
system behavior when it continuously processes a block
of events and we assume no threads remain idle due to
the lack of input events.

The first model we use is the machine-repairman
model [12] in Figure 4(a). This model assumes that the
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Figure 4: Using queueing models to analyze TCC. These closedmodels can be solved by mean value analysis [12].
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Figure 5: Performance of TCC under different queueing models. Note that thex-axis increases nonlinearly.

ITSM system has a clearly defined bottleneck resource,
whose utilization level is much higher than that of the
other resources. Even if the bottleneck is fully saturated,
the other resources are still underutilized. Therefore,
the queueing delays of the non-bottleneck resources can
be approximately ignored. We use machine-repairman
model’s delay station to represent the sum of the ser-
vice times of all non-bottleneck resources. As the delay
station can abstractly represent multiple distributed re-
sources, real systems of different topologies (e.g., 3 ma-
chines or 7 machines) can be represented by this single
model, so long as they have a clearly defined bottleneck.
Many real systems do satisfy this requirement.

The machine-repairman model can predict event-
processing throughput and resource utilization level un-
der different thread configurations [12]. We modified
our implementation of TCC to take throughput numbers
from the model instead of a live system. This allows us
to systematically evaluate TCC under a wide range of
hypothetical workloads.

Figure 5(a) shows the number of threads recom-
mended by TCC and the corresponding CPU utilization
level. Here we assume that the CPU of the NCI server is
the bottleneck resource, and it has 8 CPUs. CPU utiliza-
tion is affected by the blocking ratior, which is defined
as the service time ratio of the delay station to the bottle-
neck resource. Asr increases, each thread blocks longer
at the delay station, and hence more threads are needed
to drive up CPU utilization. Asr varies, TCC is able
to adjust the number of threads accordingly to keep high
CPU utilization while avoiding complete saturation.

Figure 4(b) shows the event-escalation model, where
the NCI server processes an event and then invokes
an external program, e.g., an instant messaging server.

This model differs from the machine-repairman model in
that it does not assume the queueing delays of the non-
bottleneck resources are negligible. Figure 5(b) shows
the performance of TCC when both machines have 8
CPUs. Thex-axis is the service time ratior of the exter-
nal program to the NCI server. They-axis is the CPU uti-
lization of the bottleneck resource. The bottleneck is the
NCI server ifr<1, or the external program ifr>1. The
lowest utilization 88% occurs whenr=1, i.e., when the
utilization levels of two machines are identical. In this
case, more threads are needed to simultaneously drive
both machines to high utilization.

Figure 4(c) shows the event-enrichment model, where
the NCI server processes an event, enriches it with data
fetched from an external database, and writes it back to
the event source. This is a widely used topology in real
deployments. Figure 5(c) shows the performance of TCC
when each of the three machines has have 8 CPUs. The
x-axis is the service time ratior of the database to the
NCI server. The database and the event source have the
same mean service time. They-axis is the utilization of
the bottleneck. The lowest utilization 85% occurs when
r = 1, i.e., when the utilization levels of the three ma-
chines are identical.

Results in Figure 5 show that TCC can drive the bot-
tleneck resource to high utilization under different work-
loads and deployment topologies. On the other hand,
TCC may underutilize resources in some cases, e.g.,
when processing one event goes through a large num-
ber of servers whose utilization levels are identical (i.e.,
r=1). To reduce resource waste in this worst case,
one might be tempted to make TCC more aggressive in
adding threads. However, this would also make TCC less
friendly in resource sharing.



3.3 Friendly Resource Sharing
Below, we derive the conditions for friendly resource

sharing and demonstrate that, with a proper configura-
tion, TCC shares resources in a friendly manner with an
uncontrolled competing program. Moreover, multiple in-
stances of TCC also share resources in a friendly manner.
We begin our discussion with the basic two-NCI-server
scenario.

Suppose two NCI servers independently execute TCC.
If each server has its own internal bottleneck that limits
its throughput, TCC will independently drive each server
to almost full utilization. A more challenging case is
that a shared bottleneck resource limits the throughput
of both NCI servers, e.g., a shared database. Below, we
will show that, when the shared bottleneck is saturated,
the two NCI servers take turns to reduce their threads un-
til the bottleneck resource is relieved of saturation.

Suppose the bottleneck resource is fully saturated, two
NCI serversX andY are identical, and they currently
run x0 andy0 threads, respectively, wherex0 ≤ y0. A
TCC tuning cycle consists of the tuning steps starting
from the base state and finally settling in the steady state.
We usei to number TCC’s tuning cycles in increasing
order, and assumeX andY take turns to execute in the
tuning cycles, i.e., ifX executes in cyclei, thenY will
execute in cyclei + 1. Let xi andyi denote the numbers
of X andY ’s threads at the end of tuning cyclei.

Theorem 1 If TCC’s parametersp, q, and w satisfy
Equations (1) and (2) below, thenX and Y will take
turns to reduce their threads (i.e.,y0 > x1 > y2 >
x3 · · · ) until the bottleneck is relieved of saturation.

q >
p(p + 1)

p + 2
(1)

w ≥ 1 − (
p

q
− 1)2 (2)

Moreover, if TCC’s parameters satisfy (1) and (2), a TCC
instance shares resources with an external competing
program in a friendly manner.

