
Automatically Generating Predicates and Solutions for Configuration Troubleshooting

Ya-Yunn Su
NEC Laboratories America

yysu@nec-labs.com

Jason Flinn
University of Michigan

jflinn@umich.edu

Abstract
Technical support contributes 17% of the total cost of
ownership of today’s desktop computers [12], and trou-
bleshooting misconfigurations is a large part of techni-
cal support. For information systems, administrative ex-
penses, made up almost entirely of people costs, repre-
sent 60–80% of the total cost of ownership [5]. Prior
work [21, 24] has created promising tools that automate
troubleshooting, thereby saving users time and money.
However, these tools assume the existence ofpredicates,
which are test cases painstakingly written by an expert.
Since both experts and time are in short supply, obtain-
ing predicates is difficult. In this paper, we propose a
new method of creating predicates that infers predicates
by observing the actions of ordinary users troubleshoot-
ing misconfigurations. We report on the results of a user
study that evaluates our proposed method. The main re-
sults were: (1) our method inferred predicates for all con-
figuration bugs studied with very few false positives, (2)
using multiple traces improved results, and, surprisingly,
(3) our method identified the correctsolutionsapplied by
users who fixed the misconfigurations in the study.

1 Introduction

Troubleshooting software misconfigurations is a diffi-
cult, frustrating job that consists of such tasks as editing
configuration files, modifying file and directory access
rights, checking software dependencies, and upgrading
dynamic libraries. Troubleshooting is also costly: tech-
nical support represents 17% of the total cost of owner-
ship of desktop computers [12], and administrative costs
are 60–80% of the total cost of ownership of information
systems [5].

Consequently, the research community has developed
several systems that automate troubleshooting [21, 24].
However, these tools requirepredicates, which are test
cases that evaluate the correctness of software configura-
tion on a computer system. Unfortunately, creating pred-
icates is currently a manual task that requires the partici-
pation of expert users with domain knowledge about the
application being tested. Manual creation of predicates
is time-consuming, and expert time is precious.

This paper shows how to substantially reduce the
time and effort needed to deploy automated troubleshoot-
ing by automaticallygenerating predicates from traces
of ordinary users troubleshooting their computers. Our
method is based on the insight that users who manu-
ally troubleshoot a misconfiguration generally use one or
more commands to test the correctness of their system. If
we can extract these commands and learn a function that
maps command output to correct and incorrect configu-
ration states, we can generate a predicate that can be used
by an automated troubleshooting tool. Predicate extrac-
tion requires no extra effort on the part of the user who
is troubleshooting a problem; it simply lets other users
benefit from her efforts.

Our current prototype uses a modified Unix shell
to observe user input and system output during trou-
bleshooting. We chose a command line interface to sim-
plify development and evaluation by limiting the types
of input and output we need to observe. GUI applica-
tions pose additional challenges, and we discuss ways in
which we might address those challenges in Section 7.1.
We also use a modified Linux kernel to track the causal
relationship between processes, files, and other kernel
objects.

We use two heuristics to find commands that can be
used as predicates. First, users generally test the system
state multiple times while fixing a configuration prob-
lem: once to reproduce a configuration problem and pos-
sibly several other times to test potential solutions. Sec-
ond, testing commands should generate some output that
lets the user know whether or not the current configura-
tion is correct. We therefore examine output consisting
of data printed to the terminal, exit codes, and the set of
kernel objects modified by a command execution. This
output should be qualitatively different before and after
a configuration problem is fixed. Thus, repeated com-
mands with significant differences in output between two
executions are flagged as predicates.

For example, a user could test whether a local Apache
server is working correctly by usingwget to retrieve
the server’s home page. When the user first runs the
command, an HTTP error message is displayed. When



the user runs the command after fixing the problem, the
home page is correctly displayed. Our method thus iden-
tifies thewget command as a predicate.

Our method also identifies potential solutions found
during troubleshooting. We observe that, in general, a
command that is part of a solution will causally affect
the last execution of a predicate but not prior executions
of the same predicate. Further, the output of the two ex-
ecutions of the predicate should differ because the prob-
lem is fixed during the latter execution but not during the
former one. Thus, we use the causal information tracked
by our modified kernel to select candidate solutions. We
then sort our candidate solutions by the number of times
they appear in the set of all traces. As with prior trou-
bleshooting systems such as PeerPressure [22], we ob-
serve that the majority of users is usually right, so com-
mon solutions are more correct than uncommon ones.

We envision that our system can be deployed across
a community of users of an application or an operat-
ing system. As users encounter and solve new config-
uration problems, our tool will collect traces of their
activity, analyze the traces, and upload canonicalized
and anonymized predicates and solutions to a central-
ized repository. Other people executing automated con-
figuration management tools can then benefit from the
experience of these prior users by downloading and try-
ing commonly used predicates and solutions. Note that
since tools such as AutoBash have the ability to try mul-
tiple solutions and deterministically roll back unsuccess-
ful ones, our solution database does not have to identify
the exact solution to a problem, just the most likely ones.
This kind of community sharing of experience has been
previously proposed for use with tools that prevent dead-
locks [11] and enable better understanding of software
error messages [9].

We evaluated the effectiveness of our method by con-
ducting a user study in which we recorded the actions of
twelve people fixing four configuration problems for the
CVS version control system and the Apache Web server.
We then used our method to extract predicates from these
recordings. Aggregating across all traces, our method
found 22 predicates that correctly tested the state of these
systems, while generating only 2 false positives. Further,
our method was able to correctly identify the solution
that fixed each misconfiguration.

2 Related work

The research community has proposed several differ-
ent approaches to automate troubleshooting. Some sys-
tems, such as Chronus [24] and AutoBash [21], search
through the space of possible configurations to find a cor-
rect one. Chronus searches backwards in time to find
the instance in which a misconfiguration was introduced.

AutoBash applies actions previously taken to fix a prob-
lem on one computer to fix similar problems on other
computers. Both systems use predicates that test soft-
ware correctness to guide the search. Initially, one or
more predicates evaluate to false, indicating a miscon-
figuration. Both systems use checkpoint and rollback to
search for a state in which all predicates evaluate to true;
a system in this state is assumed to be configured cor-
rectly. Using checkpoints that are created prior to exe-
cuting predicates, both systems ensure predicates do not
permanently affect the state of the system because exe-
cution is rolled back after the predicate completes.

Clearly, successful troubleshooting relies on having
good predicates. Without predicates that distinguish cor-
rect and incorrect configurations, the automated search
process will fail. Both Chronus and AutoBash previ-
ously assumed that experts would create such predicates
by hand, which limits their applicability. In this paper,
we show how predicates can beautomaticallygenerated
by observing ordinary users troubleshooting configura-
tion problems. We also show how we can simultaneously
generate candidate solutions, which can be tried by sys-
tems such as AutoBash during the search.

