
Veracity: Practical Secure Network Coordinates via Vote-based Agreements

Micah Sherr Matt Blaze Boon Thau Loo
University of Pennsylvania

Abstract
Decentralized network coordinate systems promise ef-
ficient network distance estimates across Internet end-
hosts. These systems support a wide range of net-
work services, including proximity-based routing, neigh-
bor selection in overlays, network-aware overlays, and
replica placement in content-distribution networks.

This paper describes Veracity, a practical fully-
decentralized service for securing network coordinate
systems. In Veracity, all advertised coordinates and sub-
sequent coordinate updates must be independently veri-
fied by a small set of nodes via a voting scheme. Un-
like existing approaches, Veracity does not require any
a priori secrets or trusted parties, and does not depend
on outlier analysis of coordinates based on a fixed set of
neighbors. We have implemented Veracity by modify-
ing an open-source network coordinate system, and have
demonstrated within a simulated network environment
and deployment on PlanetLab that Veracity mitigates at-
tacks for moderate sizes of malicious nodes (up to 30%
of the network), even when coalitions of attackers coor-
dinate their attacks. We further show that Veracity resists
high levels of churn and incurs only a modest communi-
cation overhead.

1 Introduction
Decentralized network coordinate systems such as Vi-
valdi [7], PIC [6], ICS [19], Big-bang simulation [29],
and NPS [22] have been proposed as a means of effi-
ciently estimating network distances without having to
explicitly contact the end-hosts involved. Distributed al-
gorithms map nodes to n-dimensional coordinates such
that the distance between two nodes’ coordinates corre-
sponds to a network distance (e.g., latency) between the
pair. For a network with N nodes, coordinate systems
linearize the information necessary to compute pairwise

network distances, allowing nodes to estimate N2 dis-
tances using N embedded coordinates.

Coordinate systems support a wide range of net-
work services, including proximity-based routing [31],
neighbor selection in overlays [9], network-aware over-
lays [23], and replica placement in content-distribution
networks [8, 37]. Several large-scale coordinate sys-
tems are currently deployed on the Internet. For exam-
ple, the Vuze client (formally called Azureus) for Bit-
Torrent uses coordinate systems for efficient distributed
hash table (DHT) traversal [2] and locality-based neigh-
bor selection [35], and currently operates on more than
one million nodes [18].

Unfortunately, the distributed nature of coordinate
systems make them particularly vulnerable to insider ma-
nipulation. To illustrate, recent studies [16] on Vivaldi
have shown that when 30% of nodes lie about their coor-
dinates, Vivaldi’s accuracy decreases by a factor of five.
When attackers collude, even 5% malicious nodes have
a sizable impact on the system’s accuracy.

In addition to causing significantly decreased accu-
racy and performance, corrupted coordinate systems may
serve as stepping stones for attacks against the applica-
tions that rely on them. Attackers who control the coor-
dinate system may advertise attractive (but false) coordi-
nates for nodes under their control, increasing the like-
lihood that such hosts will be selected for routes, neigh-
bors, or replicas. Such compromises enable myriad at-
tacks against the overlying services. For example, ma-
licious nodes may misdirect intercepted messages sent
via overlay routing, return false data when serving as a
replica in a content distribution network, or partition the
keyspace in a distributed hash table.

This paper presents Veracity, a fully decentralized ser-
vice for securing network coordinate systems. Verac-
ity provides a practical deployment path while provid-

ing equivalent (or greater) security than previously pro-
posed coordinate security systems. Unlike prior propos-
als, Veracity does not require either pre-selected trusted
nodes [15], the triangle inequality test [6], or outlier
detection based on a fixed neighbor set [40], allow-
ing Veracity to be practically deployed and react more
rapidly to changes in network conditions. Veracity is
also agnostic to the type of decentralized coordinate sys-
tem being deployed, and can be employed as a protec-
tion service over existing decentralized coordinate sys-
tems [7, 6, 19, 22].

At a high-level, Veracity utilizes a two-step verifica-
tion process. The first step involves a majority vote-
based scheme in which a published coordinate has to be
independently verified by a deterministically assigned set
of verification nodes before it is used by peers. An adver-
sary who attempts to disrupt the network by publishing
inconsistent coordinates will fail this verification step,
and consequently its coordinates will be ignored. As an
additional measure, a second verification step utilizes a
set of randomly chosen peers to independently compute
the estimation error due to a new coordinate, and reject
the coordinate if the error is above a threshold. This sec-
ond protection mechanism detects attacks in which mali-
cious nodes delay responses to measurement probes. The
combination of the two techniques ensures that Veracity
can tolerate a high fraction of malicious nodes that con-
currently report false coordinates and delay latency mea-
surements.

In this paper, we focus our implementation and eval-
uation on Vivaldi since it is widely used [3] and has
been the focus of recent work [15, 40] on securing co-
ordinate systems. We demonstrate via execution in a
simulated network environment using realistic network
traces [38, 17] and a deployment on PlanetLab that Ve-
racity mitigates attacks for moderate sizes of malicious
nodes (up to 30% of the network), even when coalitions
of attackers coordinate their attacks. We further show
that Veracity is resistant to high levels of churn and in-
curs only a modest communication overhead.

2 Background
In this section, we present a brief introduction to the Vi-
valdi system and outline threat models and metrics.

2.1 Vivaldi Coordinate System
Vivaldi uses a fully distributed spring relaxation algo-
rithm, requiring no fixed network infrastructure and no
distinguished nodes. The system envisions a spring be-
tween each pair of nodes, with the resting position of
the spring equaling the network latency between the pair.
At any point in time, the distance between the nodes in

the coordinate space determines the current length of the
spring connecting the nodes.

Nodes adjust their coordinates after collecting pub-
lished coordinate and latency measurements from a ran-
domly chosen neighbor. Consider a node i that wishes
to update its coordinate Ci. It picks a randomly cho-
sen neighbor j, retrieves its coordinate Cj and performs
a round-trip measurement RTTij from itself to j. The
squared error function, Eij = (RTTij − ||Ci − Cj ||)2

(where ||Ci − Cj || is the distance between their coordi-
nates) denotes the estimation error between the coordi-
nates of i and j. Using Vivaldi’s spring relaxation al-
gorithm, Eij reflects the potential energy of the spring
connecting the two nodes. Vivaldi attempts to minimize
the potential energies over all springs. In each timestep
of the algorithm, nodes allow themselves to be pulled
or pushed by a connected spring. The system converges
when the squared error function (i.e., the potential ener-
gies) is minimized below a threshold.

2.2 Attacker Model
Prior studies [16, 15] have demonstrated that coordinate
systems are susceptible to three classes of attacks: dis-
order attacks in which malicious insiders attempt to de-
crease the accuracy of the system by advertising false co-
ordinates and delaying RTT responses, and isolation and
repulsion attacks in which the attacker respectively at-
tempts to isolate or repulse a subset of targeted nodes.
Veracity’s general approach defends against malicious
nodes that falsify their coordinates or induce/report artifi-
cially inflated latencies. Hence, the techniques described
in this paper can mitigate all three attacks.

We adopt the constrained-collusion Byzantine model
proposed by Castro et al. [5] in which malicious nodes
can insert, delete, or delay messages. Given a network of
size N , and some fraction (f < 1) of malicious attack-
ers, there exist independent coalitions of size cN , where
1/N ≤ c ≤ f .

