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Abstract — Packet classification is complex due to 
multiple fields present in each filter rule, easily manifesting 
itself as a router performance bottleneck.  Most known 
classification approaches involve either hardware support or 
optimization steps (to add precomputed markers and insert 
rules in the search data structures).  Unfortunately, an 
approach with hardware support is expensive and has 
limited scalability, whereas one with optimization fails to 
handle incremental rule updates effectively.  This work 
treats a rapid packet classification mechanism, realized by 
hashing round-down prefixes (HaRP) in a way that the 
source and the destination IP prefixes specified in a rule are 
rounded down to “designated prefix lengths” (DPL) for 
indexing into hash sets.  Utilizing the first ζ bits of an IP 
prefix with l bits (for ζ ≤ l, ζ∈DPL) as the key to the hash 
function (instead of using the original IP prefix), HaRP 
exhibits superb hash storage utilization, able to not only 
outperform those earlier software-oriented classification 
techniques but also well accommodate dynamic creation 
and deletion of rules.  HaRP makes it possible to hold all its 
search data structures in the local cache of each core within 
a contemporary processor, dramatically elevating its 
classification performance.  Empirical results measured on 
our Broadcom BCM-1480 multicore platform under nine 
filter datasets obtained from a public source unveil that 
HaRP enjoys up to some 5× (or 10×) throughput 
improvement when compared with well-known HyperCuts 
(or Tuple Space Search).  

1 Introduction 
Packet classification is basic to a wide array of Internet 

applications and services, performed at routers by applying 
“rules” to incoming packets for categorizing them into flows.  It 
employs multiple fields in the header of an arrival packet as the 
search key for identifying the best suitable rule to apply.  Rules 
are created to differentiate packets based on the values of their 
corresponding header fields, constituting a filter set.  Header 
fields may contain network addresses, port numbers, the 
protocol type, TCP flags, ICMP message type and code 
number, VLAN tags, DSCP and 802.1p codes, etc.  A field 
value in a filter can be an IP prefix (e.g., source or destination 
sub-network), a range (e.g., source or destination port numbers), 
or an exact number (e.g., protocol type or TCP flag).  A real 
filter dataset often contains multiple rules for a pair of 
communicating networks, one for each application.  Similarly, 

an application is likely to appear in multiple filters, one for each 
pair of communicating networks using the application.  
Therefore, lookups over a filter set with respect to multiple 
header fields are complex [9] and often become router 
performance bottlenecks.  

Various classification mechanisms have been considered, 
and they aim to quicken packet classification through hardware 
support or the use of specific data structures to hold filter 
datasets (often in SRAM and likely with optimization) for fast 
search [25].  Hardware support frequently employs FPGAs 
(field programmable gate arrays) or ASIC logics [4, 21], plus 
TCAM (ternary content addressable memory) to hold filters or 
registers for rule caching [8].  Key design goals with hardware 
support lie in simple data structures and search algorithms to 
facilitate ASIC or FPGA implementation and low storage 
requirements to reduce the TCAM costs.  They tend to prevent a 
mechanism with hardware support from handling incremental 
rule updates efficiently, and any change to the mechanism (in its  
search algorithm or data structures) is usually expensive. 
Additionally, such a mechanism exhibits limited scalability, as 
TCAM employed to hold a filter set dictates the maximal set 
size allowable.  Likewise, search algorithms dependent on 
optimization via preprocessing (used by recursive flow 
classification [9]) or added markers and inserted rules (stated in 
rectangle tuple space search (TSS) [24], binary TSS on columns 
[28], diagonal-based TSS [15], etc.) for speedy lookups often 
cannot deal with incremental rule updates effectively.  A tuple 
under TSS specifies the involved bits of those fields employed 
for classification, and probes to tuple space for appropriate rules 
are conducted via fast exact-match search methods like hashing.   

Many TSS-based classifiers employ extra SRAM (in 
addition to processor caches).  Unlike TCAM, SRAM costs far 
less and consumes much lower energy.  Further, if the required 
SRAM size is made small to fit in an on-chip module, the cost 
incurred for the on-chip SRAM can be very low, since it shares 
the same fabrication processes as those for on-chip caches.  
However, the inherent limitation of a TSS classifier in dealing 
with incremental rule updates (deemed increasingly common 
due to such popular applications as voice-over-IP, gaming, and 
video conferencing, which all involve dynamically triggered 
insertion and removal of rules in order for the firewall to handle 
packets properly) will soon become a major concern [30]. 

This article treats hashing round-down prefixes (HaRP) 
for rapid packet classification, where an IP prefix with l bits 
is rounded down to include its first ζ bits only (for ζ ≤ l, ζ 

  



∈DPL, “designated prefix lengths” [17]). With two-staged 
search, HaRP achieves high classification throughput and 
superior memory efficiency by means of (1) rounding down 
prefixes to a small number of DPL (denoted by m, i.e., m 
possible designated prefix lengths), each corresponding to 
one hash unit, for fewer (than 32 under IPv4, when every 
prefix length is permitted without rounding down) hash 
accesses per packet classification, and (2) collapsing those 
hash units to one lumped hash (LuHa) table for better 
utilization of table entries, which are set-associative.  Based 
on a LuHa table keyed by the source and destination IP 
prefixes rounded down to designated lengths, HaRP not 
only enjoys fast classification (due to a small number of 
hash accesses) but also handles incremental rule updates 
efficiently (without precomputing markers or inserting rules 
often required by typical TSS).  While basic HaRP 
identifies up to two candidate sets in the LuHa table to hold 
a given filter rule, generalized HaRP (denoted by HaRP*) 
may store the rule in any one of up to 2m candidate sets, 
considerably elevating table utilization to lower the 
probability of set overflow and achieving good scalability 
even for a small set-associative degree (say, 4). Each packet 
classification under HaRPP

* requires to examine all the 
possible 2m candidate sets (in parallel for those without 
conflicts, i.e., those in different memory modules which 
constitute the LuHa Table), where those sets are identified 
by the hash function keyed with the packet’s source and 
destination IP addresses, plus their respective round-down 
prefixes. HaRP is thus to exhibit fast classification, due to 
its potential of parallel search over candidate sets.  With 
SRAM for the LuHa table and the application-specific 
information table (for holding filter fields other than source 
and destination IP prefixes), HaRP exhibits a lower cost and 
better scalability than its hardware counterpart.  With its 
required SRAM size dropped considerably (to some 200KB 
at most for all nine filter datasets examined), HaRP makes it 
possible to hold all its search data structures in the local 
cache of a core within a contemporary processor, further 
boosting its classification performance. 

Our LuHa table yields high storage utilization via 
identifying multiple candidate sets for each rule (instead of 
just a single one under a typical hash mechanism), like the 
earlier scheme of d-left hashing [1].  However, the LuHa 
table differs from d-left hashing in three major aspects: (1) 
the LuHa table requires just one hash function, as opposed 
to d functions needed by d-left hashing (which divides 
storage into d fragments), one for each fragment, (2) the 
hash function of the LuHa table under HaRP

    Extensive evaluation on HaRP has been conducted on our 
platform comprising a Broadcom’s BCM-1480 SoC (System on 
Chip) [18], which has four 700MHz SB-1TM MIPS cores [12], 
under nine filter datasets obtained from a public source [29].  
The proposed HaRP was made multithreaded so that up to 4 
threads could be launched to take advantage of the 4 SB-1TM 
cores for gathering real elapsed times via the BCM-1480 ZBus 
counter, which ticks at every system clock. Measured 
throughput results of HaRP are compared with those of its 
various counterparts (whose source codes were downloaded 
from a public source [29] and then made multithreaded for) 
executing on the same platform to classify millions of packets 
generated from the traces packaged with the filter datasets.  Our 
measured results reveal that HaRPP

* boosts classification 
throughput by some 5× (or 10×) over well-known HyperCuts 
[20] (or Tuple Space Search [24]), when its LuHa table has a 
total number of entries equal to 1.5n and there are 4 designated 
prefix lengths, for a filter dataset sized n.  HaRP attains superior 
performance, on top of its efficient support for incremental rule 
updates lacked by previous techniques, making it a highly 
preferable software-based packet classification technique. 