Other automated troubleshooting tools, such as
Strider [23] and PeerPressure [22], take a state-based
approach in which the static configuration state on one
computer is compared with that on other computers to
identify significant deviations. Since a state-based ap-
proach does not need predicates, our work is not directly
applicable to such systems. One of the principles guiding
the design of these systems is that the majority of users
(and, hence, the most frequent configuration states) are
usually correct. We apply this same principle in our work
to identify candidate solutions, and the results of our user
study support this hypothesis.

Nagaraja et al. [16] observed that operator mistakes
are an important factor in the unavailability of on-line
services and conducted experiments with human opera-
tors. Like our user study, their experiments asked op-
erators to perform maintenance tasks and troubleshoot
misconfigurations for their three-tiered Internet service.
However, their study did not share our goal of identifying
predicates for automated troubleshooting.

The software testing research community faces a
problem similar to ours, namely that manually writ-
ing test cases for software testing is tedious and time-
consuming. Two solutions proposed by that community
are automatic test case generation and test oracles. How-
ever, automatic test case generation [3, 4, 6, 8, 10, 13, 18]
requires a specification for the program being tested. A
test oracle determines whether a system behaves cor-
rectly for test execution. Researchers also have devel-
oped ways to automate test oracles for reactive systems
from specifications [19, 20] and for GUI applications



using formal models [14]. Unfortunately, generating a
specification or formal model requires substantial expert
participation. Since the need for such expertise is ex-
actly what we are trying to eliminate, both methods are
inappropriate for our purpose, except when such specifi-
cations and models already have been created for another
purpose.

Snitch [15] is a misconfiguration troubleshooting tool
that analyzes application state to find possible root
causes. It uses an always-on tracing environment that
records application state changes and uses exit codes as
outcome markersto identify faulty application traces.
Our work differ from Snitch in two ways. First, our
work generates test cases that verify system configu-
rations, while Snitch finds root causes of misconfig-
urations. Since Snitch only records application state
changes, its traces do not contain sufficient information
to generate predicates. In contrast, our traces record all
user commands; from these commands, we select which
ones can be used as predicates. Second, Snitch only uses
exit codes to analyze outcomes. Our work traces the
causal relationship between commands executed by the
user to better understand relationships among those com-
mands. We also use semantic information from screen
output to analyze the outcome of commands.

3 Design principles

We followed three goals in designing our automated
predicate extraction system.

3.1 Minimize false positives

Automatically inferring user intentions is a hard prob-
lem. It is unreasonable to expect that we can perfectly
identify potential predicates and solutions in every case.
Thus, we must balance false positives (in which we ex-
tract predicates that incorrectly test configuration state)
and false negatives (in which we fail to extract a correct
predicate from a user trace).

In our domain, false positives are much worse than
false negatives. A false positive creates an incorrect pred-
icate that could potentially prevent the automated trou-
bleshooting tool from finding a solution or, even worse,
cause the tool to apply an incorrect solution. While a
false negative may miss a potentially useful test case, we
can afford to be conservative because we can aggregate
the results of many troubleshooting traces. With multiple
traces, a predicate missed in one trace may still be iden-
tified using another trace. Thus, in our design, we bias
our system toward generating few false positives, even
though this bias leads to a higher rate of false negatives.

3.2 Be as unobtrusive as possible

Troubleshooting is already a tedious, frustrating task.
We do not want to make it even worse. If we require

users to do more work than they would normally need to
do to troubleshoot their system, they will likely choose
not to use our method. For instance, as described in
the next section, we initially considered asking users to
specify which commands they used as predicates or to
specify rules that could be used to determine which com-
mands are predicates. However, we eventually decided
that these requirements were too burdensome.

Instead, our design requires only the most minimal in-
volvement of the user. In particular, the user must start
a shell that they will use to perform the troubleshoot-
ing. The shell does all the work necessary to record
input, output, and causal dependencies. It then canon-
icalizes the trace to replace identifiers such as userids,
host names, and home directories with generic identi-
fiers. For example, the userid,yysu, would be replaced
with USERID, and her home directory would be replaced
with HOMEDIR. The traces can then be shipped to a cen-
tralized server for processing. The server might be run
by a company’s IT department, or it might be an open-
source repository.

As an added incentive, our shell provides functional-
ity that is useful during troubleshooting, such as check-
point and rollback [21]. However, this added functional-
ity is not essential to the ideas in this paper.

3.3 Generate complete predicates

Users often test software configurations with com-
plex, multi-step test cases. For example, to test the CVS
repository, a user might import a test project, check it
back out again to a new directory, and use the Unixdiff

tool to compare the new and old versions.
A predicate extraction method should identify all

steps in multi-step predicates. For instance, if it only
detected the latter two steps, the predicate it generates
would be incorrect. Applying the predicate on another
computer will always lead to predicate failure since that
computer will not have the test project in the repository.
Asking user to identify missing steps is intrusive, violat-
ing our previous design goal. Therefore, we use a dif-
ferent method, causal dependency tracking, to identify
missing steps. Once we identify a repeated command
that has different qualitative output, we identify all prior
steps on which that command depends. We refer to such
commands aspreconditions, and we include them as part
of the extracted predicate.

4 A failed approach and the lessons learned

In this section, we describe our first, unsuccessful ap-
proach to inferring predicates and the lessons we learned.
Our initial idea was to record the actions of users trou-
bleshooting misconfigurations and ask them to classify
which of the commands they had entered were predi-
cates. We hoped to use this data as a training set for



machine learning. Our goal was to develop a classifier
that would correctly identify predicates from subsequent
user traces. We hoped that a machine learning approach
would meet our design goals by generating few false pos-
itives and not requiring any user feedback during normal
operation (i.e., once the training set had been collected).

Unfortunately, this initial approach ran into two pit-
falls: First, it was difficult for users to classify their own
commands. Although we explained the concept of pred-
icates to our users, it was still difficult for them to select
predicates from a list of the commands that they entered.
We found that users would often classify a command as a
predicate only if it generated some output that was a rec-
ognizable error condition. Different users would classify
the same command differently, and the same users would
classify identical commands as being predicates in some
cases but not in others. Thus, the training set was very
noisy, making it difficult to use for machine learning.

Second, for many predicates identified by users, we
found it difficult to determine which output represented
success and which represented failure. For example,
many users identifiedls -l as a predicate because they
would inspect a directory’s contents to examine whether
specific files were present with the appropriate permis-
sions. To evaluate this predicate automatically, we would
need to determine what the user expected to see in the di-
rectory. For instance, the user might be searching for
a test project that he had just imported into CVS and
verifying that it was not globally readable. For such
commands, the evaluation of the predicate is extremely
context-dependent.