2.3 Metrics
To assess the accuracy of a virtual coordinate, we mea-
sure the median error ratio of a node ni, defined as the
median over the error ratios∣∣RTT (ni, nj)− ||Cni

− Cnj
||
∣∣

RTT (ni, nj)
(1)

between ni and all other nodes nj (ni 6= nj). Concep-
tually, Equation 1 computes the difference between the
computed latency between ni and nj based on coordi-
nates (Cni

−Cnj
) and the actual measured RTT (denoted

by RTT (ni, nj)). The accuracy of a node’s coordinate

increases inversely with its median error ratio. The use
of median provides an intuitive measure of a coordinate’s
accuracy and is more robust than average to the effects
of outlier errors. Previous approaches [7, 22, 40] define
similar metrics.

To gauge the accuracy of the system as a whole, we de-
fine the system error ratio as the median over all peers’
median error ratios. The system error ratio enables us
to quantitatively compare the performance and security
of Veracity and Vivaldi. To show lower performance
bounds, we also consider the 90th percentile error ratio
– i.e., the 90th percentile of nodes’ median error ratios.

3 Overview of Veracity
We first provide an overview of Veracity’s security mech-
anisms. We base our description on Vivaldi’s coordi-
nate update model. While other decentralized coordinate
systems [6, 19, 22] differ in their implementations, the
update models are conceptually similar to Vivaldi’s, and
hence, Veracity’s techniques are applicable to these sys-
tems as well.

To update its coordinate, a participating node (the in-
vestigator) periodically obtains the coordinate of a se-
lected peer (the publisher) and measures the RTT be-
tween the two nodes. In most implementations, the pub-
lisher is typically a pre-assigned neighbor node of the
investigator. In Veracity, we relax the requirement that
a publisher has to be a fixed neighbor of the investiga-
tor and instead use a distributed directory service (Sec-
tion 4.2) to enable investigators to scalably select random
publishers on demand.

The basic update model of Vivaldi leads to two possi-
ble avenues of attacks: first, if the publisher is dishonest,
it may report inaccurate coordinates. Second, the pub-
lisher may delay the RTT probe response to increase the
error of the investigator’s updated coordinate. To defend
against such attacks, Veracity protects the underlying co-
ordinate system through a two-step verification process
in which groups of nodes independently verify the cor-
rectness of another node’s coordinates. We outline these
two processes below, with additional details presented in
Section 4.

• Publisher coordinate verification: When an inves-
tigator requests a coordinate from a publisher, a deter-
ministic set of peers called the verification set (VSet)
verifies the publisher’s claimed coordinate. Veracity as-
signs each publisher a unique VSet. Each VSet mem-
ber independently assesses the accuracy of the coordi-
nate by conducting its own empirical measurements to
the publisher and computes the coordinate’s estimation

error. If a majority of the VSet does not accept the pub-
lisher’s coordinate, the investigator discards the coordi-
nate.

• Candidate coordinate verification: Once an investi-
gator verifies the publisher’s coordinate, it proceeds to
update its own coordinate based on its empirical RTT
measurement between itself and the publisher. To de-
tect cases in which the publisher purposefully delays the
RTT probe response, the investigator updates its coor-
dinate to a new one only if the new coordinate results in
no more than a small increase in estimation error com-
puted amongst an independent and randomly chosen set
of peers (the RSet).

An important benefit of Veracity is that it makes no dis-
tinction between intentionally falsified coordinates and
those that are inaccurate due to limitations of the coordi-
nate embedding process. In either case, Veracity prevents
the use of inaccurate coordinates.

4 Veracity Verification Protocols
This section presents details of Veracity’s two-step ver-
ification protocol. We first focus on various mecha-
nisms necessary to realize publisher coordinate verifica-
tion that prevents investigators from considering inaccu-
rate coordinates. We then motivate and describe the can-
didate coordinate verification that protects against mali-
cious RTT probe delays by the publisher.

4.1 VSet Construction
When a Veracity node joins the network, it computes
a globally unique identifier (GUID) by applying a
collision-resistant cryptographic hash function H (e.g.,
SHA-1) to its network address. (To prevent malicious
peers from strategically positioning their GUIDs, Verac-
ity restricts allowable port numbers to a small range.)
Given a node with GUID g, the members of its VSet are
the peers whose GUIDs are closest to h1, ..., hΓ, deter-
mined using the recurrence:

hi =
{

H(g) if i = 1
H(hi−1) if i > 1 (2)

where i ranges from 1 to the VSet size, Γ. A larger Γ
increases the trustworthiness of coordinates (since more
nodes are required in the verification process) at the ex-
pense of additional communication.

VSet construction utilizes a hash function to increase
the difficulty of stacking VSets with collaborating ma-
licious nodes. Attackers who control large coalitions
of peers may be able to populate a majority of a par-
ticular malicious node’s VSet (for example, by strategi-
cally choosing IP addresses within its assigned range),

VSet

Publisher

(g,Τ,C,ip)

(g,Τ,C,ip)

(g,Τ,C,ip)

(g,Τ,C,ip)

PublisherInvestigator

(g,Γ,Τ,C,ip)

VSet

Investigator

(g,Τ)

(g,Τ)

(g,Τ)

(g,Τ)

VSet

Investigator

(g,Τ,C,ip,δ1)

(g,Τ,C,ip,δ2)

(g,Τ,C,ip,δ3)

(g,Τ,C,ip,δ4)

VSet

Publisher

(a) (b) (c) (d) (e)

Figure 1: Publisher coordinate verification. Solid lines denote messages sent via deliver and dotted lines represent
messages sent via direct IP. (a) Publisher distributes update tuple to VSet members using deliver messages ad-
dressed to GUIDs based on recursive hashes. (b) VSet members measure the RTT between themselves and Publisher.
(c) Investigator queries Publisher and Publisher responds with claim tuple. (d) Investigator sends evidence query to
Publisher’s VSet members. (e) VSet members send evidence tuples to investigator.

but such VSet stacking requires at a minimum dΓ
2 e peers

per VSet. In practice, many more malicious peers are
required since the attacker does not have complete dis-
cretion over the IP addresses of its coalition members.
Moreover, as nodes join and leave the network, VSet
members change (since the nodes whose GUIDs are clos-
est to h1, ..., hΓ also change), significantly impairing the
ability to persistently stack VSets.

4.2 Locating and Updating VSet Members
Veracity utilizes a distributed directory service to re-
solve VSet members and route messages based on node
GUIDs. The directory service implements a single API
function, deliver(g,m), which delivers the message
m to the peer whose GUID is closest to g according
to a keyspace distance metric. Veracity is compatible
with any distributed directory service that supports the
deliver function. We explore the implementation of
distributed directory services in Section 5.