2 Pertinent Work and Tuple Space Search 
Packet classification is challenging and its cost-effective 

solution is still in pursuit actively.  Known classification lookup 
mechanisms may be categorized, in accordance with their 
implementation approaches, as being hardware-centric and 
software-oriented, depending upon if dedicated hardware logics 
or specific storage components (like TCAM or registers) are 
used.  Different hardware-centric classification mechanisms 
exist. In particular, a mechanism with additional registers to 
cache evolving rules and dedicated logics to match incoming 
packets with the cached rules was pursued [8].  Meanwhile, 
packet classification using FPGA was considered [21] by using 
the BV (Bit Vector) algorithm [13] to look up the source and 
destination ports and employing a TCAM to hold other header 
fields, with search functionality realized by FPGA logic gates.  
Recently, packet classification hardware accelerator design 
based on the HiCuts and HyperCuts algorithms [3, 20] (briefly 
reviewed in Section 2.1), has been presented [11].  Separately, 
effective methods for dynamic pattern search were introduced 
[4], realized by reusing redundant logics for optimization and by 
fitting the whole filter device in a single Xilinx FPGA unit, 
taking advantage of built-in memory and XOR-based 
comparators in FPGA. 
      Hardware approaches based on TCAM are considered 

attractive due to the ability for TCAM to hold the don’t care 
state and to search the header fields of an incoming packet 
against all TCAM entries in a rule set simultaneously [16, 27].  
While deemed as most widely employed storage components in 
support of fast lookups, TCAM has such noticeable 
shortcomings (listed in [25]) as lower density, higher power 
consumption, and being pricier and unsuitable for dynamic 

P

* is keyed by 
2m different prefixes produced from each pair of the source 
and the destination IP addresses, and (3) a single LuHa table 
obtained by collapsing separate hash units is employed to 
attain superior storage utilization, instead of one hash unit 
per prefix length to which d-left hashing is applied. 

  



rules, since incremental updates usually require many TCAM 
entries to be shifted (unless provision like those given earlier 
[19, 27] is made).  As a result, software-oriented classification is 
more attractive, provided that its lookup speed can be quickened 
by storing rules in on-chip SRAM. 

 

2.1 Software-Oriented Classification 
Software-oriented mechanisms are less expensive and 

more flexible (better adaptive to rule updates), albeit to slower 
filter lookups when compared with their hardware-centric 
counterparts. Such mechanisms are abundant, commonly 
involving efficient algorithms for quick packet classification 
with an aid of caching or hashing (via incorporated SRAM).  
Their classification speeds rely on efficiency in search over the 
rule set (stored in SRAM) using the keys constituted by 
corresponding header fields.  Several representative software 
classification techniques are reviewed in sequence. 

Recursive flow classification (RFC) carries out multistage 
reduction from a lookup key (composed of packet header fields) 
to a final classID, which specifies the classification rule to apply 
[9].  Given a rule set, preprocessing is required to decide 
memory contents so that the sequence of RFC lookups 
according to a lookup key yields the appropriate classID [9]. 
Preprocessing results can be put in SRAM for fast accesses, 
important for RFC as it involves multiple stages of lookups. 
Any change to the rule set, however, calls for memory content 
recomputation, rendering it unsuitable for frequent rule updates. 

Based on a precomputed decision tree, HiCuts 
(Hierarchical Intelligent Cuts) [10] holds classification rules 
merely in leaf nodes and each classification operation needs to 
traverse the tree to a leaf node, where multiple rules are stored 
and searched sequentially.    During tree search, HiCuts relies 
on local optimization decisions at each node to choose the next 
field to test.  Like HiCuts, HyperCuts is also a decision tree-
based classification mechanism, but each of its tree nodes splits 
associated rules possibly based on multiple fields [20].  It builds 
a decision tree, aiming to involve the minimal amount of total 
storage and to let each leaf node hold no more than a 
predetermined number of rules.  HyperCuts is shown to enjoy 
substantial memory reduction while considerably quickening 
the worst-case search time under core router rule sets [20], when 
compared with HiCuts and other earlier classification solutions.  

An efficient packet classification algorithm was introduced 
[2] by hashing flow IDs held in digest caches (instead of the 
whole classification key comprising multiple header fields) for 
reduced memory requirements at the expense of a small amount 
of packet misclassification.  Recently, fast and memory-efficient 
(2-dimensional) packet classification using Bloom filters was 
studied [7], by dividing a rule set into multiple subsets before 
building a crossproduct table [23] for each subset individually.  
Each classification search probes only those subsets that contain 
matching rules (and skips the rest) by means of Bloom filters, 
for sustained high throughput.  The mean memory requirement 
is claimed to be some 32 ~ 45 bytes per rule.  As will be 

demonstrated later, our mechanism achieves faster lookups 
(involving 8~16 hash probes  plus 4 more SRAM accesses, 
which may all take place in parallel, per packet) and consumes 
fewer bytes per rule (taking 15 ~ 25 bytes per rule). 

A fast dynamic packet filter, dubbed Swift [30], comprises 
a fixed set of instructions executed by an in-kernel interpreter.  
Unlike packet classifiers, it optimizes filtering performance by 
means of powerful instructions and a simplified computational 
model, involving a kernel implementation. 

  

2.2 Tuple Space Search (TSS) 
Having rapid classification potentially (with an aid of 

optimization) without additional expensive hardware, TSS has 
received extensive studies.  It embraces versatile software-
oriented classification and involves various search algorithms.  
Under TSS, a tuple comprises a vector of k integer elements, 
with each element specifying the length or number of bits of a 
header field of interest used for the classification purpose.  As 
the possible numbers of bits for interested fields present in the 
classification rules of a filter dataset tend to be small, all length 
combinations of the k fields constituting tuple space are rather 
contained [24].  In other words, while the tuple space T in 
theory comprises totally Πi=1..k prefix.length(fieldi) tuples, it only 
needs to search existing tuples rather than the entire space T. 

A search key can be obtained for each incoming packet by 
concatenating those involved bits in the packet header.  
Consider a classic 5-dimensional classification problem, with 
packets classified by their source IP address (sip), source port 
number (spn), destination IP address (dip), destination port 
number (dpn), and protocol type (pt).  An example tuple of (sip, 
dip, spn, dpn, pt) = (16, 24, 6, 4, 6) means that the source and 
the destination IP addresses are respectively a 16-bit prefix and 
a 24-bit prefix.  The number of prefix bits used to define the 
tuple elements of sip and dip is thus clear.  On the other hand, 
the port numbers and the protocol type are usually specified in 
ranges; for example, [1024, 2112] referring to the port number 
from 1024 to 2112.  For TSS, those range files are (1) handled 
separately (like what was stated in [3]), (2) encoded by nested 
level and range IDs [24], or (3) transformed into collections of 
sub-ranges each corresponding to a prefix (namely, a range with 
an exact power of two), resulting in rule dataset expansion. 

TSS Implementation Consideration 
TSS intends to achieve high memory efficiency and fast 

lookups by exploiting a well sanctioned fact of rule construction 
resulting from optimization.  Its optimization methods include: 

1. Tuple Pruning and Rectangle Search, using markers and 
pre-computed best-matched rules to achieve the worst-
case lookup time of 2W-1 for two-dimensional 
classification, with W being the length of source and 
destination IP prefixes [24],  

2. Binary Search on Columns, considered later [28] to 
reduce the worst-case lookup time down to O(log2W), 
while involving O(N×log2W) memory for N rules, and  

   



Prefix Pair Pointer

(sip, dip) index 
…….. 

 
…. 

 
(sip, dip) index 

Figure 1.  HaRP classification mechanism comprising one set-associative hash table (obtained by lumping multiple hash 
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3. Diagonal-based Search to exhibit the search time of 
O(logW) for two-dimensional filters, with a large 
memory requirement of O(N2) [15]. 

While TSS (with optimization) is generally promising, it 
suffers from the following limitations. 
Expensive Incremental Updates.  Dynamic creation and 
removal of classification rules may prove to be challenging to 
those known TSS methods.  However, dynamic changes to rule 
datasets take place more frequently going forward, due to many 
growing popular applications, such as voice-over-IP, gaming, 
and video conferencing, which all require dynamically triggered 
insertion and removal of rules in order for the firewall to handle 
packets properly.  This inability in dealing with frequent rule 
updates is common to TSS-based packet classification, because 
its high search rate and efficient memory (usually SRAM) 
utilization result from storing contents in a way specific to 
contents themselves, and any change to the rule dataset requires 
whole memory content recomputed and markers/rules 
reinserted.  With its nature of complex and prohibitively 
expensive memory management in response to rule changes, 
TSS is unlikely to arrive at high performance. 
Limited Parallelism.  TSS with search optimization lends itself 
to sequential search, as the next tuple to be probed depends on 
the search result of the current tuple.   Its potential in parallelism 
is rather limited as the number of speculative states involved 
grows exponentially when the degree increases. 
Extensibility to Additional Fields.  Results for two-dimensional 
TSS have been widely reported.  However, it is unclear about 
TSS performance when the number of fields rises (to 
accommodate many other fields, including TCP flags, ICMP 
message type and code number, VLAN tags, DSCP and 802.1p 
codes, besides commonly mentioned five fields), in particular, if 
markers and precomputation for best rules are to be applied. 

