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Abstract

Wireless reprogramming of sensor nodes is an essential
requirement for long-lived networks since the software
functionality changes over time. The amount of infor-
mation that needs to be wirelessly transmitted during
reprogramming should be minimized since reprogram-
ming time and energy depend chiefly on the amount of
radio transmissions. In this paper, we present a multi-
hop incremental reprogramming protocol called Zephyr
that transfers the delta between the old and the new soft-
ware and lets the sensor nodes rebuild the new software
using the received delta and the old software. It reduces
the delta size by using application-level modifications to
mitigate the effects of function shifts. Then it compares
the binary images at the byte-level with a novel method
to create small delta, that is then sent over the wireless
network to all the nodes. For a wide range of software
change cases that we experimented with, we find that
Zephyr transfers 1.83 to 1987 times less traffic through
the network than Deluge, the standard reprogramming
protocol for TinyOS, and 1.14 to 49 times less than an
existing incremental reprogramming protocol by Jeong
and Culler.

1 Introduction
Large scale sensor networks may be deployed for long
periods of time during which the requirements from the
network or the environment in which the nodes are de-
ployed may change. This may necessitate modifying the
executing application or retasking the existing applica-
tion with different sets of parameters, which we will col-
lectively refer to as reprogramming. Once deployed, it
may be very difficult to manually reprogram the sensor
nodes because of the scale (possibly hundreds of nodes)
and the embedded nature of the deployment since the
nodes may be situated in places which are difficult to
reach physically. The most relevant form of reprogram-
ming is remote multi-hop reprogramming using the wire-

less medium which reprograms the nodes as they are em-
bedded in their sensing environment. Since the perfor-
mance of the sensor network is greatly degraded, if not
reduced to zero, during reprogramming, it is essential to
minimize the time required to reprogram the network.
Also, as the sensor nodes have limited battery power, en-
ergy consumption during reprogramming should be min-
imized. Since reprogramming time and energy depend
chiefly on the amount of radio transmissions, the repro-
gramming protocol should minimize the amount of in-
formation that needs to be wirelessly transmitted during
reprogramming.

In practice, software running on a node evolves, with
incremental changes to functionality, or modification of
the parameters that control current functionality. Thus
the difference between the currently executing code and
the new code is often much smaller than the entire code.
This makes incremental reprogramming attractive be-
cause only the changes to the code need to be transmitted
and the entire code can be reassembled at the node from
the existing code and the received changes. The goal of
incremental reprogramming is to transfer a small delta
(difference between the old and the new software) so that
reprogramming time and energy can be minimized.

The design of incremental reprogramming on sensor
nodes poses several challenges. A class of operating sys-
tems, including the widely used TinyOS [1], does not
support dynamic linking of software components on a
node. This rules out a straightforward way of transfer-
ring just the components that have changed and linking
them in at the node. The second class of operating sys-
tems, represented by SOS [6] and Contiki [5], do sup-
port dynamic linking. However, their reprogramming
support also does not handle changes to the kernel mod-
ules. Also, the specifics of the position independent code
strategy employed in SOS limits the kinds of changes to
a module that can be handled. In Contiki, the require-
ment to transfer the symbol and relocation tables to the
node for runtime linking increases the amount of traffic



that needs to be disseminated through the network.
In this paper, we present a fully functional incremen-

tal multi-hop reprogramming protocol called Zephyr. It
transfers the changes to the code, does not need dynamic
linking on the node and does not transfer symbol and
relocation tables. Zephyr uses an optimized version of
the Rsync algorithm [20] to perform byte-level compar-
ison between the old and the new code binaries. How-
ever, even an optimized difference computation at the
low level can generate large deltas because of the change
in the positions of some application components. There-
fore, before performing byte-level comparison, Zephyr
performs application-level modifications, most impor-
tant of which is function call indirections, to mitigate the
effects of the function shifts caused by software modifi-
cation.

We implement Zephyr on TinyOS and demonstrate
it on real multi-hop networks of Mica2 [2] nodes and
through simulations. Zephyr can also be used with SOS
or Contiki to upload incremental changes within a mod-
ule. We evaluate Zephyr for a wide range of software
change cases,—from a small parameter change to almost
complete application rewrite—, using applications from
the TinyOS distribution and various versions of a real
world sensor network application called eStadium [3] de-
ployed at the Ross-Ade football stadium at Purdue Uni-
versity. Our experiments show that Deluge [7], Stream
[16], and the incremental protocol by Jeong and Culler
[8] need to transfer up to 1987, 1324, and 49 times more
number of bytes than Zephyr, respectively. This trans-
lates to a proportional reduction in reprogramming time
and energy for Zephyr. Furthermore, Zephyr enhances
the robustness of the reprogramming process in the pres-
ence of failing nodes and lossy or intermittent radio links
typical in sensor network deployments due to signifi-
cantly smaller amount of data that it needs to transfer
across the network.

Our contributions in this paper are as follows: 1) We
create a small-sized delta for dissemination using opti-
mized byte-level comparisons. 2) We design application-
level modifications to increase the structural similar-
ity between different software versions, also leading to
small delta. 3) We allow modification to any part of the
software (kernel plus user code), without requiring dy-
namic linking on sensor nodes. 4) We present the design,
implementation and demonstration of a fully functional
multi-hop reprogramming system. Most previous work
has concentrated on some of the stages of the incremen-
tal reprogramming system, but not delivered a functional
complete system.