These two pitfalls caused us to re-examine our ap-
proach. We observed that users often take anaction-
based approach, a state-based approach, or a combi-
nation of both to troubleshoot a configuration problem.
An action-based approach means that the user interacts
with the misconfigured application to learn the behav-
ior of the application. For example, when troubleshoot-
ing a CVS problem, the user mightcvs import a new
module orcvs checkout a module. The user learns
about the misconfiguration by examining the error and
progress-reporting messages displayed on the screen. A
state-based approach means that the user passively ex-
amines relevant state on which the application depends.
For example, when troubleshooting the same CVS prob-
lem, the user would see if the CVS repository directory
exists, what the CVS repository file permissions are, list
the user and group information, etc.

Commands used in both action-based and state-based
approaches can be used for testing. We observe that if
we use commands used in an action-based approach as
predicates, it is often easier to classify their return value.
When the system state is incorrect, processes that exe-
cute these commands often have different exit values or

Action-based State-based
commands commands

Test system wget ls

state cvs groups

Do not test chmod read config file
system state usermod clear terminal screen

This table shows examples of various commands that fall into
one of four possible combinations. Our methodology finds com-
mands in the shaded quadrant.

Table 1. Command taxonomy

display error messages. On the other hand, commands
used in a state-based approach are often more difficult
to evaluate because determining correctness requires se-
mantic information or knowledge about the problem it-
self to reason about observable output.

This led us to develop the taxonomy in Table 1. The
horizontal axis classifies commands according to how
easy it is to determine their success or failure. On the
left, we list commands that are action-based; these are
easy to classify because they generate error messages,
return different exit values, or modify a different set of
objects when they fail. On the right, we list state-based
commands such asls that are hard to classify based on
their output. The vertical axis classifies commands ac-
cording to whether they are used to test system state.

We observed that only commands that fall in the top
left quadrant are truly useful for automated troubleshoot-
ing. For a state-based command such asls, the auto-
mated troubleshooting system will find it very hard to
tell whether a difference in screen output is due to a mis-
configuration or simply an inconsequential difference in
system state (such as two users choosing different names
for a test project).

This realization led us to a new approach. Rather than
first try to identify predicates and then determine how to
classify their output, we decided to insteadidentify only
repeated commands that have output that can be clas-
sified easily. While this approach will miss some po-
tential predicates, the omitted predicates are likely not
useful for automated troubleshooting anyway because of
the difficulty in classifying their output. Our prototype,
described in the next section, uses this new approach.

5 Implementation

We first give an overview of our automated trou-
bleshooting tool followed by our base algorithm, which
we use to find single-step predicates.. All commands
found by our base algorithm are action-based commands,
as these commands exhibit output that our base algorithm
could classify as success or failure. We then describe a
refinement to the base algorithm that allows us to also
identify multi-step predicates.



5.1 Overview

We envision that when a user or system administra-
tor encounters a configuration problem, she will launch
our troubleshooting shell to fix the problem. Our shell
records all the commands she types and uses the algo-
rithms described in Sections 5.2 and 5.3 to determine
which commands are predicates and solutions. The user
can then save the predicates and solutions for later and
share them with an online repository. To help classify
predicates and solutions, the user may identify the spe-
cific application she is troubleshooting.

Later, if another user runs into a configuration prob-
lem for the same application, he can download the solu-
tions and predicates generated by other users. Our pre-
vious work, AutoBash [21], uses speculative execution
to try potential solutions. After executing each solution,
AutoBash tests if the system is working by executing
predicates. If all predicates evaluate to true, AutoBash
declares that the configuration problem is fixed and com-
mits the solution execution. Operating system support
for speculative execution [17] enables the safe roll back
of state changes made by predicates and failed solutions.

5.2 Base algorithm

Our algorithm searches for repeated commands that
differ in at least two out of the following output features:

• A zero or non-zero exit value.When a shell cre-
ates a process to execute a command, the return
value of the process, typically specified using the
exit system call, is returned to the shell. Conven-
tionally, a Unix command returns a non-zero exit
code to indicate failure and zero to indicate suc-
cess. Our troubleshooting shell simply records the
exit value for each command.

• The presence of error messages in screen output.
Human beings are good at understanding screen
output that gives feedback on the progress or result
of executing a command. However, the screen out-
put may contain unstructured text that is difficult
for computers to analyze. Our hypothesis is that
we only need to search for the presence of certain
positive or negative keywords in the screen output
to determine if a repeated command has different
output. Searching for specific words is much sim-
pler than trying to understand arbitrary screen out-
put from the application and is often sufficient to
know that two executions of a repeated command
are different. Further, such semantic clues have
been successfully applied in other domains to help
search for programming bugs [7].

One alternative would be to say that two commands
differ if there is any difference in their screen out-
put. However, many commands such asdate often

generate minor differences in output that do not re-
flect whether the command succeeded or failed.

Our shell intercepts all screen output displayed to
the user and writes it to a log file. Our implementa-
tion is very similar to the Unixscript tool in that
it uses Unix’s pseudo-terminal interface to log out-
put transparently to the user. Our base algorithm
asynchronously searches for semantic clues in the
log file. Currently, it only searches for the pres-
ence of the word “error” or any system error mes-
sages as defined in the fileerrno.h; e.g., “Permis-
sion denied” or ”No such file or directory.” When
any error message is found in the screen output,
the command is considered to contain an error mes-
sage. Otherwise, the command is classified as not
containing an error message. Thus, two executions
of the same command are considered to differ in
this output feature if one generates an error mes-
sage and the other does not.

• The command’s output set. We define a com-
mand’soutput setto be the set of all files, file meta-
data, directories, directory entries, and processes
modified by the execution of the command. Our
shell uses our modified Linux kernel to trace the
causal effects (output set) of command execution.
Initially, only the process executing a command is
in the output set. Our kernel intercepts system calls
to observe the interaction of processes with kernel
objects such as files, directories, other processes,
pipes, UNIX sockets, signals, and other forms of
IPC. When such objects are modified by the com-
mand’s execution, they are added to the output set.
When another process interacts with an object al-
ready in the output set, that process is added to
the output set. For instance, if a command forks a
child process that modifies a file, both the child and
file are added to the output set. If another process
reads the file, that process is also added to the out-
put set. Transient objects, such as temporary files
created and deleted during command execution, are
not considered part of the command’s output set.

Our current implementation tracks the output set
for each command line. Therefore, when a user
executes a task with a sequence of commands con-
nected by a pipe, the troubleshooting shell creates
only one output set. We chose this implementa-
tion because commands connected by a pipe are
causally related by the pipe, so their output sets are
usually the same.

Recently, our research group developed an alterna-
tive method for tracking output sets that does not
require using a modified kernel [1]. This method
uses system call tracing tools such asstrace to



System was not working System was working

Time

Command C

Command C0 = False Command C1 = True

This figure shows a command C that is executed twice. The first
time is shown as C0, and the second is shown as C1. If C0 and
C1 have different output features, C0 would return false and C1
would return true.