3 Proposed HaRP Architecture 
3.1 Fundamentals and Pertinent Data Structures  

As eloquently explained earlier [25, 26], a classification 
rule is often specified with a pair of communicating networks, 
followed by the application-specific constraints (e.g., port 

numbers and the protocol type).  Our HaRP exploits this 
situation by considering the fields on communicating networks 
and on application-specific constraints separately, comprising 
two search stages.  Its first stage narrows the search range via 
communicating network prefix fields, and its second stage 
checks other fields on only entries chosen in the first stage. 

 Basic HaRP
As depicted in Figure 1, the first stage of HaRP comprises 

a single set-associative hash table, referred to as the LuHa 
(lumped hash) table.  Unlike typical hash table creation using 
the object key to determine one single set for an object, our 
LuHa table aims to achieve extremely efficient table utilization 
by permitting multiple candidate sets to accommodate a given 
filter rule and yet maintaining fast search over those possible 
sets in parallel during the classification process.  It is made 
possible by (1) adopting designated prefix length, DPL: {l1, l2,  
… li, … lm}, where li denotes a prefix length, such that for any 
prefix P of length w (expressed by P|w) with li ≤ w < li+1, P is 
rounded down to P|li before used to hash the LuHa table, and (2) 
storing a filter rule in the LuHa table hashed by either its source 
IP prefix (sip, if not wild carded) or destination IP prefix (dip, if 
not wild carded), after they are rounded down.  Each prefix 
length ζ, with ζ∈DPL, is referred to as a tread.  Given P, it is 
hashed by treating P|li as an input to a hash function to get a d-
bit integer, where d is dictated by the number of sets in the 
LuHa table.  Since treads in DPL are determined in advance, the 
numbers of bits in an IP address of a packet used for hash 
calculation during classification are clear and their hashed 
values can be obtained in parallel for concurrent search over the 
LuHa table.  Our classification mechanism results from hashing 
round-down prefixes (HaRP) during both filter rule installation 
and packet classification search, thereby so named. 

The LuHa table comprises collapsed individual hash tables 
(each of which is assigned originally to hold all prefixes P|w (li 
≤ w < li+1) under chosen DPL, as shown in Figure 1 by the 
leftmost component before collapsing) to yield high table 
utilization and is made set-associative to alleviate the overflow 
problem.  Each entry in the LuHa table keeps a prefix pair for 
the two communicating networks, namely, sip (the source IP 
prefix) and dip (the destination IP prefix).  While different (sip, 

  



dip) pairs after being rounded down may become identical and 
distinct prefixes possibly yield the same hashed index, the set-
associative degree of the LuHa table can be held low in practice.  
Given the LuHa table composed of 2d sets, each with α entries, 
it experiences overflow if the number of rules hashed into the 
same set exceeds α.  However, this overflow problem is 
alleviated, since a filter rule can be stored in either one of the 
two sets indexed by its sip and dip.  With the LuHa table, our 
HaRP arrives at (1) rapid packet classification due to a reduced 
number of hash probes through a provision of parallel accesses 
to all entries in a LuHa set and also to a restricted scope of 
search (pointed to by the matched LuHa entry) in the second 
stage, and (2) a low SRAM requirement due to one single set-
associated hash table (for better storage utilization). 

Generalized HaRP
Given a filter rule with its sip or dip being P|w and under 

DPL = {l1, l2,  … li, … lm}, HaRP can be generalized by 
rounding down P|w, with li ≤ w < li+1, to P|lb, for all 1 ≤ b ≤ i, 
before hashing P|lb to identify more candidate sets for keeping 
the filter rule.  In other words, this generalization in rounding 
down prefixes lets a filter rule be stored in any one of those 2×i 
sets hashed by P|lb in the LuHa table, referred to as HaRP*.  
This is possible because HaRP takes advantage of the 
“transitive property” of prefixes – for a prefix P|w, P|t is a prefix 
of P|w for all t < w, considerably boosting its pseudo set-
associative degree.  A classification lookup for an arrived packet 
under DPL with m treads involves m hash probes via its source 
IP address and m probes via its destination IP address, therefore 
allowing the prefix pair of a filter rule (say, (Ps|ws , Pd|wd ), with 
lis ≤ ws < lis+1 and lid ≤ wd < lid+1) to be stored in any one of the is 
sets indexed by round-down Ps (i.e., Ps|{l1, l2,  … lis}, if Ps is not 
a wildcard), or any one of the id sets indexed by round-down Pd 
(i.e., Pd|{l1, l2,  … lid}, if Pd is not a wildcard).  HaRP* balances 
the prefix pairs among many candidate sets (each with α 
entries), making the LuHa table behave like an (is + id)×α set-
associative design under ideal conditions to enjoy high storage 
efficiency.  Given DPL with 5 treads: {28, 24, 16, 12, 1}, for 
example, HaRP* rounds down the prefix of 010010001111001× 
(w = 15) to 010010001111 (ζ = 12) and 0 (ζ = 1) for hashing. 

This potentially high pseudo set-associativity makes it 
possible for HaRP* to choose a small number of treads (m).  A 
small m lowers the number of hash probes per lookup 
accordingly, thus improving lookup performance. Adversely, as 
m drops, more rules can be mapped to a given set in the LuHa 
table, requiring m to be moderate practically, say 6 or so.  Note 
that a shorter prefix (either Ps or Pd) leads to fewer candidate 
sets for storing a filter rule, but the number of filter rules with 
shorter prefixes is smaller, naturally curbing the likelihood of set 
overflow.  Furthermore, HaRP* enjoys virtually no overflow, as 
long as * is greater than 2, to be seen in the following analysis. 

Our basic HaRP stated earlier is denoted by HaRP1 (where 
P|w, with li ≤ w < li+1, is rounded down to P|li).  Rounding down 

P|w to both P|li and P|li-1, dubbed HaRP2, specifies up to four 
LuHa table sets for the filter rule.  Clearly, HaRP* experiences 
overflow only when 2×i sets in the LuHa table are all full.  The 
following analyzes the LuHa table in terms of its effectiveness 
and scalability, revealing that for a fixed, small α (say, 4), its 
overflow probability is negligible, provided that the ratio of the 
number of LuHa table entries to the number of filter rules is a 
constant, say ρ. 
 
Effectiveness and Scalability of LuHa Table 

From a theoretic analysis perspective, the probability 
distribution could be approximated by a Bernoulli process, 
assuming a uniform hash distribution for round-down 
prefixes.  (As round-down prefixes for real filter datasets 
may not be hashed uniformly, we performed extensive 
evaluation of HaRP* under publicly available 9 real-world 
datasets, with the results provided in Section 4.2.)  The 
probability of hashing a round-down prefix P|li randomly to 
a table with r sets equals 1/r. Thus, the probability for k 
round-down prefixes, out of n samples (i.e., the filter dataset 

size), hashing to a given set is . As 

each set has α entries, we get prob.(overflow | k round-
down prefixes mapped to a set, for all k > α) = 

, with r = (n×ρ)/α . 
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The above expression can be shown to give rise to 
almost identical results over any practical range of n, for 
given ρ and α. When ρ = 1.5 and α = 4, for example, the 
overflow probability equals 0.1316 under n = 500, and it 
becomes 0.1322 under n = 100,000.  Consequently, under a 
uniform hashing distribution of round-down prefixes, the set 
overflow probability of HaRPP

* holds virtually unchanged as 
the filter dataset size grows, indicating good scalability of 
HaRP* with respect to its LuHa table.  We therefore provide 
in Figure 2, the probability of overflowing a set with α = 4 
entries versus ρ (called the dilation factor) for one filter 
dataset size (i.e., n = 100,000) only.  As expected, the 
overflow probability dwindles as ρ rises (reflecting a larger 
table).  For ρ = 1.5 (or 2), the probability of overflowing a 
typical 4-way set-associative table is 0.13 (or 0.05). 