Proof sketch: SupposeX is in the process of tuning
its configuration, and just finished increasing its threads
from x

1+p
to x. WhenX usesx threads to compete with

Y ’s y0 threads,X ’s throughput isf(x, y0) = x
x+y0

C,
whereC is the maximum throughput of the bottleneck.
TCC keeps adding threads so long as everyp% increase
in threads improves throughput byq% or more. There-
fore,X continues to add more threads if and only if

f(x, y0)

f( x
1+p

, y0)
≥ 1 + q , (3)

which is equivalent tox ≤ (p
q
− 1)y0. Let ŷ denote the

upper bound of this condition:

ŷ = (
p

q
− 1)y0 . (4)

SupposeX runs no more than̂y threads in the base
state. (This assumption holds if (2) holds.)X keeps
adding threads so long as its current number of threads
is no more than̂y. Hence, whenX stops adding threads,
its final numberx1 of threads falls into the range

ŷ < x1 ≤ (1 + p)ŷ . (5)

X ends up with fewer threads thanY if (1 + p)ŷ < y0.
From (4), this condition is equivalent to (1).

When X usesx1 threads to compete withY ’s y0

threads,X ’s share of the bottleneck is bounded by

1 −
q

p
<

x1

x1 + y0
≤

(1 + p)(p − q)

p(1 + p − q)
. (6)

This bound is derived from (4) and (5).
Now supposeY executes TCC afterX settles withx1

threads. Y first reduces its threads byw% in the base
state. Following (4), we define

x̂ = (
p

q
− 1)x1 . (7)

If Y ’s base state has no more thanx̂ threads, i.e., if

(1 − w)y0 ≤ x̂ , (8)

then we can follow (5) to obtain the bound ofY ’s final
numbery2 of threads whenY stops adding threads:

x̂ < y2 ≤ (1 + p)x̂ . (9)

From (4), (5), and (7), we know that (8) holds if (2) holds.
TCC’s default parameters arep=25%, q=14%, and

w=39%, which satisfy (1) and (2). Therefore, it follows
from (5) and (9) thaty0 > x1 > y2. This reduction in
threads continues asX andY repeatedly execute TCC,
until the bottleneck is relieved of saturation.

Following the approach above, one can also show that
TCC shares resources in a friendly manner with an exter-
nal competing program that generates a constant work-
load at the shared bottleneck resource. In the face of
competition, TCC dynamically adjusts the number of
processing threads so that it consumes about 44–49%
of the bottleneck resource. This range is obtained by
substituting the default parameters (p=25% andq=14%)
into (6). By contrast, if one uses a configuration that does
not satisfy (1), TCC’s consumption of the bottleneck re-
source could be unfairly high, e.g., reaching 80–83% for
the configurationp=25% andq=5%.

The analysis above focuses on the base state and
the add-thread state. The remove-thread state removes
threads to avoid saturation, which makes TCC even more
friendly in resource sharing. Therefore, Theorem 1 holds
if the remove-thread state is taken into account.�

With a proper configuration, a TCC instance shares
resources in a friendly manner with an external compet-
ing program, and two TCC instances also share resources
in a friendly manner. Three or more instances of TCC
share resources in a friendly manner only if they execute



in a loosely synchronized fashion, i.e., they move out of
the steady state into the base state roughly at the same
time. When the shared bottleneck is saturated and mul-
tiple TCC instances attempt to add threads at the same
time, they will observe little improvement in throughput
and gradually remove threads until the bottleneck is re-
lieved of saturation. A detailed analysis is omitted here.
In an NCI cluster, the master can serve as the coordinator
to enforce loose synchronization. Using loosely synchro-
nized execution to enforce friendly resource sharing has
also been proposed in Tri-S [27], although its application
domain is TCP congestion control.

3.4 Accurate Performance Measurement

TCC repeatedly adds threads so long as everyp% in-
crease in threads improves throughput byq% or more.
Let C1 andC2 denote the configurations before and af-
ter adding thep% threads, respectively. (This section
uses the add-thread state as example. The remove-thread
state can be analyzed similarly.) In a noisy environment,
throughput is a stochastic process and accurate measure-
ment is challenging. On the one hand, the throughput
of a configuration can be measured more accurately if
TCC stays in that configuration longer and takes more
measurement samples. On the other hand, we want to
minimize the measurement time so that TCC responds to
workload changes quickly.

We formulate the issue of accurate performance mea-
surement as an optimization problem. The optimization
goal is to minimize the total number of samples collected
from configurationsC1 andC2, and the constraint is to
ensure a high probability of making a correct control de-
cision. It turns out that the number of samples needed to
make a reliable decision is proportional to the variance
of event-processing time (i.e., more samples are needed
if the system is volatile), and inversely proportional to the
throughput improvement thresholdq (i.e., more samples
are needed if we want to tell even a small performance
difference between two configurations).

Below, we present our statistical approach for perfor-
mance measurement, our method for handling unstable
event arrival rate, and our heuristic for filtering out large
noises caused by extreme activities such as Java garbage
collection.