2 Related work
The question of reconfigurability of sensor networks has
been an important theme in the community. Systems

such as Mate [10] and ASVM [11] provide virtual ma-
chines that run on resource-constrained sensor nodes.
They enable efficient code updates, since the virtual ma-
chine code is more compact than the native code. How-
ever, they trade off, to different degrees, less flexibility in
the kinds of tasks that can be accomplished through vir-
tual machine programs and less efficient execution than
native code. Zephyr can be employed to compute incre-
mental changes in the virtual machine byte codes and is
thus complementary to this class.

TinyOS is the primary example of an operating system
that does not support loadable program modules. Sev-
eral protocols provide reprogramming with full binaries,
such as Deluge [7] and Stream [16]. For incremental re-
programming, Jeong and Culler [8] use Rsync to com-
pute the difference between the old and new program
images. However, it can only reprogram a single hop
network and does not use any application-level modifi-
cations to handle function shifts. We compare the delta
size generated by their approach and use it with an exist-
ing multi-hop reprogramming protocol to compare their
reprogramming time and energy with Zephyr. In [19],
the authors modify Unix’s diff program to create an edit
script to generate the delta. They identify that a small
change in code can cause a lot of address changes result-
ing in a large size of the delta. Koshy and Pandey [9] use
slop regions after each function in the application so that
the function can grow. However, the slop regions lead to
fragmentation and inefficient usage of the Flash and the
approach only handles growth of functions up to the slop
region boundary. The authors of Flexcup [13] present
a mechanism for linking components on the sensor node
without support from the underlying OS. This is achieved
by sending the compiled image of only the changed com-
ponent along with the new symbol and relocation tables
to the nodes. This has been demonstrated only in an em-
ulator and makes extensive use of Flash. Also, the sym-
bol and relocation tables can grow very large resulting in
large updates.

Reconfigurability is simplified in OSes like SOS [6]
and Contiki [5]. In these systems, individual modules
can be loaded dynamically on the nodes. Some mod-
ules can be quite large and Zephyr enables the upload of
only the changed portions of a module. Specific chal-
lenges exist in the matter of reconfiguration in individual
systems. SOS uses position independent code and due
to architectural limitations on common embedded plat-
forms, the relative jumps can only be within a certain
offset (such as 4 KB for the Atmel AVR platform). Con-
tiki disseminates the symbol and relocation tables, which
may be quite large (typically these tables make up 45%
to 55% of the object file [9]). Zephyr, while currently
implemented in TinyOS, can also support incremental
reprogramming in these OSes by enabling incremental
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Figure 1: Overview of Zephyr

updates to changed module and updates to kernel mod-
ules.

Distinct from this work, in [15], we show that further
orthogonal optimizations are possible to reduce the delta
size, e.g., by mitigating the effect of shifts of global data
variables. One of the drawbacks of Zephyr is that the la-
tency due to function call indirection increases linearly
with time. This is especially true for sensor networks
because typical sensor applications operate in a loop —
sample the sensor, perform some computations, trans-
mit/forward the sensed value to other nodes and repeat
the same process. In [15], we solve this while loading
the newly rebuilt image from the external flash to the
program memory by replacing each jump to the indirec-
tion table with a call to the actual function by reading
the function address from the indirection table. In this
way, we can completely avoid the function call latency
introduced by Zephyr.

3 High level overview of Zephyr
Figure 1 is the schematic diagram showing various stages
of Zephyr. First Zephyr performs application-level mod-
ifications on the old and new versions of the software to
mitigate the effect of function shifts so that the similar-
ity between the two versions of the software is increased.
Then the two executables are compared at the byte-level
using a novel algorithm derived from the Rsync algo-
rithm [4]. This produces the delta script which describes
the difference between the old and new versions of the
software. These computations are performed on the host
computer. The delta script is transmitted wirelessly to
all the nodes in the network using the delta distribution
stage. In this stage, first the delta script is injected by
the host computer to the base node (a node physically at-
tached to the host computer via, say a serial port). The
base node then wirelessly sends the delta script to all
nodes in the network, in a multi hop manner, if required.
The nodes save the delta script in their external flash
memory. After the sensor nodes complete download-
ing the delta script, they rebuild the new image using the

delta and the old image and store it in the external flash.
Finally the bootloader loads the newly built image from
the external flash to the program memory and the node
runs the new software. We describe these stages in the
following sections. We first describe byte-level compar-
ison and show why it is not sufficient and thus motivate
the need for application-level modifications.

4 Byte-level comparison
We first describe the Rsync algorithm [20] and then our
extensions to reduce the size of the delta script that needs
to be disseminated.

4.1 Application of Rsync algorithm
Rsync is an algorithm originally developed to update bi-
nary data between computers over a low bandwidth net-
work. Rsync divides the files containing the binary data
into fixed size blocks. Both sender and receiver compute
the pair (Checksum, MD4) over each block. If this algo-
rithm is used as is for incremental reprogramming, then
the sensor nodes need to perform expensive MD4 com-
putations for the blocks of the binary image that they
have. So, we modify Rsync such that all the expen-
sive operations regarding delta script generation are per-
formed on the host computer and not on the sensor nodes.
The modified algorithm runs on the host computer only
and works as follows: 1) The algorithm first generates
the pair (Checksum, MD4 hash) for each block of the
old image and stores them in a hash table. 2) The check-
sum is calculated for the first block of the new image.
3) The algorithm checks if this checksum matches the
checksum for any block in the old image by hash-table
lookup. If a matching block is found, Rsync compares
if their MD4 hash also match. If MD4 also matches,
then that block is considered as a matching block. If no
matching block is found for either checksum or MD4,
then the algorithm moves to the next byte in the new
image and the same process is repeated until a match-
ing block is found. Note that if two blocks do not have
the same checksum, then MD4 is not computed for that



block. This ensures that the expensive MD4 computation
is done only when the inexpensive checksum matches be-
tween the 2 blocks. The probability of collision is not
negligible for two blocks having the same checksum, but
with MD4 the collision probability is negligible.