HaRP1 achieves better LuHa table utilization, since it 
permits the use of either sip or dip for hashing, effectively 
yielding “pseudo 8-way” if sip and dip are not wildcards.  It 
selects the less occupied set in the LuHa table from the two 
candidate sets hashed on the non-wild carded sip and dip.  
The overflowing probability of HaRPP

1can thus be 
approximated by the likelihood of both candidate LuHa 
table sets (indexed by sip and dip) being fully taken (i.e., 
each with 4 active entries).  In practice, the probability 
results have to be conditioned by the percentage of filter 
rules with wild carded IP addresses.  With a wild carded sip 

   



(or dip), a filter rule cannot benefit from using either sip or 
dip for hashing (since a wild carded IP address is never used 
for hashing).  The set overflowing probability results of 
HaRP1 with wild carded IP address rates of 60% and 0% are 
depicted in Figure 2.  They are interesting due to their 
representative characteristics of real filter datasets used in 
this study (as detailed in Section 4.1; the rates of filter rules 
with wild carded IP addresses for 9 datasets are listed with 
the right box).  With a dilation factor ρ = 1.5, the 
overflowing probability of HaRP1 drops to 1.7% (or 8.6%), 
for the wildcard rate of 0% (or 60%). 

 
Figure 2.  Overflow probability versus ρ for a 4-way set. 

 
Meanwhile, HaRP2 and HaRPP

3 are seen in the figure to 
outperform HaRP1

P  smartly.  In particular, HaRP2 (or 
HaRP3) achieves the overflowing probability of 0.15% (or 
1.4 E-07 %) for ρ = 1.5, whereas HaRPP

3 exhibits the 
overflowing probability less than 4.8 E-05 % even under = 
1.0 (without any dilation for the LuHa table).  These results 
confirm that HaRP* indeed leads to virtually no overflow 
with α = 4 under * > 2, thanks to its exploiting the high set-
associative potential for effective table storage utilization.  
As will be shown in Section 4, HaRP* also achieves great 
storage efficiency under real filter datasets, making it 
possible to hold a whole dataset in local cache practically 
for superior lookup performance.   
 
Application-Specific Information (ASI) Table  

The second stage of HaRP involves a table, each of 
whose entry keeps the values of application-specific filter 
fields (e.g., port numbers, protocol type) of one rule, dubbed 
the application-specific information (ASI) table (see Figure 
1). If rules share the same IP prefix pair, their application-
specific fields are stored in contiguous ASI entries packed 
as one chunk pointed by its corresponding entry in the LuHa 
table.  For fast lookups and easy management, ASI entries 
are fragmented into chunks of a fixed size (say 8 contiguous 
entries).  Upon creating a LuHa entry for one pair of sip and 
dip, a free ASI chunk is allocated and pointed to by the 
created LuHa entry.  Any subsequent rule with an identical 
pair of sip and dip puts its application-specific fields in a 

free entry insider the ASI chunk, if available; otherwise, 
another free ASI chunk is allocated for use, with a pointer 
established from the earlier chunk to this newly allocated 
chunk.  In essence, the ASI table comprises linked chunks 
(of a fixed size), with one link for each (sip, dip) pair. 

The number of entries in a chunk is made small 
practically (say, 8), so that all the entries in a chunk can be 
accessed simultaneously in one cycle, if they are put in one 
word line (of 1024 bits, which can physically comprise 
several SRAM modules). This is commonly achievable with 
current on-chip SRAM technologies. The ASI table requires 
a comparable number of entries as the filter dataset to attain 
desirable performance, with the longest ASI list containing 
36 entries, according to our evaluation results based on real 
filter datasets outlined in Sections 4.3 and 4.4. 

As demonstrated in Figure 1, each LuHa table entry is 
assumed to have 96 bits for accommodating a pair of sip 
and dip together with their 5-bit length indicators, a 16-bit 
pointer to an ASI list, and a 6-bit field specifying the ASI 
list length.  Given the word line of 1024 bits and all entries 
of a set put within the same word line with on-chip SRAM 
technology for their simultaneous access in one cycle, the 
set-associative degree (α) of the LuHa table can easily reach 
10 (despite that α = 4 is found to be adequate in practice). 
   
3.2 Installing Filter Rules 

Given a set of filter rules, HaRP installs them by putting 
their corresponding field contents to the LuHa and the ASI 
tables sequentially.  When adding a rule, one uses its source (or 
destination) IP prefix for finding a LuHa entry to hold its prefix 
pair after rounded down according to chosen DPL, if its 
destination (or source) IP field is a don’t care (×).  Under 
HaRP*, the number of round-down prefixes for a given non-
wildcard IP prefix is up to * (dependent upon the given IP 
prefix and chosen DPL).  When both source and destination IP 
fields are specified, they are hashed separately (after rounded 
down) to locate an appropriate set for accommodation.  The set 
is selected as follows: (1) if a hashed set contains the (sip, dip) 
prefix pair of the rule in one of its entry, the set is selected (and 
thus no new LuHa table entry is created to keep its (sip, dip) 
pair), (2) if none hashed set has an entry keeping such a prefix 
pair, a new entry is created to hold its (sip, dip) pair in the set 
with least occupancy; if all candidate sets are with the same 
occupancy, the last candidate set (i.e., the one indexed by the 
longest round-down dip) is chosen to accommodate the new 
entry created for keeping the rule.  Note that a default table 
entry exists to hold the special pair of (×, ×), and that entry has 
the lowest priority since every packet meets its rule. 

The remaining fields of the rule are then put into an entry 
in the ASI table, indexed by the pointer stored in the selected 
LuHa entry.  As ASI entries are grouped into chunks (with all 
entries inside a chunk accessed at the same time, in the way like 
accesses to those set entries in the LuHa table), the rule will find 

  



any available entry in the indexed chunk for keeping the 
contents of its remaining fields, in addition to its full source and 
destination IP prefixes (without being rounded down).  Should 
no entry be available in the indexed chunk, a new chunk is 
allocated for use (and this newly allocated chunk is linked to the 
earlier chunk, as described in Section 3.1). 

 
Input: Received packet, with dip (destination IP address), sip, sport 

(source port), dport (destination port), proto (protocol type) 

#define   mask(L)   ~((0x01 <<L) -1) 
int   match_rule_id = n_rules; 

Hash_Probe (key_select) :: 
  key = (key_select == USE_DIP) ? dip : sip; 
  for each tread t in DPL { 
     h = hash_func(key&mask(t), t); /* round down prefix & hash */ 
     for each entry s in hash set LuHa[h] { 
        if (PfxMatch((s.dip_prefix, dip),  s.dip_prefix_length) &&   

PfxMatch((s.sip_prefix, sip),   s.sip_prefix_length) { 
            /* a prefix-pair matched, continue on checking ASI */ 
            for each asi entry e in the chunk pointed by s.asi_pointer { 
               if (e.sport_low <= sport <= e.sport_high && 
                    e.dport_low <= dport  <= e.dport_high && 
                    e.proto_low <= proto <= e.proto_high) { 
                    /* Match! Choose rule with lower rule number */ 
                       if (match_rule_id >= e.ruleno)  
                           match_rule_id = e.ruleno; 
    }}}}}} 
 
/* Pass 1:  hash via dip */ 

Hash_Probe(USE_DIP); 
/* Pass 2:  hash via sip */ 

Hash_Probe(USE_SIP); 

Figure 3.  Pseudo code for prefix-pair lookups. 
  

3.3 Classification Lookups  
  Given the header of an incoming packet, a two-staged 

classification lookup takes place.  During the LuHa table 
lookup, two types of hash probes are performed, one keyed with 
the source IP address (specified in the packet header) and the 
other with the destination IP address.  Since rules are indexed to 
the LuHa table using the round-down prefixes during 
installation, the type of probes keyed by the source IP address 
involves m hash accesses, one associated with a length listed in 
DPL = {l1, l2,  … li, … lm}.  Likewise, the type of probes keyed 
by the destination IP address also contains m hash accesses.  
This way ensures that no packet will be misclassified regardless 
of how a rule was installed, as illustrated by the pseudo code 
given in Figure 3. 

Lookups in the ASI table are guided by the selected LuHa 
entries, which have pointers to the corresponding ASI chunks.  
The given source and destination IP addresses could match 
multiple entries (of different prefix lengths) in the LuHa table. 
Each matched entry points to one chunk in the ASI table, and 
the pointed chunks are all examined to find the best matched 

rule.  As all entries in one pointed chunk are fetched in a clock, 
they are compared concurrently with the contents of all relevant 
fields in the header of the arrival packet.  If a match occurs to 
any entry, the rule associated with the entry is a candidate for 
application; otherwise, the next linked chunk is accessed for 
examination, until a match is found or the linked list is 
exhausted.  When multiple candidate rules are identified, one 
with the longest matched (sip, dip) pair, or equivalently the 
lowest rule number, if rules are sorted accordingly, is adopted.  
On the other hand, if no match occurs, the default rule is chosen. 
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Rounding down prefixes to 
nearest treads when dip is used 
for hashing. 