3.4.1 Our Experiment Design Approach

We use subscripti to differentiate the two configu-
rationsCi, i = 1, 2. For configurationCi, let random
variableXi denote the inter-departure time between the
completion of event processing. Denoteµi andσ2

i the
mean and variance ofXi. Suppose we takeni samples
of Xi, denoted asXij , 1 ≤ j ≤ ni, and these samples
are independent and identically distributed. DenoteXi

the sample mean ofXij . According to the central limit
theorem, regardless of the distribution ofXi, Xi is ap-
proximately normally distributed,Xi ∼ N(µi, σ

2
i /ni).

Let Y = X1 − X2, which represents the performance
difference betweenC1 andC2. AssumingX1 andX2

are independent, Y is also approximately normally dis-
tributed,Y ∼ N(µy, σy), where

µy = µ1 − µ2 (10)

σ2
y =

σ2
1

n1
+

σ2
2

n2
. (11)

The mean throughput of configurationCi is 1/µi.
TCC continues to add threads if the throughput ratio
1

µ2
/ 1

µ1
≥ 1 + q, whereq is the throughput improve-

ment threshold. Considering (10), this is equivalent to
µy ≥ µ′, where

µ′ =
q

1 + q
µ1. (12)

We want to collect a minimum number of samples,
n = n1 + n2, so that the varianceσ2

y in (11) is small
enough and we can state with high confidence either
Prob{Y ≥µ′}≥1−α or Prob{Y <µ′}≥1−α holds.
Here 1-α is the confidence level (0<α<0.5). However,
in the worst case whenµy = µ′, both Prob{Y ≥µ′} and
Prob{Y <µ′} are always 0.5, no matter how many sam-
ples we collect. This precludes us from deciding whether
C2 is significantly better thanC1. We use an indifference
zone[L,H] to handle the case whenµy ≈ µ′.

L = (1 − β/2) µ′ (13)

H = (1 + β/2) µ′ (14)

Hereβ is a small constant, e.g.,β=0.1. Now we want to
collect just enough samples so that at least one of the two
conditions below holds:

Prob{Y ≥ L} ≥ 1 − α, or (15)

Prob{Y ≤ H} ≥ 1 − α . (16)

TCC adds more threads if only (15) holds, or if both (15)
and (16) hold but Prob{Y≥L} ≥ Prob{Y≤H}.

Let Z ∼ N(0, 1), and Prob{Z ≤ Z1−α} = 1−α.
Combining (15) and (16), we have

σy ≤
1

Z1−α

max(H − µy , µy − L) . (17)

Combing (11) and (17), the problem of minimizing the
total number of measurement samples can be formulated
as the optimization problem below.

Minimize n = n1 + n2

Subject to

σ2
y =

σ2
1

n1
+

σ2
2

n2
≤

{
max(H − µy, µy − L)

Z1−α

}2

(18)

n1, n2 > 0 (19)

Solving this problem using Lagrange multipliers, we ob-
tain the minimum number of samples we need:



n̂1 = σ1(σ1 + σ2)

{
Z1−α

max(H − µy, µy − L)

}2

(20)

n̂2 = σ2(σ1 + σ2)

{
Z1−α

max(H − µy, µy − L)

}2

.(21)

Both n̂1 andn̂2 have the largest value when

µy =
H + L

2
= µ′. (22)

When collecting samples forC1, we have no data for
C2 and henceµy is unknown. We have to make the con-
servative assumption in (22). AsC1 andC2 are close, we
assumeσ1 ≈ σ2. With these assumptions, (20) is sim-
plified as (23) below. (Note that it is possible to runC1

andC2 back and forth in an interleaving fashion in or-
der to accurately estimateµy rather than conservatively
using (22) forµy, but this would complicate TCC’s state
machine in Figure 3.)

n̂1 = 8

(
σ1Z1−α

H − L

)2

. (23)

Finally, combining (12), (13), (14), and (23), we have

n̂1 = 2 Z2
1−α

(
1

β

)2 (
1 +

1

q

)2 (
σ1

µ1

)2

. (24)

The minimum number of samples forC2 can be de-
rived from (18) and (23):

n̂2 =
(σ2Z1−α)

2

{max(H − µy , µy − L)}
2
− (H−L)2

8

. (25)

When collecting samples forC2, we have data for both
C1 andC2, and hence can estimateµy from (10).

3.4.2 Practical Issues
Our method does not rely on any assumption about the

exact distribution ofXi, but needs to estimate the mean
µi and varianceσ2

i , as they are used in (24) and (25).
TCC estimates them by takingn∗

i initial samples from
configurationCi, and then uses the sample meanµ∗

i and
sample varianceS2

i to replaceµi andσ2
i . In practice, we

observe that sometimes the event-processing engine ex-
periences long pauses caused by extreme activities such
as Java garbage collection or startup of a heavy external
program. For example, on a fragmented large heap, Java
garbage collection can take as long as 20 seconds.

These long pauses are not an inherent part of the vari-
ance in service time, but they make the calculated sample
varianceS2

i (and accordinglŷni) unusually large. We
address this issue by filtering out abnormally large sam-
ples. Empirically, we find that abnormal samples caused
by long pauses are rare, and discarding the top 1% largest
samples is sufficient to filter them out.