After running this algorithm, Zephyr generates a list
of COPY and INSERT commands for matching and non
matching blocks respectively:

COPY <oldOffset> <newOffset> <len>
INSERT <newOffset> <len> <data>

COPY command copies len number of bytes from old-
Offset at the old image to newOffset at the new image.
Note that len is equal to the block size used in the Rsync
algorithm. INSERT command inserts len number of
bytes, i.e. data, to newOffset of the new image. Note
that this len is not necessarily equal to the block size or
its multiple.
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Figure 2: Finding super block

4.2 Rsync optimization
With the Rsync algorithm, if there are � contiguous
blocks in the new image that match � contiguous blocks
in the old image, � number of COPY commands are
generated. We change the algorithm so that it finds the
largest contiguous matching block between the two bi-
nary images. Note that this does not simply mean merg-
ing � COPY commands into one COPY command. As
shown in Figure 2, let the blocks at the offsets � and �����
in the new image match those at the offsets � and �	�
�
respectively in the old image. Let blocks at � through
���� of the new image match those at � through �����
respectively of the old image. Note that blocks at � and
����� match those at � and ����� and also at � and
����� . The Rsync algorithm creates two COPY com-
mands as follows: COPY � y ��� B ��� x � and COPY � y+1 �
� B ��� x+1 � , where � is the block size. Then simply com-
bining these 2 commands as COPY � y ��� 2*B ��� x � does
not result in the largest contiguous matching block. The
blocks at the offsets � through ����� form the largest con-
tiguous matching block. We call contiguous matching
blocks a super-block and the largest super-block the max-
imal super-block. The optimized Rsync algorithm finds
the maximal super-block and uses that as the operand in
the COPY command. Thus, optimized Rsync produces a
single COPY command as COPY � z ��� 4*B ��� x � . Figure

3 shows the pseudo code for optimized Rsync. Its com-
plexity is �! "�$#&% where � is the number of bytes in the
image. This is not of a concern because the algorithm
is run on the host computer and not on the sensor nodes
and only when a new version of the software needs to be
disseminated. As we will show in Section 8.2, optimized
Rsync running on the desktop computer took less than
4.5 seconds for a wide range of software change cases
that we experimented with.

/* Terminology
mbl=matching block list
cbl=contiguous block list
*/
1.   j=0 and cblStretch=0
2.   while j< number of bytes in the new image
3.     mbl=findAllMatchingBlocks(j)
4.     if mbl is empty
5.         j++
6.         if cbl is not empty
7.             Store any one element in cbl as maximum superblock
8.         go to 2
9.         else
10.          j=j+blockSize
11.          if (cblStretch==0)
12.            cbl=mbl
13.            cblStretch++
14.            go to 2
15.          else
16.            Empty tempCbl
17.            for each element in cbl do
18.              if (cbl.element + cblStretch == any entry in mbl )
19.                tempCbl=tempCbl U {cbl.element}
20.              if tempCbl is empty
21.                Store any one element in cbl as maximum superblock
22.                Empty cbl
23.                cblStretch=0
24.              else
25.                cbl=tempCbl
26.                cblStretch++
27.              go to 2
28. end while
findAllMatchingBlocks ( j )
     /*Same as Rsync algorithm, but instead of  returning the offset
     of just one matching block, returns a linked list consisting
     of offsets of all matching blocks in the old image for the
     block starting at offset j in the new image.*/

Figure 3: Pseudo code of optimized Rsync that finds
maximal super block

4.3 Drawback of using only byte-level com-
parison

To see the drawback of using optimized Rsync alone, we
consider two cases of software changes.

Case 1: Changing Blink application: Blink is an appli-
cation in TinyOS distribution that blinks an LED on the
sensor node every one second. We change the applica-
tion from blinking green LED every second to blinking
it every 2 seconds. Thus, this is an example of a small
parameter change. The delta script produced with opti-
mized Rsync is 23 bytes which is small and congruent
with the actual amount of change made in the software.

Case 2: We added just 4 lines of code to Blink. The
delta script between the Blink application and the one
with these few lines added is 2183 bytes. The actual
amount of change made in the software for this case is



slightly more than that in the previous case, but the delta
script produced by optimized Rsync in this case is dis-
proportionately larger.

When a single parameter is changed in the application
as in Case 1, no part of the already matching binary code
is shifted. All the functions start at the same location as
in the old image. But with the few lines added to the
code as in Case 2, the functions following those lines are
shifted. As a result, all the calls to those functions refer
to new locations. This produces several changes in the
binary file resulting in the large delta script.

The boundaries between blocks can be defined by Ra-
bin fingerprints as done in [18, 14]. A Rabin finger-
print is the polynomial representation of the data modulo
a predetermined irreducible polynomial. These finger-
prints are efficient to compute on a sliding window in
a file. It should be noted that Rabin fingerprint can be
a substitute for byte-level comparison only. Because of
the content-based boundary between the chunks in Rabin
fingerprint approach, the editing operations change only
the chunks affected by those edits even if they change
the offsets. Only the chunks that have changed need to
be sent. But when the function addresses change, all
the chunks containing the calls to those functions change
and hence need to be sent explicitly. This results in a
large delta—comparable to the delta produced by the op-
timized Rsync algorithm without application-level mod-
ifications. Also the anchors that define the boundary be-
tween the blocks have to be sent explicitly. The chunks
in Rabin fingerprints are typically quite large (8 KB com-
pared to less than 20 bytes for our case). As we can see
from Figure 6, the size of the difference script will be
much larger at 8 KB than at 20 bytes.