Figure 1. The insight behind the base algorithm

generate the output set in a manner similar to that
described above. In the future, we plan to use this
alternative method to eliminate the dependency on
kernel modifications.

Two executions of the same command are consid-
ered to have different output sets if any object is a
member of one output set but not the other. This
comparison does not include the specific modifica-
tions made to the object. For instance, the output
sets of two executions of the commandtouch foo

are equivalent because they both contain the meta-
data of filefoo, even though the two executions
change the modification time to different values.

Figure 1 shows the insight behind the base algorithm.
If a repeated command has two or more different output
features when executed at two different points in time, it
is likely that the command is a predicate being used to
test system state. We hypothesize that users are likely
to create a test case to demonstrate a problem, attempt
to fix the problem, and then re-execute the test case to
see if the fix worked. If this hypothesis is true, then the
last execution of the repeated command should represent
a successful test and have recognizably different output
than prior, unsuccessful tests. This troubleshooting be-
havior was previously reported in computer-controlled
manufacturing systems [2] and happened in 28 out of 46
traces in our user study described in Section 6.

Based on this observation, we say that a predicate
evaluates to true (showing a correct configuration) if two
or more output features match those in the final execu-
tion of the command. If two or more differ, we say the
predicate evaluates to false and shows a misconfigura-
tion. Note that some predicates that return a non-zero
exit code and generate an error message should still eval-
uate to true. For instance, a user may be testing whether
an unauthorized user is able to access files in a CVS

repository. In this case, an error message actually in-
dicates that the system is configured correctly.

Identifying repeated commands as the same command
based on strict string comparison is somewhat problem-
atical because it may leave out critical information. First,
a command may be executed as different users; e.g., once
as an ordinary user and once as root. This can lead to sub-
stantially different output even if a misconfiguration was
not corrected between the two executions. Second, the
same command may be executed in two different work-
ing directories, leading to markedly different output.

We solved this problem by having our shell record the
userid and working directory for each command. If ei-
ther of these variables differ, we consider two commands
to be different. This is a conservative approach; e.g., the
working directory has no effect on the value returned by
date. While our conservative approach may miss good
predicates, it is consistent with our design goal of prefer-
ring false negatives to false positives.

Some known environment variables, such as the par-
ent process id, are ignored by our shell because we have
judged them extremely unlikely to influence command
execution. However, unknown environment variables in-
troduced during troubleshooting are always recorded and
used to differentiate commands. It may be that further
experience will allow us to refine our heuristic for which
environment variables to exclude. However, our evalua-
tion in Section 6 shows that comparing only the userid,
working directory, and any new environment variables
introduced during troubleshooting generated many cor-
rect predicates. Further, no false positives were gen-
erated due to environment variables excluded from the
comparison.

5.3 Finding preconditions

The base algorithm is very effective in identifying
single-step predicates that test system state. However,
we noticed that in some cases a predicate relies on some
prior commands to change the system state before it can
work correctly. We call these prior commands on which a
predicate dependspreconditions. A predicate that relies
on preconditions cannot be used without those precondi-
tions by automated troubleshooting tools as it would al-
ways return the same result. For example, if a user fixed a
CVS problem starting from an empty repository and the
base algorithm identifiedcvs checkout to be a predi-
cate, this predicate would work only if the commandcvs

import had first been executed. Thecvs import com-
mand is a precondition for that predicate because, with-
out it, the predicate will always return false.

To find preconditions, we first search for commands
that have causal effects on a predicate. We identify causal
relationships by tracking the output set of each com-
mand, even after that command terminates. If a sub-



sequent command becomes a member of a prior com-
mand’s output set, then we say that the prior command
has a causal effect on the latter one. For instance, the
commandecho hi > foo would have a causal effect
on the subsequent commandcat foo.

Besides including prior commands that have causal
effects on predicates, we also include prior commands
that add or remove environment variables. Since the
base algorithm compares environment variables when
comparing commands, adding or removing environment
variables is considered to have an effect on all subse-
quent commands. This is more conservative than strictly
needed, as environment variables could be added but
not read by some or all later commands executed in the
same shell. However, identifying such situations requires
application-specific semantic knowledge.

Not all prior commands with causal effects on predi-
cates are preconditions. If the user has successfully fixed
the configuration problem, the commands comprising a
solution will have a causal effect on the last execution
of the predicate. Including a solution as a precondition
would cause a predicate to always return true, rendering
the predicate ineffective. Note that even if a solution em-
bedded in a predicate inadvertently fixes a problem, the
effects are undone when the automated troubleshooting
system rolls back system state after predicate execution.

We differentiate between preconditions and solutions
by first finding all commands that causally affect all ex-
ecutions of a predicate. Within these commands, the
heuristic uses two rules to determine if a command is
a precondition or a solution. First, a command that has
causal effects on both successful and failed predicates is
a precondition. Second, a command that only has causal
effects on successful predicates and is executed chrono-
logically after all failed predicates is a solution.

Figure 2 shows the insight that allows the second rule
to distinguish between a solution and a precondition. The
insight is that users will usually first make sure precon-
ditions are executed before trying to run a test case that
reproduces a misconfiguration (since the test can not suc-
ceed without the precondition). Therefore, commands
that occur after failed predicates and before successful
ones are likely to be solutions.

Consider an example in which both user1 and user2
are authorized to access a CVS repository, but only user
1 is in the CVS group. Figure 3 shows the four com-
mands the user executes and the causal relationship be-
tween commands. First, the base algorithm would de-
termine that “cvs co as user2“ is a predicate. The
first predicate execution is considered to return false and
the second one is considered to return true. Both the
“cvs import as user1” command and the “usermod

-G CVSgroup user2” command, which adds user2 to
CVSgroup, have causal effects on the second predicate

Command P Command F

Time

Command C

Command C0 = False Command C1 = True

This figure demonstrates how the precondition heuristic works.
Assume the base algorithm determines that C0 returns false and
C1 returns true. If both a command P and a command F have
causal effects on C1 only, the precondition heuristic determines
that the command P is a precondition for command C and the
command F is a solution. The reason is that command F is likely
the solution that causes the state transition that causes C0 and
C1 to return different results.

Figure 2. The insight behind the precondition heuristic

execution. The precondition uses the chronological order
to determine that “cvs import as user1” is a precondi-
tion and “usermod -G CVSgroup user2” is a solution.

However, our heuristic is not foolproof. If a precondi-
tion is executed after failed predicates, it has the same
causal effect as a solution. Thus, it is difficult to de-
termine whether it is a precondition or a solution with-
out the command semantics. Consider the same exam-
ple, but with the order of “cvs import as user1”and
“cvs co as user2” reversed, as shown in Figure 4. Both
“cvs import as user1” and “usermod -G CVSgroup

user2” have causal effects on the successful predicate
and were executed after the failed predicate. Lacking se-
mantic information about CVS, the precondition heuris-
tic would mark both commands as part of the solution.