As shown in Figure 1(a), when a publisher updates its
coordinate, it transmits an update tuple (g, τ, C, ip) to
members of its VSet using the deliver function pro-
vided by the directory service. The update tuple contains
the following values: g is the publisher’s GUID, τ is a
logical timestamp incremented whenever the publisher
updates his coordinate, C is the new coordinate, and ip
is the publisher’s network address. Upon receiving the
update tuple, each VSet member vi measures the RTT
between itself and ip (Figure 1(b)), and computes the er-
ror ratio

δ(vi,g) =

∣∣∣RTT (vi, ip)− ||C − Cvi ||
∣∣∣

RTT (vi, ip)

where Cvi
is vi’s coordinate and ||C − Cvi

|| is the dis-

tance between the coordinates. Finally, vi locally stores
the evidence tuple (g, τ, C, ip, δ(vi,g)). Nodes periodi-
cally purge tuples that have not recently been queried to
reduce storage costs.

4.3 Publisher Coordinate Verification
To update its coordinate, the investigator queries a ran-
dom node (via a deliver message to a random GUID
g) in the network (i.e., the publisher). As depicted in
Figure 1(c), the publisher replies with a claim tuple
(g,Γ, τ, C, ip). The investigator immediately discards
the publisher’s coordinates if the publisher’s IP address
is not ip, g 6= H(ip), or it deems Γ (VSet size) insuffi-
ciently large to offer enough supporting evidence for the
coordinate.

Otherwise, the investigator transmits the evidence
query (g, τ) to each member of the publisher’s VSet,
constructed on demand given g according to Eq. 2 (Fig-
ure 1(d)). If a VSet member vi stores an evidence tuple
containing both g and τ (logical timestamp), it returns
that tuple to the investigator (Figure 1(e)). The investi-
gator then checks that the GUID, network address, and
coordinates in the publisher’s claim tuple matches those
in the evidence tuple. If there is a discrepancy, the evi-
dence tuple is ignored.

After querying all members of the publisher’s VSet,
the investigator counts the number of non-discarded ev-
idence tuples for which δ(vi,g) ≤ δ̂, where δ̂ is the in-
vestigator’s chosen ratio cutoff parameter. Intuitively,
this parameter gauges the investigator’s tolerance of co-
ordinate errors: a large δ̂ permits fast convergence times
when all nodes are honest, but risks increased likelihood
of accepting false coordinates. If the count of passing
evidence tuples meets or exceeds the investigator’s evi-

of Pairwise Latency System
Dataset Nodes Avg. Median Err. Ratio
Meridian 500 71.3 55.0 ms 0.15

King 500 72.7 63.0 ms 0.09
S3 359 85.8 67.9 ms 0.17
PL 124 316.4 134.0 ms 0.10

Table 1: Properties of the Meridian, King, S3, and PL
pairwise latency datasets, and Vivaldi’s system error ra-
tios for each dataset.

dence cutoff parameter, R, the coordinate is considered
verified. Otherwise, the publisher’s coordinate is dis-
carded.

4.4 Tuning VSet Parameters
To determine an appropriate value for the ratio cutoff
parameter δ̂, we examined Vivaldi’s system error ra-
tio when run against the Meridian [38], King [17], and
Scalable Sensing Service (S3) [39] datasets, as well as
a pairwise latency experiment that we executed on Plan-
etLab [24] (PL). Simulations and the PlanetLab experi-
ment used Bamboo [3], a DHT with a Vivaldi implemen-
tation and a simulation mode that takes as input a matrix
of pairwise latencies. Due to scalability limitations, the
simulator used the first 500 nodes from the Meridian and
King datasets. Simulation results were averaged over 10
runs. Table 1 provides the properties of the four datasets
as well as Vivaldi’s achieved system error ratio.

An appropriate value for δ̂ should be sufficiently large
to accommodate baseline errors. For example, in our Ve-
racity implementation (see Section 6.1), we use a ratio
cutoff parameter δ̂ of 0.4, well above the system error
ratio for all datasets.

In the absence of network churn, the VSet member-
ship of a publisher remains unchanged. With network
churn, some of the VSet members may be modified as
the keyspace of the directory service is reassigned. New
VSet members may not have stored any evidence tuples,
but as long as R (evidence cutoff parameter) VSet mem-
bers successfully verify the coordinate, the coordinate
can be used. In our experiments, we note that even when
R is 4 for a VSet size of 7, Veracity can tolerate moder-
ate to high degrees of churn while ensuring convergence
in the coordinate system.

4.5 Candidate Coordinate Verification
The publisher coordinate verification scheme described
in Section 4.3 provides the investigator with evidence
that a publisher’s coordinate is accurate. This does not

prevent a malicious publisher from deliberately delaying
an investigator’s RTT probe, thereby causing the investi-
gator to update its own coordinate erroneously. (Recall
that to update its coordinate, the investigator must mea-
sure the RTT between itself and the publisher after hav-
ing obtained the publisher’s coordinate.)

Once an investigator has validated the publisher’s co-
ordinate, the candidate coordinate verification scheme
compares coordinate estimation errors among the inves-
tigator and a random subset of nodes (the RSet) using
the investigator’s current coordinate (CI) and a new can-
didate coordinate (C ′I) calculated using the publisher’s
verified coordinate and the measured RTT.

The investigator queries for the coordinates of Λ RSet
members by addressing deliver messages to random
GUIDs (Figures 2(a) and 2(b)). As with Γ (VSet size),
a larger Λ (RSet size) increases confidence in the can-
didate coordinate at the expense of additional commu-
nication. In our experimentation, we found that setting
Λ = Γ = 7 provides reasonable security without incur-
ring significant bandwidth overhead. The investigator (I)
measures the RTT between itself and each RSet member
(Figure 2(c)) and computes the average error ratio

err(C,RSet) =

(∑
rj∈RSet

∣∣RTTIrj
−||C−Crj

||
∣∣

RTTIrj

)
Λ

for both CI and C ′I . If the new coordinate causes the
error ratio to increase by a factor of more than the tol-
erable error factor ∆, then C ′I is discarded and the in-
vestigator’s coordinate remains CI . Otherwise, the in-
vestigator sets C ′I as his new coordinate. The value of ∆
must be sufficiently large to permit normal oscillations
(e.g., caused by node churn) in the coordinate system.
Setting ∆ ≥ 0.2 enabled Veracity to converge at approx-
imately the same rate as Vivaldi for all tested topologies
(we investigate Veracity’s effect on convergence time in
Section 6.2.2).

5 Distributed Directory Services
Veracity utilizes DHTs to implement its distributed di-
rectory service, which supports the deliver messag-
ing functionality described in Section 4.1. While one can
adopt a centralized or semi-centralized directory service,
a fully-decentralized solution ensures scalability, allow-
ing Veracity’s security mechanisms to be deployable at
Internet scale. DHTs are ideal because they scale grace-
fully with network size, requiring O(lgN) messages to
resolve a GUID [34, 26, 25].

While DHTs ensure scalability, they are vulnerable to
insider manipulation [36] due to their distributed nature.
Malicious nodes can conduct Sybil attacks to increase

RSet

Investigator

RSet

Investigator

C1

C2

C3

C4

RSet

Investigator

(a) (b) (c)

Figure 2: Candidate coordinate verifica-
tion. Solid lines denote messages sent via
deliver and dotted lines represent messages
sent via direct IP. (a) Investigator queries ran-
dom nodes (the RSet) for their coordinates. (b)
RSet members report their coordinates to In-
vestigator. (c) Investigator measures the RTTs
between itself and RSet members, and then
calculates the error ratios for the current (CI)
and candidate (C ′I) coordinates.

their influence by registering multiple identities in the
network [13], eclipse attacks in which they falsify rout-
ing update messages to corrupt honest nodes’ routing ta-
bles [33], and routing attacks in which they inject spuri-
ous responses to messages that cross their paths [5]. For-
tunately, well-studied techniques exist that defend DHTs
against such attacks [11, 10, 4, 14, 5, 1]. We describe de-
fenses that are compatible with Veracity’s design below.