Another challenge is to handle the periodical, bulk-
arrival pattern of IT events. After processing one block

arrival of
event blocks

event
processing T1 T2 T3 T4 T5 T6

time

time

Figure 6: TCC excludes idle time from through-
put calculation. Supposen events are processed
in this example. The throughput is calculated as

n
(T2−T1)+(T4−T3)+(T6−T5)

instead of n
T6−T1

. This
method discounts the influence of an unstable event ar-
rival rate and helps TCC operate robustly.

of events, an NCI server remains idle until the next block
arrives. TCC excludes this idle time from throughput cal-
culation (see Figure 6), because the low throughput in
this case is caused by the lack of input events rather than
by a sub-optimal thread configuration.

3.5 Selection of Parameter Values

Recall that TCC reduces threads in the base state by
w%, and then repeatedly add threads so long as every
p% increase in threads improves throughput byq% or
more. Now we put together the results in Sections 3.2,
3.3, and 3.4 to guide the selection of these parameters.

Equations (1) and (2) are the conditions for friendly re-
source sharing. Supposep’s value is already determined.
Using queueing models such as those in Figure 4, it can
be shown that, relative top, q should be as small as possi-
ble in order to achieve maximum throughput. Therefore,
for a givenp, we choose forq the smallest value allowed
by (1). Oncep andq are determined, we choose forw the
smallest value allowed by (2), because a smallw keeps
more threads in the base state and allows TCC to finish
an exploration cycle more quickly. Table 1 lists the ap-
propriate values ofq andw for differentp.

p 10% 15% 20% 25% 30% 35% 40% 45% 50%
q 5.4% 8.2% 11.5% 14% 17% 20.5% 24% 27% 31%
w 28% 32% 33% 39% 42% 50% 56% 56% 63%

Table 1: Appropriate values ofq andw for a givenp.

The next step is to choose a configuration in Table 1.
This table as well as (1) and (2) shows that bothq and
w increase asp increases. Equation (24) suggests that
a largeq is preferred, because it allows TCC to make a
control decision with fewer measurement samples. On
the other hand, we prefer a smallw, as it keeps more
threads in the base state. Moreover, we prefer a moderate
p, because a largep has a higher risk of moving the sys-
tem into severe thrashing in a single tuning step, whereas
a smallp may require many tuning steps to settle in a
new steady state after a workload change. To strike a bal-
ance between all these requirements, we choose (p=25%,
q=14%,w=39%) as our default configuration.



In the remove-thread state, TCC repeatedly removes
r% threads until the throughput becomes a certain frac-
tion (e.g., 95%) of the maximum throughput achieved
during a tuning cycle. The remove-thread state does fine
tuning and we user=10% by default.

4 Experimental Results

We have implemented TCC in Java and integrated it
with IBM Tivoli Netcool/Impact [16]. We have evalu-
ated TCC under a wide range of workloads. Experiments
demonstrate that an NCI cluster is scalable, and TCC can
handle various types of bottleneck resources. We also
compare TCC with revised versions of TCP Vegas [4].

Unless otherwise noted, each machine used in the
experiments has 5GB memory and two 2.33GHz Intel
Xeon CPUs, running Linux 2.6.9. All the machines are
hosted in an IBM BladeCenter, where the network round-
trip time is only 90µs. The network delay of a large
enterprise’s IT environment can be much longer, e.g.,
varying from 1ms to 100ms when the database with cus-
tomer profiles is managed at a central remote site for se-
curity reasons. To evaluate the effect of network delay, in
some experiments, the messages between two machines
go through a software router that allows us to introduce
message delays in a controlled manner.

4.1 NCI Cluster Scalability

Figure 7 shows the scalability of an NCI cluster run-
ning TCC, when executing an event-enrichment policy
that is widely used in real deployments. The topology of
this experiment is shown in Figure 4(c). The event source
is Netcool/OMNIbus ObjectServer 7.1 [15]. We devel-
oped a tool to automatically feed IT events to Object-
Server, from which the master NCI server fetches events.
The external database is MySQL 4.1.12. When process-
ing one event, an NCI server does some local analy-
sis, fetches service contextual information from MySQL,
adds it into the event, and finally writes the enriched
event back to ObjectServer. In this setup, MySQL caches
all data in memory and NCI servers are the bottleneck.
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Figure 7: Scalability of NCI.

In Figure 7, the NCI cluster shows almost linear scala-
bility, because the NCI servers fetch events in batches,
and the slave NCI servers directly retrieve data from
MySQL and write events back to ObjectServer without
going the master. In addition, the linear scalability is also
due to another algorithm we designed to dynamically
regulate the event-fetching rate and event batch size so
that the event-processing pipeline moves smoothly with-
out stall. This feature is beyond the scope of this paper.