We believe that the second scenario is less likely to
occur than the first because a user will typically set up
the preconditions before executing a test case. In our
user study, this heuristic worked in every case. However,
we can also filter out incorrect solutions if they occur
less frequently than correct ones, as described in the next
section.

Our heuristic can work correctly even if a solution
requires multiple commands. Consider a solution that
requires two commands A and B, both of which occur
chronologically after all failed predicates. Since both A
and B have causal effects on the predicate, our heuristic
would identify both as part of the solution.

5.4 Inferring solutions from user traces

Not all solutions identified by the precondition heuris-
tic are the correct solution for the specific configuration
problem the user is solving. Sometimes, a user does not



cvs co as
user2

succeeds

cvs co as
user2 fails

File:
/etc/group

File : 
test_project

Time

cvs import 
as user1

usermod
-G CVSgroup

user2

The usermod -G CVSgroup user2 command adds user2 to
the CVS group

Figure 3. Precondition heuristic example

fix the problem. Other times, a user fixes the problem in-
correctly. To filter out such erroneous solutions, we rely
on the observation made by PeerPressure [22] and other
troubleshooting systems that the mass of users is typi-
cally right. Thus, solutions that occur more frequently
are more likely to be correct.

We therefore rank solutions by the frequency that they
occur in multiple traces. Effectively, solutions are ranked
by their popularity; a solution is considered more popular
if more users apply it to successfully fix their configura-
tion problems. In our evaluation, this heuristic worked
well because the most popular solutions found by users
were the ones that solved the actual configuration prob-
lems that we introduced.

Counting the frequency of a solution’s popularity
is complicated by the fact that different commands
have the same effect. For example, when users in
our study solved an Apache configuration problem
caused by the execution bit on a user’s home directory
(e.g., /home/USERID), being set incorrectly, their solu-
tions includedchmod 755 /home/USERID,chmod 755

USERID/, andchmod og+rx USERID. Although these
commands were syntactically different, they all had the
same effect.

To better measure the popularity of a solution, we
group solutions by theirstate deltas. The state delta
captures thedifferencein the state of the system caused
by the execution of a command by calculating the dif-
ference for each entity in the command’s output set.
For example, the state delta for commandchmod a+r

test.pl includes only the change in file permissions for
test.pl. The solution-ranking heuristic first groups solu-
tions based on state deltas so that all solutions having the
same state delta are in the same group. It then ranks the
groups by their cardinality.

Here is an example of how the solution-
ranking heuristic ranks three solutions:chmod 755

/home/USERID, chmod 755 USERID/, and chmod

-R 777 USERID/. The the first two commands are
placed into one group because they both have the same
state delta (changing the permission of the directory

cvs co as
user2

succeeds

cvs import
as user1

File:
/etc/group

File : 
test_project

Time
usermod

-G CVSgroup
user2

cvs co as
user2 fails

The usermod -G CVSgroup user2 command adds user2 to
the CVS group

Figure 4. Example of the precondition heuristic failing

CVS configuration problems
1 Repository not properly initialized
2 User not added to CVS group

Apache Web server configuration problems
1 Apache cannot search a user’s home directory due to

incorrect permissions
2 Apache cannot read CGI scripts due to

incorrect permissions
Table 2. Description of injected configuration problems

/home/USERID to 755). The third solution is put in a
separate, less popular group.

6 Evaluation

To evaluate our methods for extracting predicates and
solutions, we conducted a user study in which partici-
pants were asked to fix four configuration bugs: two for
the CVS version control system and two for the Apache
web server. These bugs are shown in Table 2. While
these bugs may seem relatively simple, several users
were unable to solve one or more of these bugs in the
allotted time (15 minutes). We initially designed a user
study with a few more complex bugs, but our initial feed-
back from trial users showed that the complex bugs were
too hard to solve in a reasonable amount of time. We also
decided to impose the 15-minute limit based on our trial
study. Since we ask each user to solve a total of six prob-
lems (including two sample problems) and the study re-
quired some up-front explanation and paperwork, users
needed to commit over two hours to participate. Even
with the 15-minute limit, one user declined to complete
all problems in the study.

6.1 Methodology

A total of twelve users with varying skills participated
in our study: two experienced system administrators and
ten graduate students, all from the University of Michi-
gan. We asked participants to assess their experience
level. Table 3 is a summary of our participants. For
CVS, three participants (A,D, and K) rated themselves
as experts, meaning that the participant had diagnosed



CVS version control Apache Web server
User Experience level Prob 1 Prob 2 Experience level Prob 1 Prob 2

Fixed? Fixed? Fixed? Fixed?
A Expert N/A Y Expert Y Y
B Novice Y Y Intermediate N Y
C Intermediate Y Y Novice Y Y
D Expert Y Y Expert Y Y
E Beginner N N Expert Y N
F Intermediate Y Y Expert Y Y
G Novice Y N/A Beginner N N
H Intermediate Y Y Expert Y Y
I Intermediate Y Y Expert Y Y
J Novice Y Y Expert Y Y
K Expert Y N Intermediate N Y
L Intermediate Y Y Novice N Y

Total fixed 10 9 8 10

This table shows the experience of our participants and the number of problems solved.

Table 3. Participant summary

CVS problem 1 CVS problem 2
User # of Correct? Total # # of Correct? Total #

Pred of cmds Pred of cmds
A — — — 1 Yes 44
B 1 Yes 105 1 Yes 44
C 0 SBA 57 0 NRC 46
D 0 SBA 49 0 SBA 26
F 1 Yes 22 1 Yes 30
G 0 NRC 61 — — —
H 0 NRC 58 0 NRC 74
I 0 NRC 18 1 Yes 18
J 0 NRC 65 0 SBA 72
K 1 Yes 55 0 DNF 24
L 1 Yes 40 0 SBA 24

There are three reasons why no predicate was identified in some
of the above traces: (1) NRC means that the user did not use a
repeated command to test the configuration problem. (2) DNF
means that the user did not fix the configuration problem. (3)
SBA means that the user used a state-based approach.

Table 4. Summary of predicates generated for CVS

and fixed misconfigurations several times for that appli-
cation. Five participants (C, F, H, I, and L) rated them-
selves as intermediates, meaning that the participant had
fixed configurations for that application at least once,
and three participants (B, G, and J) rated themselves as
novices, meaning that the participant had used the appli-
cation. Two participants (user E for CVS and user G for
Apache) were listed as beginners because they were un-
familiar with the application. Both beginner participants
were not asked to complete that portion of the study. For
Apache, seven participants were experts (A, D, E, F, H, I,
and J), two were intermediates (B and K), and two were
novices (C and L). Additionally, user A did not complete
CVS bug 1 because of an error we made in setting up the
environment, and user G declined to do CVS problem 2.