Sybil attack countermeasures that are compatible with
a decentralized architecture include distributed registra-
tion in which registration nodes, computed using itera-
tive hashing of a new node’s IP address, vote on whether
the new node can join the system based on the number
of similar requests it has received from the same IP ad-
dress [11]. Alternatively, Danezis et al. propose using
bootstrap graphs that capture the relationships between
joining nodes and the nodes through which they join to
construct trust profiles [10]. Finally, Borisov suggests
the use of cryptographic puzzles (e.g., finding a string in
which the last p bits of a cryptographic hash are zero) to
increase the cost of joining the network [4].

There are also several security techniques that mitigate
eclipse and routing attacks. The S-Chord system pro-
posed by Fiat et al. organizes the network into swarms
based on GUIDs [14]. Lookups are relayed between
swarms and are forwarded only if the lookup was sent
from a majority of the members of the previous swarm.
S-Chord is resilient to attacks in which the adversary
controls (1/4 − ε0)z nodes, where ε0 > 0, z is the min-
imum number of nodes in the network at any time, k is
a tunable parameter, and the number of honest nodes is
less than or equal to zk. Castro et al. propose the use of
redundant routing in which queries are sent via diverse
paths [5], reaching the intended recipient if all nodes on
at least one path are honest. Sanchez et al. improve the
redundant routing technique in their Cyclone system [1],
showing that 85% of requests were correctly delivered
when attackers controlled 30% of a 1024 node network
and nodes sent messages using 8 redundant paths.

The impact of utilizing the above secure routing tech-
niques is minimal. All of the above approaches operate
below the Veracity protocol and do not affect Veracity’s
operation. Approaches that rely on redundant messag-
ing incur a linear increase in bandwidth overhead, since
all deliver messages must be reliably communicated.
As we show in Section 6.5.1, Veracity’s communica-
tion costs (measured using uncompressed messages) are
within the tolerances of even dial-up Internet users. A
small linear increase in bandwidth can likely be com-
pensated for by using less expensive message formats
(our implementation currently uses Java serialization li-
braries) and data compression.

We argue that the above DHT security techniques are
sufficient to provide the reliability required of Veracity’s
deliver messaging functionality. Furthermore, un-
foreseen attacks that manage to circumvent such mech-
anisms have the effect of artificially increasing the frac-
tion of malicious nodes in the network (since a greater
fraction of messages will be misdirected towards misbe-
having nodes), and such attacks can be compensated for
by increasing R (the number of VSet members that must
support a publisher’s claimed coordinate for it to be ac-
cepted) and Λ (the RSet size).

Finally, to our best knowledge, Veracity is one of the
first attempts at directly addressing the problem of se-
cure distributed directory services and secure neighbor
selection in the context of coordinate systems. Exist-
ing proposals for securing network coordinate systems
either rely on a priori trusted nodes [15, 28] or utilize
decentralized architectures while ignoring the mecha-
nisms used to locate peers [6, 40], implicitly assuming
in the latter case that the underlying coordinate system
provides some distributed techniques to securely pop-
ulate neighbor sets. Unfortunately, such an assump-
tion does not hold as none of the existing systems
(Vivaldi [7], PIC [6], ICS [19], the Big-bang simula-
tion [29], nor NPS [22]) describe mechanisms for ensur-
ing that neighbor selection cannot be influenced by mis-

behaving nodes. Veracity utilizes the distributed direc-
tory service for both neighbor location and VSet resolu-
tion, but other coordinate systems that rely on a directory
service solely to determine neighbor sets risk significant
vulnerability if the neighbor sets are easily populated by
malicious nodes.

6 Implementation and Evaluation
In this section, we evaluate Veracity’s ability to miti-
gate various forms of attacks in the presence of network
churn. We have implemented Veracity by modifying
the Vivaldi implementation that is packaged with Bam-
boo [3], an open-source DHT that is resilient to high lev-
els of node churn [25] and functions either in simulation
mode or over an actual network.

6.1 Experimental Setup
Veracity uses Vivaldi as the underlying coordinate sys-
tem with a 5-dimensional coordinate plane (the recom-
mended configuration in the Bamboo source code [3]).
Each node attempted to update its coordinate every 10
seconds. The size of VSets and RSets were both fixed at
7 (Γ = Λ = 7). We used a ratio cutoff parameter δ̂ of 0.4
and an evidence cutoff parameter R of 4. That is, at least
4 of the 7 VSet members had to report error ratios less
than 0.4 for a coordinate to be verified. The maximum
tolerable increase in error (∆) for the candidate coordi-
nate verification was set to 0.2.

Our experiments are carried out using Bamboo’s sim-
ulation mode as well as on PlanetLab. In the simulation
mode, we instantiated 500 nodes with pairwise latencies
from the Meridian and King datasets. Due to space con-
straints, simulation results are shown only for the Merid-
ian dataset. Similar conclusions were drawn from the
King dataset and are available in the technical report ver-
sion of this paper [30]. To distribute the burden of boot-
strapping peers, a node joins the simulated network every
second until all 500 nodes are present. Nodes join via an
already joined peer selected uniformly at random.

In our PlanetLab experiments, the 100 participating
nodes joined within 3 minutes of the first node. The se-
lected PlanetLab nodes were chosen in a manner to maxi-
mize geographic diversity. The simulation and PlanetLab
experiments share a common code base, with the excep-
tion of the simulator’s virtualized network layer.

In Sections 6.2 through 6.4, we present our results
in simulation mode in the absence and presence of at-
tackers, followed by an evaluation on PlanetLab in Sec-
tion 6.5. We focus our evaluation on comparing Vivaldi
(with no protection scheme) and Veracity based on the
accuracy of the coordinate system, convergence time,
ability to handle churn, and communication overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi
Veracity

Figure 3: CDFs for median error ratios.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-100 0 100 200 300 400 500 600 700 800

S
y
s
te

m
 e

rr
o

r
ra

ti
o

Seconds since nodes join

Veracity, new nodes
Vivaldi, new nodes
Veracity, all nodes

Vivaldi, all nodes

Figure 4: The system error ratio after 10 new nodes
join the network (at t = 0). The median of the 10
new nodes’ median error ratios is also shown. The
coordinate system had stabilized prior to t = −100.

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 0.48

 0 20 40 60 80 100

S
y
s
te

m
 e

rr
o

r
ra

ti
o

Inter-event period (secs)

Veracity, 90th percentile
Vivaldi, 90th percentile

Veracity, system error ratio
Vivaldi, system error ratio

Figure 5: System error ratio for Vivaldi and Veracity
under various degrees of churn.

6.2 Veracity in the Absence of Attacks

Before evaluating the effectiveness of Veracity at mit-
igating various attacks, we first provide a performance
comparison between Veracity and Vivaldi in the absence
of any attackers within the simulation environment.