4.2 CPU Bottleneck
In the rest of the experiments, we study the detailed

behavior of TCC. These experiments use the event-
escalation topology in Figure 4(b), in which the NCI
server processes an event and then invokes an external
program through its HTTP/XML interface for further
processing. Below, we simply refer to this external pro-
gram as the “Web application” and its hosting machine
as the “Web machine.” The IPL script executed by the
NCI server is specially designed so that we can control
its service time on the NCI server. Similarly, the service
time of the Web application can also be controlled. Both
service times follow a Pareto distributionp(x) = k Ck

xk+1 ,
wherek = 2.5. We adjustC to control the service time.

Figure 8(a) shows the CPU utilization (“NCI-CPU”
and “Web-CPU”) and the number of threads in an ex-
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Figure 8: The Web machine’s CPU is the bottleneck.



periment where one NCI server works with the Web ap-
plication. Thex-axis is the wall clock time since the
experiment starts. In real deployments, after process-
ing one block of events, the NCI server remains idle
until the next block arrives. This experiment generates
IT events in such a way that the NCI server never be-
comes idle. Otherwise, the CPU utilization would drop
to 0 during repeated idle time, making the figure com-
pletely cluttered. We conducted separate experiments to
verify that the idle time between event blocks does not
change TCC’s behavior, because TCC excludes the idle
time from throughput calculation (see Figure 6).

In this experiment, the mean service time is 1ms for
NCI and 1.3ms for the Web application. (Note that the
actual service times are random variables rather than
constants.) Therefore, the Web machine is the bottle-
neck. The messages between the NCI server and the Web
application go through the software router, which adds
about 5ms delay in round trip time. The curves show pe-
riodical patterns. Each period is a complete tuning cycle
during which TCC starts from the base state and even-
tually moves back to the steady state. In real deploy-
ments, TCC operates in the steady state for a relatively
long period of time before it starts the next round of ex-
ploration. In this experiment, TCC is configured to stay
in the steady state for only about 50 seconds. Otherwise,
the curves would be mostly flat.

During the first tuning cycle in Figure 8(a), TCC ex-
ponentially increases the number of threads. At time
85 seconds, it moves into the steady state for the first
time with 17 threads. During latter tuning cycles, the
steady-state threads vary between 15 and 17. This os-
cillation is due to noisy measurement data. Regardless,
TCC avoids saturating the bottleneck resource, and the
Web machine’s CPU utilization stays around 90%.

Figure 8(b) shows event-processing throughput, which
closely follows CPU utilization in Figure 8(a). This is
because throughput is proportional to the utilization of
the bottleneck resource (i.e., CPU in this experiment).
Due to space limitation, below we omit throughput fig-
ures and focus on bottleneck resource utilization.

4.3 Memory Bottleneck

The experiment in Figure 9 evaluates how TCC works
with memory bottleneck and how it recovers from mem-
ory thrashing. This experiment uses machines with rel-
atively more CPUs and less memory in order to trigger
memory thrashing—each machine has eight 3.2GHz In-
tel Xeon CPUs and 1GB memory. The mean service time
is 8ms for NCI and 1ms for the Web application. The
message delay is set to 50ms. Initially, the NCI server’s
CPU is the bottleneck, and TCC uses 69 threads in the
steady state to drive its utilization to 95%.

At time 496 seconds, the NCI server starts to invoke
another API of the Web application, which consumes
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Figure 9: Memory bottleneck and memory thrashing.

a large amount of memory on the Web machine. In
total, 69 concurrent threads consume more than 1GB
physical memory and immediately drive the Web ma-
chine into memory thrashing. Figure 9 reports the Web
machine’s page swaps monitored through/proc/vmstat.
At time 496 seconds, the free memory drops sharply
from 934MB to 19MB, page swaps increase from 0 to
4,000 pages/second, and the event-processing through-
put drops from 1,011 events/second to 58 events/second.
TCC detects this radical throughput change and restarts
thread exploration. By time 945 seconds, TCC reduces
steady-state threads down to 44. The Web machine be-
comes completely free of page swapping, its free mem-
ory rises to 106MB, and the throughput increases to 625
events/second. The tuning cycles are relatively long be-
cause the throughput is extremely low during memory
thrashing and TCC needs time to collect samples.

After time 1,000 seconds, when TCC periodically re-
explores new thread configurations, it increases the num-
ber of threads beyond 50, and causes page swapping to
happen again (see the repeated spikes on the “Swap”
curve after time 1,000 seconds). TCC observes that
adding threads actually decreases throughput. It then
removes threads and avoids thrashing. This experiment
demonstrates that TCC can not only recover from mem-
ory thrashing but also avoids moving into thrashing.

4.4 Disk Bottleneck

The experiment in Figure 10 evaluates how TCC
works with a disk bottleneck. Each machine used in this
experiment has eight CPUs. The mean service time is
1ms for NCI and 2ms for the Web application. The mes-
sage delay is set to 20ms. Initially, the Web machine’s
CPU is the bottleneck, and TCC uses 107 threads in the
steady state to drive its utilization to 95%.