Apache problem 1 Apache problem 2
User # of Correct? Total # of Correct? Total

Pred cmds. Pred cmds.
A 1 Yes 45 1 Yes 45
B 0 DNF 39 0 NRC 39
C 2 Yes 41 1 Yes 41

Yes
D 1 Yes 68 1 Yes 68
E 0 NRC 35 1 No 35
F 0 NRC 33 1 Yes 33
H 1 Yes 32 1 Yes 32
I 1 Yes 22 1 Yes 22
J 0 NRC 40 1 Yes 40
K 1 No 67 1 Yes 67
L 0 DNF 55 0 NRC 55

There are two reasons why no predicate was identified in some
of the above traces: (1) NRC means that the user did not use a
repeated command to test the configuration problem. (2) DNF
means that the user did not fix the configuration problem.

Table 5. Summary of predicates generated for Apache

For each application, each participant was first given a
sample misconfiguration to fix. While fixing the sample,
they could ask us questions. The participant then was
asked to fix two additional misconfigurations without any
guidance from us. We did not tell the participants any
information about the bugs, so they needed to find the
bug, identify the root cause, and fix it. Participants were
given a maximum of 15 minutes to fix each problem. For
each problem, 8–10 participants were able to fix the bug,
but 1–3 were not.

For each task, our modified shell recorded traces of
user input, system output, and the causality data (output
sets) tracked by the kernel. The overhead of tracking
the output set was shown to be negligible in our prior
work [21]. We implemented the algorithms to analyze



User Predicate
B Precond export CVSROOT="/home/cvsroot"

Pred cvs import -m "Msg" yoyo/test project yoyo start
Sol cvs -d /home/cvsroot init

F Precond export CVSROOT=/home/cvsroot
Pred cvs import test project
Sol cvs -d /home/cvsroot init

K Pred cvs -d /home/cvsroot import cvsroot
Sol cvs -d /home/cvsroot init

L Pred cvs -d "/home/cvsroot" import test project
Sol cvs -d /home/cvsroot init

Each predicate contains one or more steps. The last step of a predicate is listed as Pred, and the remaining steps are listed as
Precond. We also list the solution (Sol) identified for each predicate.

Table 6. Correct predicates for CVS problem 1

these traces in Python. The computational cost is small;
the time to analyze all traces averaged only 123 ms on
a desktop computer with a 2.7 GHz processor and 1 GB
memory. The shortest trace required 3 ms to analyze and
the longest took 861 ms.

6.2 Quality of predicates generated

Table 4 and Table 5 summarize the predicates gener-
ated for each application. Each table lists the number
of predicates extracted, whether the extracted predicates
were correct, and the total number of commands entered
by the user for that trace.

For both CVS bugs, we generated four correct pred-
icates from ten traces, with no false positives. For
Apache, we generated six correct predicates for the first
bug and eight for the second, with one false positive for
each bug. We are pleased that the results matched our
design goal of minimizing false positives, while still ex-
tracting several useful predicates for each bug.

6.2.1 Predicates generated for CVS problem 1

The first CVS problem was caused by the CVS repos-
itory not being properly initialized, and the solution is
to initialize it usingcvs init. Table 6 lists the pred-
icates we extracted. We break each predicate into two
parts: the predicate (Pred), the repeated command that
determines if this predicate returns true or false, and the
precondition (Precond), the set of commands that need
to be executed before the predicate. We also list the solu-
tion (Sol) identified by our methodology. All predicates
that we identified involve the user importing a module
into the CVS repository.

We did not identify predicates for participants C and
D because they used a state-based approach in which
they discovered that the CVS repository was not initial-
ized by examining the repository directory. Participants
G, H, I, and J used slightly different commands to test
the system state before and after fixing the configura-
tion problem, so our algorithm did not identify a pred-
icate. For example, participant H’s twocvs import

commands had different CVS import comments.

6.2.2 Predicates generated for CVS problem 2

The second CVS bug was caused by a user not be-
ing in the CVS group, and the solution is to add that
user to the group. Table 7 shows the predicates and solu-
tions identified for this bug. All extracted predicates in-
volve the user trying to check out a module from the CVS
repository. These are multi-step predicates in which the
checkout is proceeded by a CVS import command.

No predicate was generated for six traces. Partici-
pants C and H did not use repeated commands. For
instance, participant C specified the root directory as
/home/cvsroot in one instance and /home/cvsroot/ in an-
other. Participant H used the same command line but
with different environment variables. Our algorithm was
unable to identify a predicate for participant K because
that user did not fix the problem. Finally, no predicate
was found for participants D, J, and L because they used
a state-based approach (participant D executedgroups

and participant L examined /etc/group).

6.2.3 Predicates generated for Apache problem 1

The first Apache bug was caused by Apache not hav-
ing search permission for the user’s home directory, and
the solution is to change the directory permissions. Ta-
ble 8 shows the correct predicates identified for each
trace and the corresponding solutions. Almost all pred-
icates download the user’s home page. Some precondi-
tions found by the precondition heuristic are not required
for the predicate to work but also do not affect the cor-
rectness of the predicates. Predicate C-2,apachectl

stop did not seem to be a correct predicate, so we ex-
amined why it was generated. We found that predicate
C-2 successfully detected an error in the Apache config-
uration file introduced by participant C.apachectl is a
script that controls the Apache process. It does not stop
the Apache process if an error is detected in the configu-
ration file. Thus, it is indeed a valid predicate.

No predicates were generated for some participants
due to reasons similar to those seen in CVS traces. Par-
ticipants B and L did not fix the problem. Participants E



User Predicate
A Precond cvs import test project head start

cvs co test project
export CVSROOT=/home/cvsroot

Pred cvs co test project
Sol vi /etc/group

B Precond cvs -d /home/cvsroot import yoyo/test project
Pred cvs -d /home/cvsroot checkout

yoyo/test project
Sol usermod -G cvsgroup USERID

F Precond cvs import test project
cvs co test project
export CVSROOT=/home/cvsroot

Pred cvs co test project
Sol vim group

I Precond cvs -d /home/cvsroot import test project
Pred cvs -d /home/cvsroot co test project
Sol vi /etc/group

Each predicate contains one or more steps. The last step of a predicate is listed as Pred, and the remaining steps are listed as
Precond. We also list the solution (Sol) identified for each predicate.