6.2.1 Accuracy of Network Coordinates
Figure 3 shows the cumulative distribution functions
(CDFs) of the median error ratios for Vivaldi and Verac-
ity, computed after the system stabilizes. Veracity raises
the system error ratio (the median of the nodes’ median
error ratio) by 4.6% (0.79ms) – a negligible difference
given latencies over the wide-area. We observe that Ve-
racity and Vivaldi have near identical CDFs, indicating
that Veracity’s protection schemes do not significantly
influence nodes’ coordinates in the absence of an attack.

6.2.2 Convergence Time
To study how Veracity affects the rate at which the un-
derlying coordinate system converges, we introduce 10
new nodes into the network after the remaining 490 peers
have stabilized. Figure 4 plots the system error ratios
for Vivaldi and Veracity before and after the new nodes
join the network (“all nodes”). The system error ratios of
both systems modestly increase when the new nodes are
introduced and converge at approximately the same rate.
The Figure also shows the median of the 10 new peers’
median error ratios (“new nodes”). Although Veracity
incurs a small initial lag in convergence time, the 10 new
coordinates quickly reach within 15% of their stabilized
(final) value in less than 200 seconds.

The polling frequency – the rate at which nodes at-
tempt to update their coordinate – is directly proportional
to the system’s convergence time. Higher polling fre-
quencies enable faster convergence time at the expense
of bandwidth. Although the values of the x-axis can
be increased or decreased by adjusting the polling fre-
quency, the shape of the curves remain fixed. Repeating
our experiments with smaller and larger polling frequen-
cies produced similar results.

6.2.3 Churn Effects
We next compare Vivaldi and Veracity’s ability to handle
churn. We adopt the methodology described by Rhea et
al. [25] for generating churn workloads: a Poisson pro-
cess schedules events (“node deaths”) in which a node
leaves the network. To keep the simulated network fixed
at 500 nodes, a fresh node immediately takes the place
of a node that leaves. The input to the Poisson process is
the expected median inter-event period.

Figure 5 shows the system error ratio for Vivaldi and
Veracity for various inter-event periods. Note that the
level of churn is inversely proportional to the inter-event
period. To illustrate near-worstcase performance, the fig-
ure also plots the 90th percentile error ratio.

Both Vivaldi and Veracity are able to tolerate high lev-
els of churn. The “breaking” point of both systems occur

when the inter-event period is less than five seconds, re-
flecting a rate at which approximately a quarter of the
network is replaced every 10 minutes. Churn affects Ve-
racity since the joining and leaving of nodes may cause
the members of a VSet to more rapidly change, reducing
the investigator’s ability to verify a coordinate. Even at
this high churn rate, Veracity’s system error ratio (0.19)
is only slightly worse than its error ratio (0.15) when
there is no churn. It is worth emphasizing that such high
churn (i.e., 25% of the network is replaced every 10 min-
utes) is unlikely for real-world deployments. The near
0-slope in Figure 5 for inter-event periods greater than
10 seconds shows that neither Vivaldi nor Veracity are
significantly affected by more realistic churn rates.

6.3 Disorder Attacks
In this section, we evaluate Veracity’s ability to mitigate
disorder attacks in which malicious peers report a falsi-
fied coordinate chosen at random from a five dimensional
hypersphere centered at the origin of the coordinate sys-
tem. Points are chosen according to Muller’s uniform
hypersphere point generation technique [21] with dis-
tances from the origin chosen uniformly at random from
[0, 2000). Additionally, attackers delay RTT responses
by between 0 and 2000 ms, choosing uniformly at ran-
dom from that range. Malicious nodes immediately be-
gin their attack upon joining the network.

To emulate realistic network conditions, all simula-
tions experience moderate churn at a median rate of one
churn event (a node leaving, immediately followed by a
new node joining) every 120 seconds. This churn rate
replaces 10% of the nodes during the lifetime of our ex-
periments (100 minutes).

6.3.1 Uncoordinated Attacks
Figure 6 shows the effectiveness of Veracity at mitigat-
ing attacks when 10%, 20%, and 30% of peers are ma-
licious. The attackers report a new randomly generated
(and false) coordinate whenever probed, randomly delay
RTT responses, and are uncoordinated (i.e., they do not
cooperate). As our baseline, we also include the CDF for
Vivaldi in the absence of any attackers.

Malicious attackers significantly reduce Vivaldi’s ac-
curacy, resulting in a 387% increase in the system er-
ror ratio (relative to Vivaldi when no attack takes place)
even when just 10% of nodes are malicious. When 30%
of nodes are malicious, the system error ratio increases
dramatically by 1013%. In contrast, Veracity easily miti-
gates such attacks since the coordinate discrepancies are
discernible in evidence tuples, causing inconsistently ad-
vertised coordinates to be immediately discarded by in-
vestigators. At low rates of attack (10%), the system er-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi, no malicious
Vivaldi, 10% malicious

Veracity, 10% malicious

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi, no malicious
Vivaldi, 20% malicious

Veracity, 20% malicious

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio

Vivaldi, no malicious
Vivaldi, 30% malicious

Veracity, 30% malicious

Figure 6: Honest peers’ median error ratios achieved
by Vivaldi and Veracity when malicious nodes constitute
10% (top), 20% (middle), and 30% (bottom) of the net-
work. Median error ratios observed when using Vivaldi
in a network with no attackers is shown for comparison.

ror ratio increases by only 6% (representing a negligible
system-wide median latency error of 4ms). When 30%
of the network is malicious, Veracity limits the increase
in system error ratio to 32% (5.7ms), an 88% improve-
ment over Vivaldi under the same attack.

Malicious nodes may conduct a more intelligent attack

by randomly delaying probes while reporting consistent
but erroneous coordinates. That is, each malicious node
randomly generates a coordinate and reports the identical
(and false) coordinate whenever probed. Such a strategy
eliminates coordinate inconsistencies among VSet mem-
bers. Compared to the previously described attack, this
strategy results in lower estimation errors for Vivaldi but
does slightly better against Veracity. Here, the increase in
Vivaldi’s system error ratio is 163% for 10% malicious
nodes and 368% for 30% malicious. Veracity success-
fully defends against heavy network infiltrations, yield-
ing an increase in the system error ratio of just 39% when
30% of the network is malicious. Veracity reaches its tip-
ping point when 40% of nodes are malicious, incurring
an increase of 118%. We note that this increase is still
far below the 497% increase experienced by Vivaldi.

6.3.2 Coordinated Attacks
We next consider coordinated attacks in which malicious
nodes cooperate to increase the effectiveness of their at-
tack. Malicious nodes offer supportive evidence for co-
ordinates advertised by other dishonest nodes and do
not offer any evidence for honest peers. That is, when
queried, they provide evidence tuples with low (passing)
error ratios for malicious nodes and do not respond to re-
quests when the publisher is honest. We conservatively
model an attack in which all malicious nodes belong to
the same attack coalition. To further maximize their at-
tack, each malicious node randomly generates a fixed er-
roneous coordinate and advertises it for the duration of
the experiment. Additionally, attackers randomly delay
RTT responses.