5 Application-level modifications
The delta script produced by comparison at the byte-level
is not always consistent with the amount of change made
in the software. This is a direct consequence of neglect-
ing the application-level structures of the software. So
we need to make modifications at the application-level so
that the subsequent stage of byte-level comparison pro-
duces delta script congruent in size with the amount of
software change. One way of tackling this problem is to
leave some slop (empty) space after each function as in
[9]. With this approach, even though a function expands
(or shrinks), the location of the following functions will
not change as long as the expansion is accommodated by
the slop region assigned to that function. But this ap-
proach wastes program memory which is not desirable
for memory-constrained sensor nodes. Also, this creates
a host of complex management issues like what should
be the size of the slop region (possibly different for dif-
ferent functions), what happens if the function expands
beyond the assigned slop region, etc. Choosing too large

a slop region means wastage of precious memory and
too small a slop region means functions frequently need
to be relocated. Another way of mitigating the effect of
function shifts is by making the code position indepen-
dent [6]. Position independent code (PIC) uses relative
jumps instead of absolute jumps. However, not all archi-
tectures and compilers support this. For example, the
AVR platform allows relative jumps within 4KB only
and for MSP430(used in TelOS nodes), no compiler is
known to fully support PIC.

5.1 Function call indirections
For the byte-level comparison to produce a small delta
script, it is necessary to make the adjustments at the
application-level to preserve maximum similarity be-
tween the two versions of the software. For example, let
the application shown in Figure 4-a be changed such that
the functions fun1, fun2, and funn are shifted from their
original positions b, c, and a to new positions b ' , c ' , and
a ' respectively. Note that there can be (and generally will
be) more than one call to a function. When these two im-
ages are compared at the byte-level, the delta script will
be large because all the calls to these functions in the new
image will have different target addresses from those in
the old image. The approach we take to mitigate the ef-

call fun1
   

funn

fun1

fun2

a

b

c

...

...

...

...

call fun2
   ...

call funn
   ...

call fun1
   

funn

fun1

fun2

a

b

c

...

call fun2
   
call funn
   

call fun1
ret
call fun2
ret

call funn
ret

loc1

loc2

locn

(a)

(b)

...

...

...

...

...

...

Figure 4: Program image (a) without indirection table
and (b) with indirection table.

fects of function shifts is as follows: Let the application
be as shown in Figure 4-a. We modify the linking stage
of the executable generation process to produce the code
as shown in Figure 4-b. Here calls to functions fun1,
fun2,..., funn are replaced by jumps to fixed locations
loc1, loc2,..., locn respectively. In common embedded
platforms, the call can be to an arbitrarily far off location.
The segment of the program memory starting at the fixed
location loc1 acts like an indirection table. In this table,
the actual calls to the functions are made. When the call
to the actual function returns, the indirection table directs
the flow of the control back to the line following the call



to loc-x (x=1,..., n). The location of the indirection table
is kept fixed in the old and the new versions to reduce the
size of the delta.

When the application shown in Figure 4-a is changed
to the one where the functions fun1, fun2,..., funn are
shifted, during the process of building the executable for
the new image, we add the following features to the link-
ing stage: When a call to a function is encountered, it
checks if the indirection table in the old file contains the
entry for that function (we also supply the old file (Figure
4-b) as an input to the executable generation process). If
yes, then it creates an entry for that function at the indi-
rection table in the new file at the same location as in the
old file. Otherwise it makes a decision to assign a slot
in the indirection table for that function (call it a rootless
function) but does not yet create the slot. After assigning
slots to the existing functions, it checks if there are any
empty slots in the indirection table. These would corre-
spond to functions which were called in the old file but
are not in the new file. If there are empty slots, it assigns
those slots to the rootless functions. If there are still some
rootless functions without a slot, then the indirection ta-
ble is expanded with new entries to accommodate these
rootless function. Thus, the indirection table entries are
naturally garbage collected and the table expands on an
as-needed basis. As a result, if the user program has �
calls to a particular function, they refer to the same lo-
cation in the indirection table and only one call, namely
the call in the indirection table, differs between the two
versions. On the other hand, if no indirection table were
used, all the � calls would refer to different locations in
old and new applications.

This approach ensures that the segments of the code,
except the indirection table, preserve the maximum sim-
ilarity between the old and new images because the calls
to the functions are redirected to the fixed locations even
when the functions have moved in the code. The basic
idea behind function call indirections is that the location
of the indirection table is fixed and hence the target ad-
dresses of the jump to the table are identical in the old
and new versions of the software. If we do not fix the
location of the indirection table, the jump to indirection
table will have different target addresses in the two ver-
sions of the software. As a result, the delta script will be
large. In situations where the functions do not shift (as in
Case 1 discussed in Section 4.3) Zephyr will not produce
a delta script larger than optimized Rsync without indi-
rection table. This is due to the fact that the indirection
tables in the old and the new software match and hence
Zephyr finds the large super-block that also contains the
indirection table.

The linking changes in Zephyr are transparent to the
user. She does not need to change the way she programs.
The linking stage automatically makes the above modi-

fications. Also Zephyr introduces one level of indirec-
tion during function calls, but the overhead of function
call indirection is negligible because each such indirec-
tion takes only few clock cycles (e.g., 8 clock cycles on
the AVR platform).

5.2 Pinning the interrupt service routines
It should be noted that due to the change in the software,
not only the positions of the user functions but those of
the interrupt service routines can also change. Such rou-
tines are not explicitly called by the user application. In
most of the microcontrollers, there is an interrupt vector
table at the beginning of the program memory (gener-
ally after the reset vector at 0x0000). Whenever an inter-
rupt occurs, the control goes to the appropriate entry in
the vector table that causes a jump to the required inter-
rupt service routine. Zephyr does not change the inter-
rupt vector table to direct the calls to the indirection ta-
ble as explained above for the normal functions. Instead
it modifies the linking stage to always put the interrupt
service routines at fixed locations in the program mem-
ory so that the targets of the calls in the Interrupt vector
table do not change. This further preserves the similarity
between the versions of the software.