At time 247 seconds, the NCI server starts to invoke
another API of the Web application, which performs ran-
dom search in a 60GB on-disk database. Now the bottle-
neck shifts to the Web machine’s disk. The Web ma-
chine’s CPU utilization drops from 95% to 5%, while
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Figure 10: The Web machine’s disk is the bottleneck.
Removing threads actually improves disk throughput.

the amount of data read from disk (monitored through
/proc/diskstats) increases from 0 to 9MB/s. At time 305
seconds, TCC enters the base state and reduces threads
from 107 to 66. With fewer threads, the disk throughput
actually increases from 9MB/s to 12.5MB/s (“1st im-
prove” in the figure). Note that the disk throughput is
proportional to the event-processing throughput. When
TCC reduces the number of threads down to 22 at time
816 seconds, the disk throughput further increases to
14MB/s (“2nd improve” in the figure). TCC continues
to remove threads to avoid saturation. Eventually it sta-
bilizes around 7 threads in the steady state, and the Web
machine’s CPU utilization is only 1.5%. This experi-
ment demonstrates that TCC can radically remove un-
necessary threads (from 107 down to 7) when disk is the
bottleneck, and disk can actually achieve higher through-
put with fewer threads.

4.5 Network Bottleneck

For the experiment in Figure 11, the NCI server ex-
changes a large amount of data with the Web application
when processing events. The mean service time is 1.5ms
for NCI and 1ms for the Web application. There is no
extra message delay between machines. The NCI server
has higher CPU utilization than the Web machine, but the
bottleneck of the whole system is network. Even if CPUs
are still underutilized, TCC stops adding threads when
the network bandwidth utilization reaches around 92%.
Note that TCC works by observing changes in event-
processing throughput, without even knowing which re-
source is actually the bottleneck.

4.6 NCI Working with a Competing Program

The experiment in Figure 12 evaluates TCC’s response
to an external program that competes for the bottleneck
resource. The mean service time is 1ms for NCI and
1.3ms for the Web application. The Web machine is the
bottleneck. The message delay is set to 5ms. At time 286
seconds, an external program is started on the Web ma-
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Figure 11: Network bandwidth is the bottleneck.
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Figure 12: An external program competes for the bottle-
neck resource, which is the Web machine’s CPU.

chine to compete for CPU. During the tuning cycle be-
tween time 293 and 368 seconds, TCC reduces steady-
state threads from 17 to 10, and the Web machine is
relieved of 100% saturation starting from time 341 sec-
onds. The tuning cycle between time 406 and 441 sec-
onds further reduces steady-state threads from 10 to 8.
The external program terminates at time 477 seconds,
and the Web machine’s CPU utilization drops sharply
from 95% to 49%. During the following tuning cycle be-
tween time 483 and 553 seconds, TCC quickly increases
steady-state threads from 8 to 17, and drives the Web ma-
chine’s CPU utilization back to 95%. This experiment
demonstrates that TCC shares resources with a compet-
ing program in a friendly manner, and responds quickly
when the bottleneck’s available capacity increases.

4.7 Two NCI Servers Sharing a Bottleneck

The experiment in Figure 13 runs two NCI servers to
share the Web application. The mean service time is 1ms
for NCI and 1.5ms for the Web application. The Web ap-
plication is the shared bottleneck that limits the through-
put of both NCI servers. This experiment introduces no
extra message delays between machines. ServerX starts
first and quickly drives the throughput to as high as 1,100
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Figure 13: Two competing NCI servers work with the
Web application. The latter is the shared bottleneck.

events/second (see the throughput spike around time 0).
After serverY starts,X andY share the bottleneck re-
source in a friendly manner. Their throughput oscillates
around 550 events/second and their steady state oscil-
lates around 8 threads. Sometimes one server mistakenly
increases its threads beyond its fair share (due to noisy
measurement data), which causes the other server to also
increase its threads in order to get its fair share (see the
thread spikes around time 3,000 seconds). However, the
friendly resource sharing logic built in TCC ensures that
the competition does not escalate, and they gradually re-
duce their threads back to the normal level.

4.8 Comparison of Different Controllers

To our knowledge, no existing controllers are designed
to maximize the throughput of general distributed sys-
tems while not saturating the bottleneck resource. The
closest to TCC is TCP Vegas’ congestion avoidance al-
gorithm [4]. It computes the differenceD between
the actual throughput and the expected throughput, and
increases the concurrency level ifD is small, or de-
creases the concurrency level ifD is large. The ex-
pected throughput is calculated as the product of the con-
currency level and a baseline throughput. The baseline
throughput is defined as the throughput achieved when
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Figure 14: Comparison of different controllers.

the concurrency level is one and the network is com-
pletely free of cross traffic. A key challenge is to estimate
the baseline throughput when cross traffic exists.

TCP Vegas is designed for and works well in the net-
work domain, but it critically relies on an assumption that
does not hold in general distributed systems—it assumes
a processing unit’s service time is constant. Because of
this assumption, TCP Vegas can use1

minRTT
to approx-

imate the baseline throughput, whereminRTT is the
minimum round trip time of packets. By contrast, the
service time of a server in a general distributed system is
inherently a stochastic process. For instance, the service
time of a database query may vary over time, depending
on the size of the database and the cache status. As a
result, the actual baseline throughput for a general dis-
tributed system can be much lower than 1

minRTT
.