Figure 7 shows Veracity’s performance (measured by
the cumulative distribution of median error ratios) when
the malicious nodes cooperate. For comparison, the Fig-
ure also plots the CDFs for equally sized uncoordinated
attacks against Veracity and Vivaldi. Since Vivaldi does
not collaborate with peers to asses the truthfulness of ad-
vertised coordinates, there is no equivalent “coordinated”
attack against Vivaldi.

For all tested attack strengths, the coordinated attacks
did not induce significantly more error than uncoordi-
nated attacks. The resultant system error ratios differed
little: when attackers control 30% of the network, the
system error ratios are 0.202 and 0.201 for the uncoordi-
nated and coordinated attacks, respectively (for compar-
ison, Vivaldi’s system error ratio is 0.679).

6.3.3 Rejected: VSet-only and RSet-only Veracity
The previous sections show that Veracity’s two protec-
tions schemes – publisher coordinate verification and
candidate coordinate verification – effectively mitigate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio (10% malicious)

Vivaldi
Veracity, uncoordinated

Veracity, coordinated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio (20% malicious)

Vivaldi
Veracity, uncoordinated

Veracity, coordinated

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Median error ratio (30% malicious)

Vivaldi
Veracity, uncoordinated

Veracity, coordinated

Figure 7: Honest peers’ median error ratios when at-
tackers conduct uncoordinated and coordinated attacks.
Attackers comprise 10% (top), 20% (middle), and 30%
(bottom) of network peers.

attacks when the adversary controls a large fraction of
the network. In this section, we investigate whether it
is sufficient to apply only one of the two techniques to
achieve similar security.

Figure 8 shows the cumulative distribution of median
error ratios when nodes utilize only publisher coordinate
verification (“VSet-only”) or candidate coordinate verifi-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Median error ratio

Veracity
VSet-only
RSet-only

Figure 8: CDF of median error ratios for Veracity, Ve-
racity without Candidate Coordinate Verification (“VSet-
only”), and Veracity without Publisher Coordinate Veri-
fication (“RSet-only”). The attacker controls 20% of the
network and conducts a coordinated attack.

cation (“RSet-only”). We model the attack scenario from
Section 6.3.2 in which 20% of the nodes are malicious
and cooperating. For comparison, we also show the CDF
when both strategies are utilized (“Veracity”). The VSet-
only technique achieves nearly the same system error ra-
tio as Veracity (0.19 and 0.17, respectively). However,
using only publisher coordinate verification results in a
very long tail of median error ratios. In particular, the
90th percentile error ratio is 0.29 for Veracity and 4.42
for VSet-only. Hence, publisher coordinate verification
protects the accuracy of most nodes, but permits a signif-
icant degradation in accuracy for a minority of peers.

By itself, candidate coordinate verification results in
a higher system error ratio (0.42) than VSet-only or Ve-
racity. Additionally, RSet-only has a longer tail than Ve-
racity, resulting in a 90th percentile error ratio of 1.05
during the attack.

By combining both techniques, Veracity better pro-
tects the underlying coordinate system, achieving error
ratios that nearly mirror those produced by Vivaldi in the
absence of attack (see Figures 6 and 7).

6.3.4 Summary of Results
To summarize the performance of Veracity under disor-
der attacks, Table 2 shows the relative system error ra-
tio for various attacker scenarios that we have described,
where each system error ratio is normalized by that ob-
tained by Vivaldi under no attacks.

Overall we observe that Veracity is effective at miti-
gating the effects of disorder attacks. Even under heavy
attack (40% malicious nodes), disorder attacks result in a
relative system error of 1.54, far below Vivaldi’s relative
median error of 13.9.

Percentage of Inconsistent coords Consistent coords Consistent coords
malicious nodes (Uncoordinated) (Uncoordinated) (Coordinated)

Vivaldi Veracity Vivaldi Veracity Veracity
0% 1.00 1.05 1.00 1.05 1.05

10% 4.87 1.06 2.63 1.11 1.10
20% 8.18 1.12 4.21 1.25 1.22
30% 11.13 1.32 4.68 1.39 1.48
40% 13.90 1.54 5.97 2.18 2.37

Table 2: Relative system error ratios (system error ratio of the tested system divided by the system error ratio of Vivaldi
when no attack takes place) for various attacker scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40

M
e
d
ia

n
 o

f
3
 v

ic
ti
m

s
’
m

e
d
ia

n
 e

rr
o
r

ra
ti
o
s

% of malicious nodes

Vivaldi
Veracity

Figure 9: Effects of a combined repulsion and isolation
attack against three victim nodes. Points represent the
median with error bars denoting the 10th and 90th per-
centile of the median error ratios of the three victims.
For readability, datapoints are slightly shifted along the
x-axis by −0.5 for Vivaldi and +0.5 for Veracity.

Veracity’s effectiveness matches or exceeds that of
the prior proposals discussed in Section 7. In contrast
to existing coordinate protection systems, Veracity does
not require pre-selected trusted nodes, triangle inequality
testing, nor outlier detection based on a fixed neighbor
set, and is therefore better suited for practical deploy-
ment.

6.4 Repulsion and Isolation Attacks
While Veracity is intended primarily to defend against
disorder attacks, our next experiment demonstrates the
effectiveness of Veracity for protecting against repulsion
and isolation attacks. We carry out a combined repulsion
and isolation attack as follows: malicious nodes are par-
titioned into three coalitions, each of which attempts to
repulse and isolate a single victim node. Attackers at-
tempt to repulse the targeted node towards an extremely
negative coordinate (i.e., having−1000 in all five dimen-
sions) by using the following heuristic: if the victim is

closer than the attacker to the negative coordinate, the at-
tacker behaves honestly. Otherwise, the attacker reports
his accurate coordinate but delays the victim investiga-
tor’s RTT probe response by 1000ms, causing the victim
to migrate his coordinate (provided it passes candidate
coordinate verification) towards the negative coordinate.

Figure 9 shows the median of the three victim nodes’
median error ratios achieved during the combined repul-
sion and isolation attack. In contrast to previous experi-
ments, we do not use the system error ratio (the median
over all peers’ median error ratios), as repulsion and iso-
lation attacks target specific victims and need not cause
a significant degradation in coordinate accuracy for the
remaining peers.

Veracity consistently offers lower median error ratios
than Vivaldi. While Veracity does not completely mit-
igate the effects of repulsion and isolation attacks, our
results suggest that the vote-based verification scheme is
amenable to defending against such attacks.

6.5 PlanetLab Results
In our last experiment, we validate our simulation results
by deploying Veracity on the PlanetLab testbed.

6.5.1 Communication Overhead
To quantitatively measure Veracity’s communication
overhead in practice, we analyze packet traces recorded
on approximately 100 PlanetLab nodes for both Vivaldi
and Veracity. Traces are captured using tcpdump and
analyzed using the tcpdstat network flow analyzer [12].
Figure 10 shows the per-node bandwidth (averaged over
all nodes) utilization (KBps) for Vivaldi and Veracity.

Veracity incurs a communication overhead since pub-
lishers’ coordinates must be verified by VSets and in-
vestigators’ candidate coordinates must be assessed by
RSets. Since Veracity uses a DHT as its directory ser-
vice, it leverages the scalability of DHTs: each verifi-
cation step requires O((Γ + Λ) lgN), where Γ and Λ
denotes the VSet and RSet sizes respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

K
B

p
s

Nodes

Vivaldi
Veracity

Figure 10: Bandwidth (KBps) on PlanetLab.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

K
B

p
s

Nodes X 1000

Vivaldi
Veracity

Figure 11: Extrapolated bandwidth (KBps) for large
networks.