6 Metacommands for common patterns of
changes

After the delta script is created through the above men-
tioned techniques, Zephyr scans through the script file to
identify some common patterns and applies the follow-
ing optimizations to further reduce the delta size.

6.1 CWI command
We noticed that in many cases, the delta script has the
following sequence of commands:

COPY <oldOffset=O1> <len=L1> <newOffset=N1>
INSERT <newOffset> <len=l1> <data1>
COPY <oldOffset=O2> <len=L2> <newOffset=N2>
INSERT <newOffset> <len=l1> <data2>

and so on. Thus, small INSERT commands would be
present in between large COPY commands, e.g., due
to different operands op in instruction ldi r24, op com-
monly found in TinyOS programs while pushing task to
the task queue. Here we have COPY commands that
copy large chunks of size L1, L2, L3, ... from the old
image followed by INSERT commands with very small
values of len= l1. Further we notice that O1+L1+l1=O2,
O2+L2+l1=O3, and so on. In other words, if the
blocks corresponding to INSERT commands with small
len had matched, we would have obtained a very large
superblock. So we replace such sequences with the
COPY WITH INSERTS (CWI) command.

CWI <oldOffset=O1> <newOffset=N1>
<len=L1+l1+...+Ln> <dataSize=l1>
<numInserts=n> <addr1> <data1>
<addr2> <data2> ... <addrn> <datan>



Here dataSize=l1 is the size of datai (i=1,2..., n), numIn-
serts=n is the number of (addr,data) pairs, datai are the
data that have to be inserted in the new image at the off-
set addri. This command tells the sensor node to copy
the len=L1+l1+...+Ln number of bytes of data from the
old image at offset O1 to the new image at the offset N1,
but to insert datai at the offset addri (i=1, 2, ..., n).

6.2 REPEAT command
This command is useful for reducing the number of bytes
in the delta script that is used to transfer the indirection
table. As shown in Figure 4-c and 4-d, the indirection
table consists of the pattern call fun1, ret, call fun2, ret
, ... where the same string of bytes (say S1 = ret; call)
repeats with only addresses for fun1, fun2, etc. chang-
ing between them. So we use the following command to
transfer the indirection table.

REPEAT <newOffset> <numRepeats=n>
<addr1> <addr2> ... <addrn>

This command puts the string S1 at the offset newOff-
set in the new image followed by addr1, then S1, then
addr2, and so on till addrn. Note that we could have
used the CWI command for this case also. But since the
string S1 is fixed, we gain more advantage using the RE-
PEAT command. This optimization is not applied if the
addresses of the call instructions match in the indirection
tables of the old and new images. In that case, COPY
command is used to transfer the identical portions of the
indirection table.

6.3 No offset specification
We note that if we build the new image on the sensor
nodes in a monotonic order, then we do not need to spec-
ify the offset in the new file in any of the above com-
mands. Monotonic means we always write at location
� of the new image before writing at location � , for all
�)(*� . Instead of the new offset, a counter is maintained
and incremented as the new image is built and the next
write always happens at this counter. So, we can drop the
newOffset field from all the commands.

We find that for Case 2, where some functions were
shifted due to addition of few lines in the software, the
delta script produced with the application-level modifi-
cations is 280 bytes compared to 2183 bytes when op-
timized Rsync was used without application-level mod-
ifications. The size of the delta script without the meta-
commands is 528 bytes. This illustrates the importance
of application-level modifications in reducing the size of
the delta script and making it consistent with the amount
of actual change made in the software.

7 Delta distribution stage
One of the factors that we considered for the delta distri-
bution stage was to have as small a delta script as possi-
ble even in the worst case when there is a huge change

in the software. In such a case there is very little simi-
larity between the old and the new code images and the
delta script basically consists of a large INSERT com-
mand to insert almost the entire binary image. To have
small delta script even in such extreme cases, it is nec-
essary that the binary image itself be small. Since the
binary image transmitted by Stream [16] is almost half
compared to that of Deluge [7], Zephyr uses the approach
from Stream with some modifications for wirelessly dis-
tributing the delta script. The core data dissemination
method of Stream is the same as in Deluge. Deluge uses
a monotonically increasing version number, segments
the binary code image into pages, and pipelines the dif-
ferent pages across the network. The code distribution
occurs through a three-way handshake of advertisement,
request, and code broadcast between neighboring nodes.
Unlike Deluge, Stream does not transfer the entire repro-
gramming component every time code update is done.
The reason behind this requirement in Deluge is that the
reprogramming component needs to be running on the
sensor nodes all the time so that the nodes can be recep-
tive to future code updates and these nodes are not capa-
ble of multitasking (running more than one application at
a time). Stream solves this problem by storing the repro-
gramming component in the external flash and running it
on demand—whenever reprogramming is to be done.

Reprogramming
  component

 Delta script

Old application 
     (v1)

Indirection table
   for image-2

image-0

image-1

image-2

New application
     (v2)

image-3

     ...
     ...
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     ...
     ...

loc1: call fun1;
      ret;
loc2: call fun2;
      ret;

...

...

locn: call funn;
      ret;

Indirection 
 table for
  image-3

Unused part

External Flash

Program 
memory

bootloader

   New 
application
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 Read new
application

 Load new 
application
 

 Image 
Rebuilder

    Old 
application 

Zephyr    New 
application

+ Delta
script

Figure 5: Image rebuild and load stage. The right side
shows the structure of external flash in Zephyr.