Figure 4.  Comparison between TSS and proposed HaRP1. 
 

3.4 Lookup Time Complexity 
Time complexity consists of search over both the LuHa 

table and the ASI table.  Search over the LuHa table is indexed 
by keys composed of round-down prefix pairs (following the 
algorithm of Figure 3), taking exactly 2m hash probes under 
DPL with m treads (ranging from 4 to 8).  On the other hand,  
search over the ASI table is directed by matched prefix pairs 
held in the LuHa table, and the mean number of such pairs is 
found to be smaller than 4 (for all nine filter datasets of sizes up 
to 10K rules adopted for our study, as listed in Table 1).  
Therefore, our HaRP requires 8-16 hash probes plus 4 ASI 
accesses per lookup, in comparison to 63 (2W-1) and 25 (log2W, 
with W being the IP prefix length) probes respectively for 
Rectangle Search and Binary Tuple Search stated earlier.  As a 
smaller m leads to fewer hash probes but more rules mapped to 
a given set in the LuHa table, selecting an appropriate m is 
important.  

As explained in Section 2.2, TSS with optimization uses 
markers and pre-computed results to guide its search.  However, 
the praised property (that any filter dataset usually comprises 
only a few unique prefix pair lengths) fails to take a role in 
optimization (which relies instead on each rule to leave 
markers), as depicted in Figure 4.  Proliferating markers may 
heighten the storage requirement by an order of O(N×w).  In 
contrast, HaRP based on DPL treads actually cuts the tuple 
space into segments along each dimension.  When dip is used 
for hashing, as an example, all destination prefixes are rounded 

   



down to designated length specified by the DPL set, as 
demonstrated in Figure 4 for HaRPP

1 with designated prefix 
lengths equal to 30 and 1 shown.  The selection of DPL can be 
made to match the distribution of unique prefix lengths for the 
best hashing results.  Based on the fact that there are not many 
unique prefix pair length combinations [24, 25], HaRP design 
makes very efficient use of the LuHa table, in a way better than 
TSS over the tuple space.  The storage requirement is a constant 
O(N), linear to the number of rules. 
 
3.5 Handling Incremental Rule Updates and Additional Fields 

HaRP admits dynamic filter datasets very well.  Adding 
one rule to the dataset may or may not cause any addition to the 
LuHa table, depending upon if its (sip, dip) pair has been 
present therein.  An entry from the ASI table will be needed to 
hold the remaining fields of the rule.  Conversely, a rule 
removal requires only to make its corresponding ASI entry 
available.  If entries in the affected ASI chunk all become free 
after this removal, its associated entry in the LuHa table is 
released as well. 

Packet classification often involves many fields, subject to 
large dimensionality. As the dimension increases, the search 
performance of a TSS-based approach tends to degrade quickly 
while needed storage may grow exponentially due to the 
combinatorial specification of many fields.  By contrast, adding 
fields under HaRP does not affect the LuHa table at all, and they 
only need longer ASI entries to accommodate them, without 
increasing the number of ASI entries.  Search performance 
hence holds unchanged in the presence of additional fields. 

4 Evaluation and Results 
This section evaluates HaRP using the publicly available 

filter databases, focusing on the distribution results of prefix 
pairs in the LuHa table.  Because the LuHa table is consulted 
2m times for DPL with m treads, the distribution of prefix pairs 
plays a critical role in hashing performance.  Our evaluation 
assumes a 4-way set-associative LuHa table design, with default 
DPL comprising 8 treads:  {32, 28, 24, 20, 16, 12, 8, 1}, chosen 
conveniently, not necessary to yield the best results.  It will 
show that our use of a single set-associative table obtained by 
collapsing individual hash tables (see Figure 1) is effective.  

This work assumes overflows to be handled by linked lists, 
and each element in the linked list contains 4 entries able to hold 
4 additional prefix pairs.  HaRP is compared with other 
algorithms, including the Tuple Space Search, BV, and 
HyperCuts in terms of the storage requirement and measured 
execution time on a multi-core SoC. 

 
4.1 Filter Datasets 

Our evaluation employed the filter database suite from the 
open source of ClassBench [26]. The suite contains three seed 
filter sets: covering Access Control List (ACL1), Firewall 
(FW1), and IP Chain (IPC1), made available by service 

providers and network equipment vendors.  By their different 
characteristics, various synthetic filter datasets with large 
numbers of rules are generated in order to study the scalability 
of classification mechanisms.  For assistance in, and validation 
on, implementation of different classification approaches, the 
filter suite is accompanied with traces, which can also be used 
for performance evaluation as well [29].  The filter datasets 
utilized by our study are listed in the following table. 

Table 1.  Filter datasets 
Seed Filters 

(#filters, trace length)
Synthetic Filters 

(#filters, trace length) 
ACL1(752, 8140) ACL-5K(4415, 45600) ACL-10K(9603, 97000) 
FW1(269, 2830) FW-5K(4653, 46700) FW-10K(9311, 93250) 

IPC1(1550, 17020) IPC-5K(4460, 44790) IPC-10K(9037, 90640) 

4.2 Prefix Pair Distribution in LuHa Table 
The hash function is basic to HaRP.  In this article, a 

simple hash function is developed for use.  First, a prefix key 
is rounded down to the nearest tread in DPL.  Next, simple 
XOR operations are performed on the prefix key and the 
found tread length, as follows: 

tread = find_tread_in_DPL(length of the prefix_key); 
pfx = prefix_key & (0xffffffff << (32-tread)); // round down 
h = (pfx) ^ (pfx>>7) ^ (pfx>>15) ^  tread ^ (tread<<5) ^  
       (tread<<12)^ ~(tread<<18) ^  ~(tread<<25); 
set_num = (h ^  (h >> 5) ^ (h<<13)) % num_of_set; 

While better results may be achieved by using more 
sophisticated hash functions (such as cyclic redundancy codes, 
for example), it is beyond the scope of this article.  Instead, we 
show that a single lumped LuHa table can be effective, and 
most importantly, HaRP* works satisfactorily under a simple 
hash function.  

The results of hashing prefix pairs into the LuHa table are 
shown in Figure 5, where the LuHa tables are properly sized.  
Specifically, the LuHa table is provisioned with ρ = 2 (dilated 
by a factor of 2 relative to the number of filter rules) for HaRP1, 
whereas its size is then reduced by 25% (i.e., ρ = 1.5) to show 
how the single set-associative LuHa table performs with respect 
to fewer treads in DPL under HaRP*.  Figure 5(a) illustrates that 
HaRP1 exhibits no more than 4% of overflowing sets in a 4-way 
set-associative LuHa table.  Note that those results for 5K filter 
datasets (i.e., ACL-5K, FW-5K, and IPC-5K) were omitted in 
Figure 5 so that the remaining 6 curves can be read more easily, 
given that those omitted results lying between the set of results 
for 1K filter datasets and that for 10K datasets.  Only the IPC1 
dataset happens to have 20 prefix pairs mapped into one set.  
This congested set is caused partly by the non-ideal hash 
function and partly by the round-down mechanism of HaRP.  
Nevertheless, the single 4-way LuHa table exhibits good 
resilience in accommodating hash collisions for the vast 
majority (96%) cases.   

When the number of DPL treads is reduced to 6 under 
HaRP*, improved and well-balanced results can be observed in 

  



Figure 5.  Results of hashing round-down prefixes into LuHa table. 
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HaRP1, with dilation factor = 2 and DPL of 8 treads
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HaRP*, with dilation factor = 1.5 and DPL of 4 treads
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HaRP*, with dilation factor = 2 and DPL of 6 treads
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Figure 5(b), where ρ equal 2.  All datasets now experience less 
than 1% overflowing sets, except for ACL1 and IPC1 (which 
have some 4% and 8% overflows, respectively).  Noticeably, 
even the most punishing case of IPC1 encountered in Figure 
5(a) is reassured.  These desirable results hold true when the 
LuHa table size is reduced by 25% and DPL contains fewer 
thread, as shown in Figures 5(c) and 5(d).  Although a few 
congested sets emerge, they are still manageable.  With 6 treads 
in DPL, fewer congested sets, albeit marginal, occur, as 
demonstrated in Figure 5(c), than with 4 threads depicted in 
Figure 5(d).  This is expected, since the hash values are 
calculated over round-down prefixes, and a less number of 
treads leads to wider strides between consecutive treads,  likely 
to make more prefixes identical in hash calculation after being 
rounded down.  Furthermore, fewer treads in DPL implies a 
smaller number of LuHa table candidate sets among which 
prefix pairs can be stored.  These results indicate that a single 
lumped set-associative table for HaRP* is promising in 
accommodating prefix pairs of filter rules in a classification 
dataset effectively. 