Based on the PlanetLab measurements, we performed
logarithmic regression analysis to extrapolate the per-
node bandwidth requirements of Veracity as the num-
ber of nodes increases: 0.1895 logN + 1.228 KBps
(r2 = 0.998) for Vivaldi and 3.591 logN − 6.499 KBps
(r2 = 0.994) for Veracity. Figure 11 shows the ex-
trapolated bandwidth utilization of Vivaldi and Veracity
for large networks. For a large network consisting of
100,000 nodes, Veracity’s expected per-node bandwidth
requirement is a modest 35KBps, making it accessible to
typical broadband users.

6.5.2 Accuracy Under Disorder Attacks
Figure 12 plots the system error ratio achieved on Plan-
etLab for varying attacker infiltrations. Malicious nodes
advertise inaccurate (but consistent) coordinates, delay
RTT responses, and do not coordinate their attack. To
calculate error ratios (which requires knowledge of ac-
tual pairwise RTT measurements), we utilize RTT data
from our PlanetLab “all-pairs-ping” experiment (see Fig-
ure 1). We observe that Veracity effectively mitigates at-
tacks, yielding an increase in system error ratio (relative
to Vivaldi under no attack) of just 38% when 32% of the
network is malicious. In contrast, Vivaldi suffers an in-
crease of 1679% when 31% of the nodes are dishonest.
(The slight differences between attacker percentages is
due to the intermittent availability of PlanetLab nodes.)

7 Related Work
Kaafar et al. [16] first identified the vulnerability of co-
ordinate systems, in which just 5% of the participat-
ing nodes can render the system unusable simply by ei-
ther lying about its coordinates or delaying RTT probe
replies. Subsequently, there have been several recent pro-
posals targeted at securing coordinate systems.

PIC detects dishonest nodes by observing that falsified
coordinates or delayed measurements likely induce trian-

 0

 1

 2

 3

 4

 5

 0 10 20 30 40
S

y
s
te

m
 e

rr
o
r

ra
ti
o

% of malicious nodes

Vivaldi
Veracity

Figure 12: System error ratio achieved on PlanetLab. Er-
ror bars denote the 10th and 90th percentile error ratios.

gle inequality violations (TIVs) [6]. To verify peers’ co-
ordinates and measurements, honest nodes use distances
to trusted landmarks to detect TIVs. Using a generated
transit-stub topology of 2000 nodes, PIC is able to toler-
ate attacks when up to 20% of the network was controlled
by colluding adversaries [6]. However, more recent work
has indicated that TIVs can potentially be common and
persistent [20], reducing the practicality of PIC’s protec-
tion scheme on real-world networks.

Kaafar et al. propose the use of trusted surveyor nodes
to detect malicious behavior [15]. Surveyor nodes posi-
tion themselves in the coordinate space using only other
trusted surveyors. Nodes profile surveyors to model hon-
est behavior, detecting falsified coordinates and mea-
surements as behavior that differs from their constructed
model. Kaafar et al. conclude that their approach is ef-
fective when 30% or less of the network is controlled by
malicious and cooperating nodes [15]. Their technique
requires 8% of the nodes to be a priori trusted survey-
ors [15] – a nontrivial fraction when the network consists
of 100,000 or more nodes.

The RVivaldi system proposed by Saucez et al. pro-
tect coordinate systems using surveyors as well as cen-
tralized Reputation Computation Agents (RCAs), the lat-
ter of which assigns reputations (trust profiles) to co-
ordinates [28, 27]. Their technique is evaluated only
against non-cooperating adversaries, and tolerates up to
20% malicious nodes [28].

Like Veracity, the system proposed by Zage and Nita-
Rotaru is fully distributed and designed for potentially
wide-scale deployments [40]. Their approach relies on
outlier detection, reducing the influence of nodes whose
coordinates are too distant (spatial locality) or whose
values change too rapidly in short periods of time (tem-
poral locality). Their technique successfully mitigates
attacks when 30% or fewer of the nodes are under an
attacker’s control [40]. However, the temporal locality
heuristic requires that each node maintains an immutable
neighborset, a list of neighbors that a node uses to up-
date its coordinates. Wide-scale deployments involving
hundreds of thousands of nodes are likely to be dynamic
with nodes frequently joining and leaving the system.
The high rate of churn will lessen the opportunities for
temporal analysis as nodes leave the system (since less
history is available), and cause errors in such analysis
for newly joined nodes for which frequent changes in
coordinates are expected. In contrast, Veracity does not
discriminate against spatial or temporal outliers, and as
described in Section 6.2.3, tolerates high levels of churn.

This paper extends our original position paper [32]
that outlines our initial design of Veracity. This paper
additionally proposes a second verification step geared
towards ensuring the correctness of coordinate updates
in the presence of malicious delays in latency measure-
ments. This paper further presents a full-fledged imple-
mentation that is experimented within a network simula-
tion environment and on PlanetLab.

8 Conclusion
This paper proposes Veracity, a fully distributed service
for securing network coordinates. We have demonstrated
through extensive network simulations on real pairwise
latency datasets as well as PlanetLab experiments that
Veracity effectively mitigates various forms of attack.
For instance, Veracity reduces Vivaldi’s system error ra-
tio by 88% when 30% of the network misbehaves by
advertising inconsistent coordinates and adding artificial
delay to RTT measurements. Veracity performs well
even against cooperating attackers, reducing Vivaldi’s
system error ratio by 70% when 30% of the network is
corrupt and coordinates its attacks.

We argue that Veracity provides a more practical path
to deployment while providing equivalent (or greater) se-

curity than previously proposed coordinate security sys-
tems. Unlike PIC, Veracity does not associate triangle-
inequality violations (TIVs) with malicious behavior [6],
and as indicated by our simulation and PlanetLab results,
does not impose additional inaccuracies in the coordi-
nate system when TIVs do exist. Veracity is fully decen-
tralized, requiring no a priori shared secrets or trusted
nodes. In comparison to techniques that require special-
ized trusted nodes [28, 27, 15], Veracity is well-suited
for applications for which centralized trust models are in-
compatible (e.g., anonymity networks [31]), and in gen-
eral, removes central points of trust that may serve as
focal points of attack. Veracity’s use of distributed direc-
tory services enables graceful scalability, and hence the
system can easily be applied to wide-scale virtual coor-
dinate system deployments.

Our most immediate future work entails the use of se-
cure network coordinate systems to permit applications
to intelligently form routes that meet specific latency
and bandwidth requirements. We are also investigating
anonymity services [31] that may leverage Veracity to
produce high-performance anonymous paths. Finally,
we expect to release an open-source implementation of
Veracity in the near future.

Acknowledgments
The authors are grateful to our shepherd, Kenneth
Yocum, for his insightful comments and advice. We also
thank the anonymous reviewers for their many helpful
suggestions. This work is partially supported by NSF
Grants CNS-0831376, CNS-0524047, CNS-0627579,
and NeTS-0721845.