Distinct from Stream, Zephyr divides the external
flash as shown in the right side of Figure 5. The re-
programming component and delta script are stored as
image 0 and image 1 respectively. Image 2 and image 3
are the user applications—one old version and the other



current version which is created from the old image and
the delta script as discussed in Section 7.1. The protocol
works as follows:
1) Let image 2 be the current version ( +-, ) of the user
application. Initially all nodes in the network are running
image 2. At the host computer, delta script is generated
between the old image ( + , ) and the new image ( + # ).
2) The user gives the command to the base node to re-
boot all nodes in the network from image 0 (i.e. the re-
programming component).
3) The base node broadcasts the reboot command and
itself reboots from the reprogramming component.
4) The nodes receiving the reboot command from the
base node rebroadcast the reboot command and them-
selves reboot from the reprogramming component. This
is controlled flooding because each node broadcasts the
reboot command only once. Finally all nodes in the net-
work are executing the reprogramming component.
5) The user then injects the delta script to the base node.
It is wirelessly transmitted to all nodes in the network
using the usual 3-way handshake of advertisement, re-
quest, and code broadcast as in Deluge. Note that unlike
Stream and Deluge which transfer the application image
itself, Zephyr transfers the delta script only.
6) All nodes store the received delta script as image 1.

7.1 Image rebuild and load stage
After the nodes download the delta script, they rebuild
the new image using the script (stored as image 1 in the
external flash) and the old image (stored as image 2 in
the external flash). The image rebuilder stage consists of
a delta interpreter which interprets the COPY, INSERT,
CWI, and REPEAT commands of the delta script and cre-
ates the new image which is stored as image 3 in the ex-
ternal flash.

The methods of rebooting from the new image are
slightly different in Stream and Zephyr. In Stream, a
node automatically reboots from the new code once it
has completed the code update and it has satisfied all
other nodes that depend on this node to download the
new code. This means that different nodes in the net-
work start running the new version of the code at dif-
ferent times. However, for Zephyr, we modified Stream
so that all the nodes reboot from the new code after the
user manually sends the reboot command from the base
station (as in Deluge). We made this change because in
many software change cases, the size of the delta script
is so small that a node (say � , ) nearer to the base station
quickly completes downloading the code before a node
(say � # ) further away from the base station even starts
requesting packets from � , . As a result, � , reboots from
the new code so fast that � # cannot even start the down-
load process. Note that this however does not pose a
correctness issue. After ��, reboots from the new code,

it will switch again to the reprogramming state when it
receives advertisement from � # . However, this incurs the
performance penalty of rebooting from a new image. Our
design choice has a good consequence —all nodes come
up with the new version of the software at the same time.
This avoids the situation where different nodes in the net-
work run different versions of the software. When a node
receives the reboot command , its bootloader loads the
new software from image 3 of the external flash to the
program memory (Figure 5). In the next round of repro-
gramming, image 3 will become the old image and the
newly rebuilt image will be stored as image 2. As we
will show in Section 8.3, the time to rebuild the image is
negligible compared to the total reprogramming time.

7.2 Dynamic page size
Stream divides the binary image into fixed-sized pages.
The remaining space in the last page is padded with
all 0s. Each page consists of 1104 bytes (48 packets
per page with 23 bytes payload in each packet). With
Zephyr, it is likely that in many cases, the size of the
delta script will be much smaller than 1104 bytes. For
example, we have delta script of sizes of 17 bytes and
280 bytes for Case 1 and Case 2 respectively. Also, as
we will show in Section 8.2, during the natural evolu-
tion of the software, it is more likely that the nature of
the changes will be small or moderate and as a result,
delta scripts will be much smaller than the standard page
size. After all, the basic idea behind any incremental re-
programming protocol is based on the assumption that in
practice, the software changes are generally small so that
the similarities between the two versions of the software
can be exploited to send only small delta. When the size
of the delta script is much smaller than the page size, it
is wasteful to transfer the whole page. So, we change the
basic Stream protocol to use dynamic page sizes.

When the delta script is being injected to the base
node, the host computer informs it of the delta script size.
If it is less than the standard page size, the base node in-
cludes this information in the advertisement packets that
it broadcasts. When other nodes receive the advertise-
ment, they also include this information in the advertise-
ment packets that they send. As a result, all nodes in the
network know the size of the delta script and they make
the page size equal to the actual delta script size. So un-
like Deluge or Stream which transmit all 48 data packets
per page, Zephyr transmits only required number of data
packets if the delta script size is less than 1104 bytes.
Note that the granularity of this scheme is the packet size,
i.e., the last packet of the last page may be padded with
zeros. But this results in small enough wastage that we
did not feel justified in introducing the additional com-
plexity of dynamic packet size. Our scheme can be fur-
ther modified to advertise the actual number of packets



of the last page. This would minimize the wastage, for
example in the case where the delta script has 1105 bytes,
it would transfer 2 pages, the first page with 48 packets
and the second with 1 packet.

8 Experiments and results
In order to evaluate the performance of Zephyr, we con-
sider a number of software change scenarios. The soft-
ware change cases for standard TinyOS applications that
we consider are as follows:
Case 1: Blink application blinking a green LED every
second to blinking every 2 seconds.
Case 2: Few lines added to the Blink application.
Case 3: Blink application to CntToLedsAndRfm: Cnt-
ToLedsAndRfm is an application that displays the lowest
3 bits of the counting sequence on the LEDs as well as
sends them over radio.
Case 4: CntToLeds to CntToLedsAndRfm: CntToLeds is
the same as CntToLedsAndRfm except that the counting
sequence is not transmitted over radio.
Case 5: Blink to CntToLeds.
Case 6: Blink to Surge: Surge is a multi hop routing
protocol. This case corresponds to a complete change in
the application.
Case 7: CntToRfm to CntToLedsAndRfm: CntToRfm is
the same as CntToLedsAndRfm except that the counting
sequence is not displayed on the LEDs.