 
4.3 Search over ASI Table 

The second stage of HaRP probes the ASI (application-
specific information) table, each of whose entry holds values of 
all remaining fields, as illustrated in Figure 1.  As LuHa table 

search has eliminated all rules whose source and destination IP 
prefixes do not match, pointing solely to those candidate ASI 
entries for further examination. It is important to find out how 
many candidate ASI entries exist for a given incoming packet, 
as they govern search complexity involved in the second stage. 

As described in Section 3.1, we adopt a very simple design 
which puts rules with the same prefix pairs in an ASI chunk. 
While a more optimized design with smaller storage and higher 
lookup performance may be achieved by advanced techniques 
and data structures, we study the effectiveness of HaRP by 
using basic linear lists because of its simplicity. 

The ASI lists are generally short, as shown in Figure 6, 
where the results for 5K filter datasets were omitted again 
for clarity.  Over 95% of them have less than 5 ASI entries 
each, and hence, linear search is adequate.  The ACL1 
dataset is an exception, experiencing a long ASI list with 36 
entries.  By scrutinizing the outcome, we found that this 
case is caused by a large number of rules specified for a 
specific host pair, leading to a poor case since those rules 
for such host pairs fall in the same list.  Furthermore, those 
rules have the form of (0:max_destination_port, ×, tcp), that 
is, a range is specified for the destination port, with the 
source port being wild carded and the protocol being TCP.  
Importantly, the destination port range (0, dpi) for Rule i is a 
sub-range of (0, dpi+1) for Rule i+1.  This is believed to 

   



represent a situation where a number of applications at the 
target host rein accesses from a designated host. 
Nevertheless, fetching all ASI entries within one chunk at a 
time (achievable by placing them in the same word line) 
helps to address long ASI lists, if present (since one ASI 
chunk may easily accommodate 8 entries, each with 80 bits, 
as stated in the next subsection). 

Note that the ASI distribution is orthogonal to the 
selection of DPL and to the LuHa table size.  Filter rules are 
put in the same ASI list only if they have the same prefix 
pair combination. 

 
 

4.4 Storage Requirements 
Table 2 shows memory storage measured for the rule 

datasets.  Each LuHa entry is 12-byte long, comprising two 
32b IP address prefixes, two 5b prefix length indicators, a 
16b pointer to the ASI table, and a 6b integer indicating the 
length of its associated linked list.  Each ASI entry needs 10 
bytes to keep the port ranges and the protocol type, plus two 
bytes for the rule number (i.e., the priority). 

Table 2.  Memory size 

 
Total Storage (in KB, or 

otherwise MB as specified) 
Per Rule Storage(Byte, or 
otherwise KB as specified)

 HaRP Tuple 
Space    BV Hyper-

Cuts HaRP Tuple
Space BV Hyper

-Cuts

FW1 4.64 22.72 10.50 10.19 17.66 86.49 40 36.79

ACL1 13.79 44.19 52.14 20.24 18.78 60.18 71 25.56

IPC1 29.17 56.26 92.33 91.19 19.27 37.17 61 58.25

FW-5K 101.0 629.5 3.07M 4.10M 22.23 138.5 691 922.3

ACL-5K 76.54 157.7 1.08M 136.8 17.75 36.57 257 29.73

IPC-5K 90.56 199.4 1.52M 332.6 20.79 45.79 358 74.34

FW-10K 217.3  1.68M 14.05M 25.05M 23.9 189.2 1.54K 2.75K

ACL-10K 192.5 403.4 7.31M 279.4 20.52 43.02 798 27.79

IPC-10K 187.5 449.8 6.79M 649.5 21.24 50.97 788 71.60

 
As listed in Table 2, HaRP enjoys clear superiority 

when compared with its previous counterparts, whose 
implemented source codes were available publicly [29] and 

employed to gather their respective results included here. 
HaRP dramatically reduces memory storage needed and 
demonstrates consistent levels of storage requirement across 
all datasets examined.  Previous techniques, especially those 
using decision-tree- or trie-based algorithms, exhibit rather 
unpredictable outcomes because the size of a trie largely 
depends on if datasets have comparable prefixes to enable 
trie contraction; otherwise, a trie can grow quickly toward 
full expansion.  Among prior techniques, tuple space search 
(TSS) [24] and HyperCuts [20] show better results, 
although they still require more memory than HaRP.  Those 
listed outcomes generally indicate what can be best 
achieved by the cited techniques.  For TSS, as an instance, 
Tuple Pruning is implemented, but not pre-computed 
markers which increase storage requirement (see Section 
2.2 and Figure 4 for details).  For HyperCuts, its refinement 
options are all turned on, including rule overlapping and 
rule pushing for the most optimization results [20]. 
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Figure 6. Length distribution of ASI link lists.

The results of memory efficiency, defined as the ratio 
between the total storage of constituent data structures (which 
include the provisioned but not occupied entries for the LuHa 
table in HaRP) and the minimal storage required to keep all 
filter rules (as in a linear array of rules), for various algorithms 
are listed in Table 3.   

Table 3.  Memory efficiency 

 
HaRP 
(ρ = 2) 

HaRP 
(ρ = 1.5) 

Tuple 
Space BV Hyper-

Cuts 
FW1 1.62 1.35 3.60 1.67 1.93 

ACL1 1.58 1.31 2.51 2.96 1.38 
IPC1 1.58 1.31 1.55 2.54 3.01 

FW-5K 1.59 1.32 5.77 28.83 46.21 
ACL-5K 1.58 1.31 1.52 10.69 1.59 
IPC-5K 1.58 1.31 1.91 14.89 3.82 
FW-10K 1.58 1.31 7.88 65.93 141.0 
ACL-10K 1.58 1.31 1.79 33.26 1.49 
IPC-10K 1.59 1.37 2.12 32.83 3.68 

 
   There are a number of interesting findings.  First of all, 

HaRP consistently delivers greater efficiency than all other 
algorithms.  When the LuHa table is dilated by a factor ρ = 2, all 
memory data structures allocated are no more than 50% of the 
amount required to keep the rules.  If the LuHa table size is 
reduced to ρ = 1.5, total storage drops by 25%.  In general, a 
smaller LuHa table yields lower performance because of more 
hash collisions.  However, the next section will show measured 
results on multi-core systems under a small LuHa table (with ρ 
= 1.5) and small DPL to deliver satisfactory performance 
comparable to that under larger tables. 

  Contrary to HaRP enjoying consistent efficiency always, all 
other methods exhibit unsteady results.  When the number of 
filter rules is small, those methods may achieve reasonable 
memory efficiency.  As the dataset size grows, their efficiency 
results vary dramatically.  For HyperCuts [20] (which uses a 
multi-way branch trie), its size largely depends on if datasets 

  



have comparable prefixes that enable trie contraction; 
otherwise, the trie can grow exponentially toward full 
expansion. A decision tree-based method suffers from the fact 
that its number of kept rules may blow up quickly under a filter 
dataset with plentiful wild-carded rules. The less specific filter 
rules are, the lower memory efficiency it becomes, because a 
wild-carded rule holds true for all children at a node irrespective 
of the number of branches (cuts) made therein.  (We have seen 
consistent trends for large datasets comprising 20K and 30K 
rules generated using the tool included in the ClassBench [26].)  
As analyzed in Section 3.1 and shown in Figure 2, the FW 
applications have over 60% wild-carded IP addresses (versus 
some 0.1% to 8% for ACL and IPC), yielding the worst 
memory efficiency consistently in Table 3.  To a large degree, 
TSS [24] and BV [13] also leverage tries to narrow the search 
scope and hence are subject to the same problem.  Furthermore, 
TSS employs one hash table per tuple in the space, likely to 
bloat the memory size because of underutilized hash tables.  For 
BV, the n-bit vector stored at each leaf node of a trie is the main 
culprit for being memory guzzler. 

Section 5.2 will demonstrate the measured performance 
results of HaRP, revealing that it not only achieves the best 
memory efficiency among all known methods but also 
classifies packet at four times faster than HyperCuts, and an 
order of magnitude higher than TSS and BV, under our 
multi-core evaluation platform. 

5 Scalability and Lookup Performance on Multi-Cores 
As each packet can be handled independently, packet 

classification suits a multi-core system well [6].  Given a multi-
core processor with np cores, a simple implementation may 
assign a packet to any available core at a time so that np packets 
can be handled in parallel by np cores.   