A complete redesign of TCP Vegas to work for general
distributed systems would require (1) a method to esti-
mate the baseline throughput when servers’ service times
are stochastic processes and there exists cross traffic; (2)
proving that the new algorithm shares resources with un-
controlled competing programs in a friendly manner; and
(3) demonstrating that the new algorithm can achieve
high resource utilization under typical topologies of dis-
tributed systems. The first task is especially challenging,
and our initial study suggests that a satisfactory solution
might not exist at all. We leave it as future work.

In Figure 14, “Vegas+” is our revised version of TCP
Vegas. It runs in NCI at the application layer, and con-
trols the number of event processing threads. It adjusts
the concurrency level after measuring a stable through-
put. In Vegas+,minRTT is the minimum response time
of event processing. In this experiment, the mean service
time is 1ms for NCI and 2ms for the Web application.
The network delay is set to 25ms. The Web machine is
the bottleneck, and Vegas+ can only drives its CPU uti-
lization to 55%. Vegas++ in Figure 14 is an enhanced
version of Vegas+. It uses an accurate baseline through-
put measured offline in a controlled environment that is
free of cross traffic. Vegas++ is not a practical online
algorithm, but we use it to study the potential of TCP



Vegas. Vegas++ improves the utilization of the bottle-
neck from 55% to 70%, which is still far from ideal. Ve-
gas+ and Vegas++ use the parameters of TCP Vegas as
recommended in [21]. The resource utilization may be
improved by tuning these parameters, but the challenge
is to prove that, with the new parameters, the algorithm
is still friendly in resource sharing.

Vegas+ and Vegas++ are not full redesigns of TCP Ve-
gas, as they do not solve the three challenging redesign
tasks described above. Our initial study suggests that
those tasks might not have a satisfactory solution at all.
Here we use Vegas+ and Vegas++ to emphasize that the
problem TCC solves is challenging, and no prior solu-
tions can be easily adapted to solve the problem.

The other bars in Figure 14 show the performance of
TCC under different configurations in Table 1 of Sec-
tion 3.5. For instance, TCC-P25 is TCC’s default con-
figuration (p=25%, q=14%, w=39%), and TCC-P10 is
(p=10%,q=5.4%,w=28%). With the different configu-
rations, TCC consistently drives the bottleneck resource
utilization to 90-95%, showing that our guidelines in
Section 3.5 for choosing TCC parameters are effective.
Moreover, our guidelines ensure that TCC with these
configurations is friendly in resource sharing.

5 Related Work

Performance control has been studied extensively for
many applications, including Web server [28], search en-
gine [2], storage [18], and scientific applications [25]. To
our knowledge, no existing work uses a black-box ap-
proach to maximize the throughput of general distributed
systems while trying to avoid saturating the bottleneck
resource. TCP Vegas [4] is the closest to our algorithm,
and a detailed discussion is provided in Section 4.8. Most
existing algorithms [2, 23, 28] use a manually-configured
and system-dependent response time threshold to guide
performance control. If the threshold is set too high, the
system will be fully saturated; if the threshold is set too
low, the system will be underutilized.

We broadly classify existing controllers into four cat-
egories. Each category has an enormous body of related
work, and we only review some representative ones.

The first category considers performance optimization
as a search problem in a multi-dimensional parameter
space. For instance, Active Harmony [25] uses the sim-
plex method to perform the search. Existing methods of
this category aggressively maximize performance with-
out considering resource contention with an uncontrolled
external program. Moreover, running multiple instances
of the controller may result in severe resource saturation
as each controller instance attempts to consume 100% of
the shared bottleneck resource.

The second category uses classical control theory [13]
to regulate performance. It requires the administrator to
manually set a performance reference point. The system

then adjusts itself to stabilize around this reference point.
If we apply this method to Netcool/Impact, the refer-
ence point would be achieving 90% bottleneck resource
utilization. However, a straightforward implementation
would require Netcool/Impact to monitor the resource
consumptions of all third-party external programs work-
ing with Netcool/Impact, which is impractical in real de-
ployments because of the diversity and proprietary nature
of the third-party programs. Moreover, existing meth-
ods of this category are not sufficiently “black-box” and
require information not available in Netcool/Impact de-
ployment environments. For example, Triage [18] as-
sumes knowledge of every resource-competing applica-
tion’s service-level objectives, and the method in [24]
assumes knowledge of every component’s performance
characteristics obtained from offline profiling.

The third category uses queueing theory [12] to model
a system with a fixed topology, and takes actions ac-
cording to predictions given by the model. For instance,
Pacifici et al. [23] use online profiling to train a machine-
repairman model, which is used to guide flow control and
service differentiation.

The fourth category includes various heuristic meth-
ods. SEDA [28] adjusts admission rate based on the dif-
ference between the 90-percentile response time and a
manually-set target. Like TCP Vegas, Tri-S [27] is also
designed for TCP congestion control and requires esti-
mating a baseline throughput. MS Manners [9] regulates
low-importance processes and allows them to run only
if the system resources would be idle otherwise. It also
needs to establish a baseline progress rate.