In order to evaluate the performance of Zephyr with
respect to natural evolution of the real world software, we
considered a real world sensor network application called
eStadium [3] deployed in Ross Ade football stadium at
Purdue University. eStadium applications provide safety
and security functionality, infotainment features such as
coordinated cheering contests among different parts of
the stadium using the microphone data, information to
fans about lines in front of concession stands, etc. We
considered a subset of the changes that the software had
actually gone through, during various stages of refine-
ment of the application.
Case A: An application that samples battery voltage and
temperature from MTS310 [2] sensor board to one where
few functions are added to sample the photo sensor also.
Case B: During the deployment phase, we decided to use
opaque boxes for the sensor nodes. So, a few functions
were deleted to remove the light sampling features.
Case C: In addition to temperature and battery voltage,
we added the features for sampling all the sensors on
the MTS310 board except light (e.g., microphone, ac-
celerometer, magnetometer). This was a huge change in
the software with the addition of many functions. For
accelerometer and microphone, we collected mean and
mean square values of the samples taken during a user
specified window size.

Case D: This is the same as Case C but with addition of
few lines of code to get microphone peak value over the
user-specified window size.
Case E: We decided to remove the feature of sensing and
wirelessly transmitting to the base node, the microphone
mean value since we were interested in the energy of the
sound which is given by the mean square value. A few
lines of code were deleted for this change.
Case F: This is same as Case E except we added the
feature of allowing the user to put the nodes to sleep for
a user-specified duration. This was also a huge change in
the software.
Case G: We changed the microphone gain parameter.
This is a simple parameter change.

We can group the above changes into 4 classes:
Class 1 (Small change SC): This includes Case 1 and
Case G where only a parameter of the application was
changed.
Class 2 (Moderate change MC): This includes Case 2,
Case D, and Case E. They consist of addition or deletion
of few lines of the code.
Class 3 (Large change LC): This includes Case 5, Case
7, Case A, and Case B where few functions are added or
deleted or changed.
Class 4 (Very large change VLC) : This includes Case 3,
Case 4, Case 6, Case C, and Case F.

Many of the above cases involve changes in the OS
kernel as well. In TinyOS, strictly speaking, there is no
separation between the OS kernel and the application.
The two are compiled as one big monolithic image that
is run on the sensor nodes. So, if the application is mod-
ified such that new OS components are added or existing
components are removed, then the delta generated would
include OS updates as well. For example, in Case C, we
change the application that samples additemperature and
battery voltage to the one that samples microphone, mag-
netometer and accelerometer sensors in addition to tem-
perature and battery. This causes new OS components to
be added—the device drivers for the added sensors.

8.1 Block size for byte-level comparison
We modified Jarsync [4], a java implementation of the
Rsync algorithm, to achieve the optimizations mentioned
in Section 4.2. From here onward, by semi-optimized
Rsync, we mean the scheme that combines two or more
contiguous matching blocks into one super-block. It does
not necessarily produce the maximal super-block. By op-
timized Rsync we mean our scheme that produces the
maximal super-block but without the application-level
modifications.

As shown in Figure 6, the size of the delta script pro-
duced by Rsync as well as optimized Rsync depends on
the block size used in the algorithm. Recollect that the
comparison is done at the granularity of a block. As ex-



Table 1: Comparison of delta script size of various approaches. Deluge, Stream and Rsync represent prior work.
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case A Case B Case C Case D Case E Case F Case G

Deluge:Zephyr 1400.82 85.05 4.52 4.29 8.47 1.83 29.76 7.60 7.76 2.63 203.57 243.25 2.75 1987.2
Stream:Zephyr 779.29 47.31 2.80 2.65 4.84 1.28 18.42 5.06 5.17 1.82 140.93 168.40 1.83 1324.8
Rsync:Zephyr 35.88 20.81 2.06 1.96 3.03 1.14 8.34 3.35 3.38 1.50 36.03 42.03 1.50 49.6

SemiOptimizedRsync:Zephyr 6.47 11.75 1.80 1.72 2.22 1.11 5.61 2.66 2.71 1.39 14.368 17.66 1.36 6.06
OptimizedRsync:Zephyr 1.35 7.79 1.64 1.57 2.08 1.07 3.87 2.37 2.37 1.35 7.84 9.016 1.33 1.4

ZephyrWithoutMetacommands:Zephyr 1.35 1.99 1.38 1.30 1.39 1.05 1.52 1.6 1.61 1.16 2.33 2.43 1.18 1.4
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pected, Figure 6 shows that the size of the delta script
is largest for Rsync and smallest for optimized Rsync.
It also shows that as block size increases, the size of
the delta script produced by Rsync and semi-optimized
Rsync decreases till a certain point after which it has an
increasing trend. The size of the delta script depends
on two factors: 1) number of commands in the delta
script and 2) size of data in the INSERT command. For
Rsync and semi-optimized Rsync, for block size below
the minima point, the number of commands is high be-
cause these schemes find lots of matching blocks but not
(necessarily) the maximal super-block. As block size in-
creases in this region, the number of matching blocks
and hence the number of commands drops sharply caus-
ing the delta script size to decrease. However, as the
block size increases beyond the minima point, the de-
crease in the number of commands in the delta script is
dominated by the increase in the size of new data to be
inserted. As a result, the delta script size increases. For
optimized Rsync, there is a monotonic increasing trend
for the delta script size as block size increases. There are
however some small oscillations in the curve, as a result
of which the optimal block size is not always one byte.
The small oscillations are due to the fact that increas-
ing the block size decreases the size of maximal super-
blocks and increases the size of data in INSERT com-
mands. But sometimes the small increase in size of data
can contribute to reducing the size of the delta script by
reducing the number of COPY commands. Nonetheless,
there is an overall increasing trend for optimized Rsync.
This has the important consequence that a system admin-
istrator using Zephyr does not have to figure out the block
size to use in uploading code for each application change.
She can use the smallest or close to smallest block size

and let Zephyr be responsible for compacting the size of
the delta script. In all further experiments, we use the
block size that gives the smallest delta script for each
scheme—Rsync, semi-optimized Rsync, and optimized
Rsync.
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Figure 7: Size of data transmitted for reprogramming