References

[1] M. S. Artigas, P. G. Lopez, and A. F. G. Skarmeta. A
Novel Methodology for Constructing Secure Multipath
Overlays. IEEE Internet Computing, 9(6):50–57, 2005.

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Looking Up Data in P2P Systems. Commu-
nications of the ACM, Vol. 46, No. 2, Feb. 2003.

[3] The Bamboo Distributed Hash Table. http://
bamboo-dht.org/.

[4] N. Borisov. Computational Puzzles as Sybil Defenses. In
IEEE International Conference on Peer-to-Peer Comput-
ing, pages 171–176, 2006.

[5] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure Routing for Structured Peer-to-Peer
Overlay Networks. In OSDI, 2002.

[6] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC:
Practical Internet Coordinates for Distance Estimation. In
ICDCS, 2004.

http://bamboo-dht.org/
http://bamboo-dht.org/

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. SIGCOMM,
34(4):15–26, 2004.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-Area Cooperative Storage with CFS. In
SOSP, 2001.

[9] F. Dabek, J. Li, E. Sit, F. Kaashoek, R. Morris, and
C. Blake. Designing a DHT for Low Latency and High
Throughput. In NSDI, 2004.

[10] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson. Sybil-Resistant DHT Routing. In European
Symposium On Research In Computer Security, 2005.

[11] J. Dinger and H. Hartenstein. Defending the Sybil At-
tack in P2P Networks: Taxonomy, Challenges, and a Pro-
posal for Self-Registration. In International Conference
on Availability, Reliability and Security, pages 756–763,
2006.

[12] D. Dittrich. tcpdstat. http://staff.washington.
edu/dittrich/talks/core02/tools/tools.
html.

[13] J. R. Douceur. The Sybil Attack. In First International
Workshop on Peer-to-Peer Systems, March 2002.

[14] A. Fiat, J. Saia, and M. Young. Making Chord Robust to
Byzantine Attacks. In Proc. of the European Symposium
on Algorithms, 2005.

[15] M. A. Kaafar, L. Mathy, C. Barakat, K. Salamatian,
T. Turletti, and W. Dabbous. Securing Internet Coordi-
nate Embedding Systems. In ACM SIGCOMM, August
2007.

[16] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous. Real
Attacks on Virtual Networks: Vivaldi out of Tune. In SIG-
COMM Workshop on Large-Scale Attack Defense, 2006.

[17] “King” Data Set. http://pdos.csail.mit.edu/
p2psim/kingdata/.

[18] J. T. Ledlie. A Locality-Aware Approach to Distributed
Systems. PhD thesis, Harvard University, September
2007.

[19] H. Lim, J. C. Hou, and C.-H. Choi. Constructing Inter-
net Coordinate System Based on Delay Measurement. In
IMC, 2003.

[20] E. K. Lua, T. G. Griffin, M. Pias, H. Zheng, and
J. Crowcroft. On the Accuracy of Embeddings for In-
ternet Coordinate Systems. In IMC, 2005.

[21] M. E. Muller. A Note on a Method for Generating Points
Uniformly on n-dimensional Spheres. Communications
of the ACM, 2(4):19–20, 1959.

[22] T. S. E. Ng and H. Zhang. A Network Positioning Sys-
tem for the Internet. In USENIX Annual Technical Con-
ference, 2004.

[23] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and M. Seltzer.
Network-Aware Overlays with Network Coordinates. In
Distributed Computing Systems Workshops, July 2006.

[24] PlanetLab Global Testbed. http://www.
planet-lab.org/.

[25] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Han-
dling Churn in a DHT. In USENIX Technical Conference,

June 2004.
[26] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, De-

centralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Middleware, pages 329–350,
2001.

[27] D. Saucez. Securing Network Coordinate Systems. Mas-
ter’s thesis, Université Catholique de Louvain, June 2007.

[28] D. Saucez, B. Donnet, and O. Bonaventure. A
Reputation-Based Approach for Securing Vivaldi Embed-
ding System. In Dependable and Adaptable Networks
and Services, 2007.

[29] Y. Shavitt and T. Tankel. Big-bang Simulation for Em-
bedding Network Distances in Euclidean Space. In IEEE
Infocom, April 2003.

[30] M. Sherr, M. Blaze, and B. T. Loo. Verac-
ity: A Fully Decentralized Secure Network Co-
ordinate Service. Technical Report TR-CIS-08-
28, University of Pennsylvania, August 2008.
http://www.cis.upenn.edu/˜msherr/
papers/veracity-tr-cis-08-28.pdf.

[31] M. Sherr, B. T. Loo, and M. Blaze. Towards Application-
Aware Anonymous Routing. In HotSec, August 2007.

[32] M. Sherr, B. T. Loo, and M. Blaze. Veracity: A Fully
Decentralized Service for Securing Network Coordinate
Systems. In IPTPS, February 2008.

[33] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse Attacks on Overlay Networks: Threats and De-
fenses. In 25th IEEE International Conference on Com-
puter Communications (INFOCOM), 2006.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, 2001.

[35] Vuze Bittorrent Client. http://azureus.
sourceforge.net/.

[36] D. S. Wallach. A Survey of Peer-to-Peer Security Issues.
Software Security – Theories and Systems, 2609:253–
258, 2003.

[37] L. Wang, V. Pai, and L. Peterson. The Effectiveness of
Request Redirecion on CDN Robustness. In OSDI, 2002.

[38] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
Lightweight Network Location Service without Virtual
Coordinates. In SIGCOMM, 2005.

[39] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and
S. Lee. S3: A Scalable Sensing Service for Monitoring
Large Networked Systems. In SIGCOMM Internet Net-
work Management Workshop, 2006.

[40] D. Zage and C. Nita-Rotaru. On the Accuracy of Decen-
tralized Virtual Coordinate Systems in Adversarial Net-
works. In CCS, 2007.

http://staff.washington.edu/dittrich/talks/core02/tools/tools.html
http://staff.washington.edu/dittrich/talks/core02/tools/tools.html
http://staff.washington.edu/dittrich/talks/core02/tools/tools.html
http://pdos.csail.mit.edu/p2psim/kingdata/
http://pdos.csail.mit.edu/p2psim/kingdata/
http://www.planet-lab.org/
http://www.planet-lab.org/
http://www.cis.upenn.edu/~msherr/papers/veracity-tr-cis-08-28.pdf
http://www.cis.upenn.edu/~msherr/papers/veracity-tr-cis-08-28.pdf
http://azureus.sourceforge.net/
http://azureus.sourceforge.net/

	Introduction
	Background
	Vivaldi Coordinate System
	Attacker Model
	Metrics

	Overview of Veracity
	Veracity Verification Protocols
	VSet Construction
	Locating and Updating VSet Members
	Publisher Coordinate Verification
	Tuning VSet Parameters
	Candidate Coordinate Verification

	Distributed Directory Services
	Implementation and Evaluation
	Experimental Setup
	Veracity in the Absence of Attacks
	Accuracy of Network Coordinates
	Convergence Time
	Churn Effects

	Disorder Attacks
	Uncoordinated Attacks
	Coordinated Attacks
	Rejected: VSet-only and RSet-only Veracity
	Summary of Results

	Repulsion and Isolation Attacks
	PlanetLab Results
	Communication Overhead
	Accuracy Under Disorder Attacks

	Related Work
	Conclusion