6 Conclusions
We presented TCC, a performance controller for high-

volume non-interactive systems, where processing tasks
are generated automatically in high volume by software
tools rather than by interactive users, e.g., streaming
event processing and index update in search engines.
TCC takes a black-box approach to maximize throughput
while trying to avoid saturating the bottleneck resource.
We used analysis to guide the selection of its parame-
ters, and designed a statistical method to minimize mea-
surement samples needed for making control decisions.
We implemented TCC and integrated it with IBM Tivoli
Netcool/Impact [16]. Experiments demonstrate that TCC
performs robustly under a wide range of workloads. TCC
is flexible as it makes few assumptions about the operat-
ing environment. It may be applied to a large class of
throughput-centric applications.

Acknowledgments
We thank Zhenghua Fu, Yaoping Ruan, other mem-

bers of the Netcool/Impact team, the anonymous review-
ers, and our shepherd Edward Lazowska for their valu-
able feedback.



References
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream sys-
tems. InPODS’02, pages 1–16, 2002.

[2] J. M. Blanquer, A. Batchelli, K. Schauser, and
R. Wolski. Quorum: Flexible Quality of Service
for Internet Services. InNSDI’05, pages 159–174,
2005.

[3] L. Bouillon and J. Vanderdonckt. Retargeting of
Web Pages to Other Computing Platforms with
VAQUITA. In The Ninth Working Conference on
Reverse Engineering (WCRE’02), pages 339–348,
2002.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New Techniques for Congestion De-
tection and Avoidance. InSIGCOMM’94, pages
24–35, 1994.

[5] J. Burrows.Retail crime: prevention through crime
analysis. Home Office, 1988.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salis-
bury, and S. Tuecke. The data grid: Towards an ar-
chitecture for the distributed management and anal-
ysis of large scientific datasets.Journal of Network
and Computer Applications, 23(3):187–200, 2000.

[7] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
VLDB’00, pages 200–209, 2000.

[8] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi,
D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, and
O. Hasegawa. A System for Video Surveillance
and Monitoring. Technical Report CMU-RI-TR-
00-12, Robotics Institute, Carnegie Mellon Univer-
sity, 2000.

[9] J. R. Douceur and W. J. Bolosky. Progress-
based regulation of low-importance processes. In
SOSP’99, pages 47–260, 1999.

[10] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-Based Scalable Network
Services. InSOSP’97, pages 78–91, 1997.

[11] Google Reader. http://www.google.com/reader.

[12] D. Gross and C. M. Harris. Fundamentals of
Queueing Theory. John Wiley & Sons, Inc., 1998.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems.
John Wiley & Son, Inc., 2004.

[14] Hewlett-Packard. Servicing the Animation In-
dustry: HP’s Utility Rendering service Pro-
vides On-Demand Computing Resources, 2004.
http://www.hpl.hp.com/SE3D.

[15] IBM Tivoli Netcool Suite.
http://www.ibm.com/software/tivoli/welcome/micromuse/.

[16] IBM Tivoli Netcool/Impact.
http://www.ibm.com/software/tivoli/products/netcool-
impact/.

[17] V. Jacobson. Congestion avoidance and control. In
SIGCOMM’88, pages 314–329, 1988.

[18] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance differentiation for storage systems us-
ing adaptive control.ACM Transactions on Stor-
age, 1(4):457–480, November 2005.

[19] G. Luo, C. Tang, and P. S. Yu. Resource-Adaptive
Real-Time New Event Detection. InSIGMOD’07,
pages 497–508, 2007.

[20] A. Mainwaring, D. Culler, J. Polastre,
R. Szewczyk, and J. Anderson. Wireless
Sensor Networks for Habitat Monitoring. In
Int’l Workshop on Wireless Sensor Networks and
Applications, pages 88–97, 2002.

[21] J. Mo, R. La, V. Anantharam, and J. Walrand. Anal-
ysis and comparison of TCP Reno and Vegas. In
INFOCOM’99, pages 1556–1563, 1999.

[22] B. Mobasher, R. Cooley, and J. Srivastava. Au-
tomatic personalization based on Web usage min-
ing. Communications of the ACM, 43(8):142–151,
2000.

[23] G. Pacifici, W. Segmuller, M. Spreitzer, M. Stein-
der, A. Tantawi, and I. Whalley. Managing the
Response Time for Multi-tiered Web Applications.
Technical Report RC23942, IBM Research, 2006.

[24] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive
control of virtualized resources in utility computing
environments. InEuroSys, pages 289–302, 2007.

[25] C. Tapus, I.-H. Chung, and J. K. Hollingsworth.
Active Harmony: Towards Automated Perfor-
mance Tuning. InSuperComputing’02, pages 1–
11, 2002.

[26] K. Thompson, G. Miller, and R. Wilder. Wide-area
Internet traffic patterns and characteristics.Net-
work, IEEE, 11(6):10–23, 1997.

[27] Z. Wang and J. Crowcroft. A new congestion
control scheme: slow start and search (Tri-S).
ACM SIGCOMM Computer Communication Re-
view, 21(1):32–43, 1991.

[28] M. Welsh and D. Culler. Adaptive Overload Con-
trol for Busy Internet Servers. InUSITS’03, pages
43–56, 2003.