In this section, we present and discuss performance and 
scalability of HaRP in comparison with those of its counterparts 
BV [13], TSS [24], and HyperCuts [20].  Two HaRP 
configurations are considered: (1) basic HaRP with the LuHa 
table under a dilation factor ρ = 2 and with 8 treads in DPL, and 
(2) HaRP* with the LuHa table under ρ = 1.5 and with only 4 
treads in DPL.  By comparing results obtained for basic HaRP 
and HaRP*, we can gain insight into how the LuHa table size 
and the number of treads affect lookup performance.    

For gathering measures of interest on our multi-core 
platform, our HaRP code was made multithreaded for 
execution.  With those source codes for BV, TSS and HC 
implementations taken from the public source [29], we closely 
examined and polished them by removing unneeded data 
structures and also replacing some poor code segments with in 
order to get best performance levels of those referenced 
techniques.  All those program codes were also made 
multithreaded to execute on the same multi-core platform, with 
their results presented in next sections. 

5.1 Data Footprint Size  
Because search is performed on each hashed set sequentially 

by a core, it is important to keep the footprint small so that the 
working data structure can fit into its caches, preferably the L1 
(level-one) cache dedicated to a core.  According to Table 3, 
HaRP requires the least amount of memory provisioned; Table 
2 shows the actual data sizes to be much smaller.  By our 
measurement, the FW-10K dataset has the largest size of some 
200 KB.  As a result, it is quite possible to hold the entire data 
structure in the L1 cache of a today’s core, even under large 
dataset sizes.  This advantage in containing the growth of its 
data footprint size as the number of rules increases is unique to 
HaRP (and not shared by any prior technique), rendering it 
particularly suitable for multi-core implementation to attain high 
performance. 
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Figure 7.  Average number of bytes fetched per lookup.
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The behavior of HaRP driven by the traces provided with 
filter datasets [29] was evaluated to obtain the first order of 
measurement on the data footprint for lookups.   Figure 7 
depicts the mean number of bytes fetched per packet lookup, a 
conventionally adopted metric for comparing classification 
methods [20].  In general, HaRP enjoys lower average footprint 
per lookup, except when it is compared to BV under small filter 
datasets.  Because HaRP always probes 2m LuHa sets 
(irrespective of the dataset size), it could incur more overhead 
than other techniques which use guided searches.  However, 
when m is kept small and as the dataset size rises, our HaRP 
starts to prevail.  Most importantly, as demonstrated in Figure 8, 
the deterministic procedure to probe 2m LuHa sets under m 
DPL treads yields more stable worst-case results across various 
rule datasets (which might possess different characteristics). 

In the case of TSS, the data footprint is proportional to the 

   



num

Table 4.  Mean number of accessed tuples per lookup (TSS) 

ber of hash probes performed for a packet.  In the firewall 
(FW) applications, TSS fetches 8 to 10 times more tuples (i.e., 
hash table accesses) than ACL and IPC applications, as depicted 
in the following table.  As a result, the mean and the worst-case 
data footprints for FW are all far larger than those for ACL and 
IPC.  In the next subsection, FW will be observed to deliver 
much lower classification rates due to its excessive hash probes. 

FW1 ACL1 IPC1 FW-5K ACL- IPC-5K FW- ACL- IPC-
5K 10K 10K 10K 

72.95 6.30 11.45 68.2 1  0.68 9.24 67.76 6.73 8.69 
 
For HyperCuts, the results also fluctuate, depending on the 

dept

en it needs to check 
ever

Table 5.  Search performance (in terms of mean number 

h of the decision tree and the number of rules that are 
pushed up from the leaves and stored at the intermediate nodes.   
Pushing common rule subsets upward, the trie structure is an 
important technique for saving storage in HC [20].  The idea is 
to keep a common set of rules at the parent node if the rules 
hold true for all of its child nodes.  In this way, rules can be 
associated with non-leaf nodes to save storage by avoiding 
replicas at the leaves.  Adversely, this optimization heuristic 
requires inspection of rules kept at the non-leaf nodes while 
traversing the trie during lookups.  Hence, it can lead to a large 
data footprint, as shown in Figure 7.   

For BV, the worst case happens wh
y single bit of the n-bit vector obtained by matching each 

individual field (for n rules).  As a result, the worst-case number 
of BV grows consistently with the number of rules, and it is also 
the biggest worst-case footprint among all techniques examined. 

of entries) per lookup under basic HaRP and HaRP*

LuHa Search ASI Search 
ρ = 2, H HaRP*  ρ  = 2, H , HaRP*aRP ρ = 1.5, aRP ρ = 1.5 
Mean number of prefix pair Mean number of entries 

 

C
hecked 

M
a

M
atched 

C
hecked 

tched 

C
hecked 

C
hecked 

FW1  1 1  1 2 214.32 .28 0.42 .20 .22 .20 
ACL1 25.67 1.52 21.81 1.53 1.85 1.88 
IPC1 39.47 2.03 34.50 1.98 1.73 1.73 

F  W-5K 16.69 1.01 11.71 1.01 1.20 1.20 
ACL-5K 18.31 1.17 12.88 1.22 3.38 3.25 
IPC-5K 21.13 1.39 19.03 1.58 1.66 1.74 
FW-10K 19.37 1.00 14.76 1.01 1.00 1.00 

ACL-10K 17.57 1.14 13.53 1.13 1.64 1.65 
IPC-10K 21.64 1.36 17.94 1.53 1.64 1.69 

 
As can be observed in Figures 7 and 8, HaRPP

* often 
exhibits smaller footprints than basic HaRP.  Although the 
LuHa table under HaRP* (with ρ = 1.5) is 25% smaller than that 
under basic HaRP (with ρ = 2) and consequently the former has 

a lot more well populated hash sets (see Figure 5(d)) than the 
latter (see Figure 5(a)), the use of 4 DPL treads in HaRPP

* saves 
8 hash probes per classification lookup, in comparison to basic 
HaRP (namely, 8 probes to more occupied sets versus 16 probes 
to less occupied sets).  The mean numbers of matched entries 
under two HaRP configurations differ only a little, as depicted 
in Table 5, where the first and the third result columns list the 
average numbers of prefix pairs inspected per packet 
classification under basic HaRP and HaRP*

P

easured execution time 
resu

, respectively.   
Clearly, HaRP* touches and inspects fewer prefix pairs than 
basic HaRP, due to fewer hash probes.  The second and the 
fourth column contain the average numbers of prefix pairs 
matched.  On average, less than two prefix pairs match in the 
LuHa table per classification lookup, signifying that the two-
stage lookup procedure of HaRP is effective.  Finally, the last 
two columns list the mean numbers of ASI tuples inspected 
with respect to each matched prefix pair.  The mean numbers 
are small, suggesting that linear search as being performed in 
this work may suffice. Obviously, a more sophisticated scheme 
(such as a trie) could be employed, if ASI lists are long and 
sequential search becomes inefficient. 

The next subsection presents m
lts when basic HaRP and HaRP* are executed on our multi-

core platform, uncovered that HaRPP

5.2 Measured Performance on BCM-1480 MultiCore SoC 
ection 

migh

P, BV, TSS, and HC (HyperCuts) is 
mea

* outperforms its basic 
counterpart, because it incurs few hashing probes and accesses 
to more populated sets for better caching behavior. 

While data footprint results presented in the last subs
t reveal relative performance of different classification 

techniques (given the memory system is generally deemed as 
the bottleneck), computation steps or the mechanisms involved 
in dealing with the data structures are equally important and 
have to be taken into consideration.  To arrive at more accurate 
evaluation, we executed all classification programs on a 
platform comprising a Broadcom’s BCM-1480 4-core SoC 
[18].  BCM 1480 has four 700MHz SB-1™ MIPS cores [12], 
with each SB-1™ core a four-way in-order issue, superscalar 
design with separate 32K four-way set-associative instruction 
and data caches.  The non-blocking data cache supports 8 
outstanding misses.  The cores are connected by a high-speed 
ZBbus and a unified 1MB, L2 cache keeps the active data 
structures to back up the smaller L1 caches.  The memory 
system supports at most two x64 400MHz DDR channels, but 
our evaluation platform is equipped with only one channel 
clocked at 280MHz, giving rise to theoretical memory 
bandwidth of 35 Gbps.   