Table 7. Correct problems for CVS problem 2

User Predicate
A Precond wget http://localhost

chmod 777 index.html
chmod 777 public html/

Pred wget http://localhost/~USERID
/index.html

Sol chmod 777 USERID

C-1 Pred wget http://localhost/~USERID/
Sol chmod o+rx /home/USERID

C-2 Pred apachectl stop
Sol vim /etc/httpd/conf/httpd.conf

chmod o+rx /home/USERID

D Precond wget localhost
chmod -R 777 public html/

Pred wget localhost/~USERID
Sol chmod -R 777 USERID/

H Precond mkdir scratch
wget http://localhost
rm index.html

Pred wget http://localhost/~USERID
Sol chmod 755 /home/USERID/

I Precond wget http://localhost
Pred wget http://localhost/~USERID
Sol chmod 755 /home/USERID/

Each predicate contains one or more steps. The last step of a
predicate is listed as Pred, and the remaining steps are listed
as Precond. We also list the solution (Sol) identified for each
predicate.

Table 8. Correct predicates for Apache problem 1

and F executed a command in different directories, so the
base algorithm considered that command as not repeated.

One false positive was generated for participant K.
Since participant K did not fix the problem, we first ex-
pected no predicate be generated. However, this partici-
pant edited the Apache configuration file multiple times
usingemacs. The file contains an error message that was
displayed only in some executions ofemacs in which
the participant scrolled down. Additionally, the partici-
pant sometimes modified the file and other times did not,
leading to different output sets. Since two output features

User Predicate
A Pred wget http://localhost/cgi-bin/test.pl

Sol chmod 755 test.pl

C Pred wget http://localhost/cgi-bin/test.pl
Sol chmod go+r test.pl

D Precond wget localhost/cgi-bin/test.pl
vi /var/www/cgi-bin/test.pl

Pred wget localhost/cgi-bin/test.pl
Sol vi /var/www/cgi-bin/test.pl

chmod 777 /var/www/cgi-bin/test.pl

F Pred wget http://localhost/cgi-bin/test.pl
Sol chmod 755 test.pl

H Precond mkdir scratch
Pred wget http://localhost/cgi-bin/test.pl
Sol chmod 755 /var/www/cgi-bin/test.pl

I Pred wget http://localhost/cgi-bin/test.pl
Sol chmod 755 /var/www/cgi-bin/test.pl

J Pred wget 127.0.0.1/cgi-bin/test.pl
Sol chmod +r test.pl

K Pred wget http://localhost/cgi-bin/test.pl
Sol chmod a+r test.pl

Each predicate contains one or more steps. The last step of a
predicate is listed as Pred, and the remaining steps are listed
as Precond. We also list the solution (Sol) identified for each
predicate.

Table 9. Correct predicates for Apache problem 2

changed, our heuristic labeled this command a predicate.

6.2.4 Predicates generated for Apache problem 2

The second Apache problem was caused by Apache
not having read permission for a CGI Perl script and the
solution is to change the file permission. The initial state
included a default CGI Perl script in Apache’s default
CGI directory, /var/www/cgi-bin. Table 9 shows the cor-
rectly identified predicates, which all involve retrieving
the the CGI script. Some traces include preconditions
that are not really required, but these preconditions do
not affect the correctness of the predicates.

No predicate was generated for participants B and L
because they executedwget in different directories. The



Solution Freq.
1 cvs -d /home/cvsroot init as cvsroot 3
2 vi /etc/group as root 3
3 cvs -d /home/cvsroot init as root 1
4 usermod -G cvsgroup USERID as root 1

Table 10. Solutions ranked for CVS

Solution Freq.
1 chmod 755 /var/www/cgi-bin/test.pl 6
2 chmod 755 /home/USERID as root 2
3 chmod 777 USERID as root 1
4 chmod o+rx /home/USERID as root 1
5 chmod -R 777 USERID/ as USERID 1
6 vim /etc/httpd/conf/httpd.conf as root 1
7 chmod 777 /var/www/cgi-bin/test.pl 1
8 chmod +r test.pl as root 1
9 vi /var/www/cgi-bin/test.pl 1

Table 11. Solutions ranked for Apache

predicate identified for participant E was incorrect. Par-
ticipant E did not fix the problem. However, participant
E usedlinks to connect to the Apache Web server. This
utility generates files with random names so each invo-
cation has a different output set. Combined with an error
message being generated in some instances but not oth-
ers, this led our heuristic to falsely identify a predicate.
Based on our two false positives, we believe it would be
beneficial to ask users if the problem was fixed at the end
of troubleshooting and not try to generate predicates if
it was not. This question may not be too intrusive and
would eliminate both false positives.

6.3 Solution ranking results

We took the solutions found by the precondition
heuristic from all traces and used our solution-ranking
heuristic to rank them by frequency. Table 10 shows re-
sults for CVS. The two highest ranked solutions are the
correct fixes for the two problems we introduced. Note
that the solutions are captured as a state delta, so a com-
mand that starts an editor (vi) is really a patch to the
edited file. The third solution listed is less correct than
the first because it creates the repository as root, giving
incorrect permissions. The final solution is as correct as
the second for fixing CVS problem 2.

Table 11 shows results for Apache. The two high-
est ranked solutions fix Apache problems 2 and 1, re-
spectively. Solution 3-5 are less correct than solution 1
because they grant more than the minimum permission
required. The 6th solution correctly solves the bug in-
troduced by participant C for Apache problem 1. The
remaining 3 solutions are less correct than solution 1 be-
cause they either give too much permission or do not fix
the problem.

7 Discussion

We first discuss the challenges we encountered and
how we would like to address them, followed by dis-
cussing the limitations of our approach.

7.1 Challenges

One challenge we encountered relates to canonical-
ization. Our troubleshooting shell canonicalizes com-
mon environment variables, such as home directories and
user names. However, applications may also use tempo-
rary files, specific file location settings, or other environ-
ment variables. More thought may be required on how
to handle application-specific variables if application se-
mantic knowledge is not presented.

Our current study simplifies the configuration prob-
lem by restricting user input to text form (i.e., by requir-
ing the activity to occur within the scope of a Unix shell).
We chose this approach to speed the implementation of
our prototype. Writing tools to capture text input and
output is easier than writing tools to capture graphical
interactions.

We sketch here how we would extend our current ap-
proach to handle GUI applications. First, a command
roughly maps to an action in the command line inter-
face. However, users launch a GUI application to ex-
plore many different configuration actions more flexibly,
which makes it hard to find repeated tasks for our base
algorithm. Without user input, it may be hard to break
a long GUI session into individual actions that are more
likely to repeat. Second, if the user happens to execute
one action at a time using a GUI application, we need a
more sophisticated way to identify if two GUI sessions
are the same. One possible solution is to use state deltas
to capture the effect of performing GUI applications and
compare such deltas. We would capture output features
as follows:

• Exit value. Since GUI applications are designed to
execute several actions, they usually do not return the
proper value to the calling shell.

• Screen output. GUI configuration tools may offer
additional semantic information. For instance, error
dialogs are a common widget that indicate the failure
of an operation. Such dialogs can be queried using the
GUI’s accessibility APIs (intended to benefit vision-
impaired users).

• Output set. We could capture the output set for a GUI
application in the same way as a command.