Performance for HaR
sured. TSS generally holds its promise on a reduced 

number of hash probes it requires.  In this implementation, two 
tries (one for source IP and another for destination IP) were 
constructed.   During lookups, LPM (longest prefix matching) 
to the two tries produced two lists of candidate tuples, each 
realized by one hash table.  Corresponding hash tables in the 
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Figure 9.   Measured throughput results on Broadcom BCM-1480 4-core SoC (in relative scale). 

intersection of the two lists (namely, intersected tuples) are then 
probed.  All executed programs were made multithreaded such 
that up to 4 threads could be launched to take advantage of the 4 
SB-1TM cores.  Millions of packets were generated from the 
traces packaged together with the rule datasets to measure the 
real elapsed times via the BCM-1480 ZBus counter, which ticks 
at every system clock. 

Results depicted in Figure 9 are all relatively scaled to one 
thread HyperCuts performance, which is shown as a consistent 
scal

 
2.4 t

stemming from the fact it employs 
DPL

e of one across the graph for clear and system configuration-
independent comparison.  Labels on the x-axis of Figure 9 
denote different techniques (i.e., BV, HyperCuts, TSS, and 
HaRP) executed on varying numbers of BCM-1480 cores (i.e., 
1, 2, and 4).  For example, BV(2) (or Tuple(4)) refers to BV (or 
TSS) run on 2 (or 4) cores.  When the number of threads rises 
from 1 to 2 and then 4, HC shows a nearly linear scalability (in 
terms of raw classification rates) with respect to the number of 
cores.  This scalability trend indeed exists for all techniques 
because packet classification is inherently parallel, as expected. 

Overall, HaRP demonstrates the highest throughput among 
all techniques.  On a per core basis, HaRP consistently delivers

o 3.5 times improvement over HC under the nine filter 
datasets. When compared with TSS, basic HaRP performs 2 to 
3 times better than TSS under ACL and IPC filter datasets, and 
8 times under the firewall applications (FWs).  This is because 
HaRP requires fewer hash probes than TSS under firewall 
datasets.  Our HaRP always performs 2m lookups, equal to 16 
for m = 8.  Contrary to HaRP, TSS performs as many as four 
times more hash probes under Firewall (see Table 4).  For ACL 
and IPC datasets, TSS may require slightly fewer hash table 
lookups, but that advantage is more than negated by its two 
LPM search passes over the tries, with respect to the source and 
the destination IP prefixes. Furthermore, the smaller data 
footprint enjoyed by HaRP (demonstrated in Figure 7) leads to 
better cache performance.  

Relative performance exhibited by HaRP* is even greater 
than that by basic HaRP, 

 with 4 treads, as opposed to 8 treads for HaRP.  This 
brings the number of hash probes per lookup from 16 down to 
8, incurring less hashing overhead.  Most importantly, HaRPP

* is 
expected to be more caching-friendly, because accessing prefix 
pairs located in 8 sets should enjoy better caching locality than 
prefix pairs spread across 16 sets.  Even though HaRP*

P  uses a 
LuHa table which is 25% smaller than that of HaRP, HaRPP

it sta

ent 
filter

m that TSS can outperform HC in such a wide 
ma

* 
outperforms HC (or TSS) by 4 to 5 times (or 3 to 10 times), on 
an average, under the nine datasets, as demonstrated in Figure 9. 

When compared to HC, BV shows poor performance with 
O(10) degradation, especially for large filter datasets.  Because 

rts with five LPM search processes across separate tries for 
individual header fields to produce a list of candidate rules in 
order to get a 5-field cross product, BV is inefficient for 
software implementation run on a multi-core platform, since its 
processor caches are expected to be trashed due to the large 
footprint incurred, as revealed in Figures 7 and 8.  Thus, BV is 
better suitable for custom hardware with parallelism supported 
by high memory bandwidth, suffering from poor scalability. 

Table 4 lists the average number of tuples (i.e., hash tables) 
fetched per packet lookup under TSS, with respect to differ

 datasets examined.  Hash probes for firewall applications 
(FWs) are far more than those for ACL and IPC datasets.  This 
is consistent with the results of Figures 7 and 8, where FWs 
exhibit large footprints.  Under FWs, TSS delivers 50% to 70% 
less performance than HC on a per-core basis.  However, TSS 
outperforms HC under ACL and IPC datasets by as much as 
nearly 100%. 

  According to the average footprint results given in Figure 7, 
it does not see

rgin.  For ACL-5K and ACL-10K datasets, HC reads 
roughly the same amount (but no more than 10%) of data bytes 
as TSS.  However, TSS delivers almost 100% higher 

   



throughputs per core.  Under IPC-5K and IPC-10K, TSS 
fetches about 50% less data than HC and shows 47% higher 
throughput.   It confirms that the data footprint can indeed give 
first-order estimation on how well a technique could perform, 
but the code path during execution is nevertheless critical.  By 
inspecting the disassembled HC code, we found that the code 
path for HC could be long.   For example, at each step 
traversing the decision tree, the number of bits to be extracted 
from a field needs to be determined, and next the extracted bits 
are used to calculate the location of the next child in the decision 
tree.  In brief, the total number of splits (i.e., children) of a node 
is specified by NC = Πi nc(i), where nc(i) is the number of cuts 
performed on the ith header field.  During search, log2(nc(i)) bits 
are extracted from the appropriate positions in the ith field; 
assuming the decimal value represented by the extracted bits is 
vi,  the number of child positions in the linear array covering the 

NC space is then expressed by D
D

ij

D

i
i vjncv +Π×∑

+=

−

=
)(

1

1

1
 for D 

dimensions. These operations seem hey can 
take hundreds of cycles to com ificant 
performance loss, as observed above. 

 simple, but in fact, t
plete, causing a sign

6 Concluding Remarks 
Packet classification is 

functionality and services, b
essential for most network system 
ut it is complex since it involves 

comparing multiple fields in a packet header against entries in 
the filter dataset to decide the proper rule to apply for handling 
the packet [9].  This article has considered a rapid packet 
classification mechanism realized by hashing round-down 
prefixes (HaRP) able to not only exhibit high scalability in 
terms of both the classification time and the SRAM size 
involved, but also effectively handle incremental updates to the 
filter datasets.  Based on a single set-associative LuHa hash 
table (obtained by lumping a set of hash table units together) to 
support two-staged search, HaRP promises to enjoy better 
classification performance than its known software-oriented 
counterpart, because the LuHa table narrows the search scope 
effectively based on the source and the destination IP addresses 
of an arrival packet during the first stage, leading to fast search 
in the second stage.  With its required SRAM size lowered 
considerably, HaRP makes it possible to hold entire search data 
structures in the local cache of each core within a contemporary 
processor, further elevating its classification performance. 

The LuHa table admits each filter rule in a set with lightest 
occupancy among all those indexed by hash(round-down sip) 
and hash(round-down dip), under HaRPP

 
has 

 HaRP , as we have 
witn
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*.  This lowers 
substantially the likelihood of set overflow, which occurs only 
when all indexed sets are full, attaining high SRAM storage 
utilization.  It also leads to great scalability, even for small LuHa 
table set-associativity (of 4), as long as the table is dilated by a 
small factor (say, ρ = 1.5 or 2). Our evaluation results have 
shown that HaRP* with the set associative degree of 4, generally 
experiences very rare set overflow instances (i.e., no more than 

1% of those sets in the LuHa table with ρ = 2 under all studied 
filter datasets other than ACL1 and IPC1, if DPL has 6 treads). 

Empirical assessment of HaRP has been conducted on our 
platform comprising a Broadcom’s BCM-1480 SoC [18], which

four 700MHz SB-1TM MIPS cores [12].  A simple hashing 
function was employed for our HaRP implementation.  
Extensive measured results demonstrate that HaRP* 
outperforms HC [20] (or TSS [24]) by 4 to 5 times (or 3 to 10 
times), on an average, under the nine databases examined, when 
its LuHa table is with ρ = 1.5 and there are 4 DPL treads.  
Besides its efficient support for incremental rule updates, our 
proposed HaRP also enjoys far better classification performance 
than previous software-based techniques. 

Note that theoretically pathological cases may occur 
despite encouraging pragmatic results by *

essed in this study.  For example, a large number of (hosts 
on the same subnet with) prefixes P|w can differ only in a few 
bits. Hence, those prefixes can be hashed into the same set after 
being rounded down, say P|w to P|li, for li ≤ w < li+1, under 
HaRP*.  There are possible ways to deal with such cases and to 
avoid overwhelming the indexed set.   A possible means is to 
use one and only one entry to keep the round-down prefix P|li, 
as opposed to holding all P|w’s in individual entries following 
the current design.  Subsequently, the (w - li) round-down bits 
can form a secondary indexing structure to provide the 
differentiation (among rules specific to each host) and/or the 
round-down bits can be mingled with the remaining fields of the 
filter rules.   Thus, each stage narrows the range of search by 
small and manageable structures.  These possible options will 
be explored in the future. 
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