7.2 Limitations

Our troubleshooting shell assumes that all configu-
ration actions happen under its purview. Configuration
problems involving external components, such as printer



or network communication, are not handled by our shell
because it does not have the ability to track external com-
ponents’ output. Also, one can imagine a precondition
command executed before our troubleshooting shell is
launched; our shell will not find that precondition as it
limits dependency tracking to the period in which it is
running.

8 Conclusion

Predicates play an important role for automated con-
figuration management tools such as AutoBash and
Chronus. However, writing predicates by hand is tedious,
time-consuming, and requires expert knowledge. This
work solves the problem of manually writing predicates
by automatically inferring predicates and solutions from
traces of users fixing configuration problems.

Acknowledgments

We thank our shepherd, Yinglian Xie, and the anonymous reviewers
for valuable feedback on this paper, as well as our user studypartici-
pants. The work has been supported by the National Science Founda-
tion under award CNS-0509093. Jason Flinn is supported by NSF CA-
REER award CNS-0346686. The views and conclusions contained in
this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NSF,
the University of Michigan, or the U.S. government.

References

[1] ATTARIYAN , M., AND FLINN , J. Using causality to diagnose
configuration bugs. InProceedings of the USENIX Annual Tech-
nical Conference(Boston, MA, June 2008), pp. 171–177.

[2] BEREITER, S., AND M ILLER , S. Troubleshooting and Human
Factors in Automated Manufacturing Systems. Noyes Publica-
tions, March 1989.

[3] BOYAPATI , C., KHURSHID, S.,AND MARINOV, D. Korat: Au-
tomated testing based on Java predicates. InProceedings of ACM
International Symposium on Software Testing and Analysis ISSTA
2002(2002).

[4] CHOW, T. S. Testing software design modeled by finite-state ma-
chines.IEEE Transactions on Software Engineering 4, 3 (1978),
178–187.

[5] COMPUTING RESEARCH ASSOCIATION. Final report of the
CRA conference on grand research challenges in informationsys-
tems. Tech. rep., September 2003.

[6] DALAL , S. R., JAIN , A., KARUNANITHI , N., LEATON, J. M.,
LOTT, C. M., PATTON, G. C.,AND HOROWITZ, B. M. Model-
based testing in practice. InProceedings of the 21st International
Conference on Software Engineering (ICSE’99)(Los Angeles,
California, May 1999).

[7] ENGLER, D., CHEN, D. Y., HALLEM , S., CHOU, A., AND

CHELF, B. Bugs as deviant behavior: A general approach to
inferring errors in systems code. InProceedings of the 18th ACM
Symposium on Operating Systems Principles(Banff, Canada, Oc-
tober 2001), pp. 57–72.

[8] GODEFROID, P., KLARLUND , N., AND SEN, K. DART: Di-
rected automated random testing. InACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation
(PLDI’05) (2005), pp. 213–223.

[9] HA , J., ROSSBACH, C. J., DAVIS , J. V., ROY, I., RAMADAN ,
H. E., PORTER, D. E., CHEN, D. L., AND WITCHEL, E. Im-
proved error reporting for software that uses black-box compo-
nents. InProceedings of the Conference on Programming Lan-
guage Design and Implementation 2007(San Diego, CA, 2007).

[10] HAREL, D. Statecharts: A visual formalism for complex systems.
Science of Computer Programming 8, 3 (1987), 231–274.

[11] JULA , H., TRALAMAZZA , D., ZAMFIR , C., AND CANDEA , G.
Deadlock immunity: Enabling systems to defend against dead-
locks. InProceedings of the 8th Symposium on Operating Systems
Design and Implementation(San Diego, CA, December 2008).

[12] KAPOOR, A. Web-to-host: Reducing total cost of ownership.
Tech. Rep. 200503, The Tolly Group, May 2000.

[13] MARINOV, D., AND KHURSHID, S. Testera: A novel frame-
work for automated testing of Java programs. InProceedings of
the 16th IEEE International Conference on Automated Software
Engineering (ASE)(San Diego, CA, November 2001).

[14] MEMON, A. M., POLLACK , M. E., AND SOFFA, M. L. Au-
tomated test oracles for GUIs. InProceedings of the 8th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering(New York, NY, 2000), pp. 30–39.

[15] M ICKENS, J., SZUMMER, M., AND NARAYANAN , D. Snitch:
Interactive decision trees for troubleshooting misconfigurations.
In In Proceedings of the 2007 Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques(Cam-
bridge, MA, April 2007).

[16] NAGARAJA, K., OLIVERIA , F., BIANCHINI , R., MARTIN , R.,
AND NGUYEN, T. Understanding and dealing with operator mis-
takes in Internet services. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation(San Francisco,
CA, December 2004), pp. 61–76.

[17] NIGHTINGALE , E. B., CHEN, P. M., AND FLINN , J. Spec-
ulative execution in a distributed file system. InProceedings
of the 20th ACM Symposium on Operating Systems Principles
(Brighton, United Kingdom, October 2005), pp. 191–205.

[18] OFFUTT, J., AND ABDURAZIK , A. Generating tests from uml
specifications. InSecond International Conference on the Unified
Modeling Language (UML99)(Ocrober 1999).

[19] RICHARDSON, D. J. TAOS: Testing with analysis and ora-
cle support. InProceedings of the 1994 International Sympo-
sium on Software Testing and Analysis (ISSTA)(Seattle, WA, 94),
pp. 138–153.

[20] RICHARDSON, D. J., AHA , S. L., AND O’M ALLEY, T. O.
Specification-based test oracles for reactive systems. InProceed-
ings of the 14th international conference on Software engineering
(Melbourne, Australia, 1992), pp. 105–118.

[21] SU, Y.-Y., ATTARIYAN , M., AND FLINN , J. AutoBash: Improv-
ing configuration management with operating system causality
analysis. InProceedings of the 21st ACM Symposium on Operat-
ing Systems Principles(Stevenson, WA, October 2007), pp. 237–
250.

[22] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND

WANG, Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. InProceedings of the 6th Symposium on Operating
Systems Design and Implementation(San Francisco, CA, Decem-
ber 2004), pp. 245–257.

[23] WANG, Y.-M., VERBOWSKI, C., DUNAGAN , J., CHEN, Y.,
WANG, H. J., YUAN , C., AND ZHANG, Z. STRIDER: A black-
box, state-based approach to change and configuration manage-
ment and support. InProceedings of the USENIX Large In-
stallation Systems Administration Conference(October 2003),
pp. 159–172.

[24] WHITAKER , A., COX, R. S.,AND GRIBBLE, S. D. Configu-
ration debugging as search: Finding the needle in the haystack.
In Proceedings of the 6th Symposium on Operating Systems De-
sign and Implementation(San Francisco, CA, December 2004),
pp. 77–90.