8.2 Size of delta script
The goal of an incremental reprogramming system is to
reduce the size of the delta script that needs to be trans-
mitted to the sensor nodes. A small delta script trans-
lates to smaller reprogramming time and energy due to
less number of packet transmissions over the network
and less number of flash writes on the node. Figure 7
and Table 1 compare the delta script produced by Del-
uge, Stream, Rsync, semi-optimized Rsync, Optimized
Rsync, and Zephyr. For Deluge and Stream, the size of
the information to be transmitted is the size of the bi-
nary image while for the other schemes it is the size of
the delta script. Deluge, Stream, Rsync, and semi op-
timized Rsync take up to 1987, 1324, 49, and 6 times
more bytes than Zephyr, respectively. Note that for cases
belonging to moderate or large change, the application



level modifications of Zephyr contribute to reducing the
size of delta script significantly compared to optimized
Rsync. Optimized Rsync takes up to 9 times more bytes
than Zephyr. These cases correspond to shifts of some
functions in the software. As a result, application-level
modifications have great effect in those cases. In prac-
tice, these are probably the most frequently occurring
categories of changes in the software. Case 1 and Case
G are parameter change cases which do not shift any
function. As a result, we find that delta scripts produced
by optimized Rsync without application-level modifica-
tions are only slightly larger than the ones produced by
Zephyr. Also even for very large software change cases
(like cases 6, F, and C) Zephyr is more efficient com-
pared to other schemes. In summary, application-level
modifications have the greatest effects in moderate and
large software change cases, significant effect in very
large software change case (in terms of absolute delta
size reduction) and small effect on very small software
change cases.
Comparison with other incremental approaches: Rsync
represents the algorithm used by Jeong and Culler [8]
to generate the delta by comparing the two executables
without any application-level modifications. We find
that [8] produces up to 49 times larger delta script than
Zephyr. Rsync also corresponds approximately to the
system in [19] because it also compares the two executa-
bles without any application-level modifications. Koshy
and Pandey [13] use a slop region after each function
to minimize the likelihood of function shifts. Hence the
delta script for their best case (i.e. when none of the
functions expands beyond its slop region) will be same
as that of Zephyr. But even in their best case scenario,
the program memory is fragmented and less efficiently
used than in Zephyr. This wastage of memory is not de-
sirable for memory-constrained sensor nodes. When the
functions do expand beyond the allocated slop region,
they need to be relocated and as a result, all calls to those
functions need to be patched with the new function ad-
dresses giving larger delta script than in Zephyr. Flexcup
[13], though capable of incremental linking and loading
on TinyOS, generates high traffic through the network
due to large sizes of symbol and relocation tables. Also,
Flexcup is implemented only on an emulator whereas
Zephyr runs on the real sensor node hardware.

In the software change cases that we considered, the
time to compile, link (with the application-level modi-
fications) and generate the executable file was at most
2.85 seconds and the time to generate the delta script
using optimized Rsync was at most 4.12 seconds on a
1.86 GHz Pentium processor. These times are negligible
compared to the time to reprogram the network, for any
but the smallest of networks. Further these times can be
made smaller by using more powerful server-class ma-

chines. TinyOS applies extensive optimizations on the
application binaries to run it efficiently on the resource-
constrained sensor nodes. One of these optimizations in-
volves inlining of several (small) functions. We do not
change any of these optimizations. In systems which do
not inline functions as TinyOS, Zephyr’s advantage will
be even greater since there will be more function calls.
Zephyr’s advantage will be minimum if the software
change does not shift any function. For such a change,
the advantage will be only due to the optimized Rsync
algorithm. But such software changes are very rare, e.g.
when only the values of the parameters in the program
are changed. Any addition/deletion/modification of the
source code in any function except the one which is
placed at the end of the binary will cause the following
functions to be shifted.

8.3 Testbed experiments
We perform testbed experiments using Mica2 [2] nodes
for grid and linear topologies. For the grid network,
the transmission range .�/10 of a node is set such that2 354 (6.7/108( 354

, where
4

is the separation between
the two adjacent nodes in any row or column of the grid.
The linear networks have the nodes with .�/10 such that4 (.�/10!( 354 , where

4
is the distance between the adja-

cent nodes. Due to fluctuations in transmission range, oc-
casionally a non-adjacent node will receive a packet. In
our experiments, if a node receives a packet from a non-
adjacent node, it is dropped, to achieve a truly multi-hop
network. A node situated at one corner of the grid or end
of the line acts as the base node. We provide quantita-
tive comparison of Zephyr with Deluge [7], Stream [16],
Rsync [8] and optimized Rsync without application-level
modifications. Note that Jeong and Culler [8] reprogram
only nodes within one hop of the base node, but we used
their approach on top of a multi hop reprogramming pro-
tocol to provide a fair comparison. The metrics for com-
parison are reprogramming time and energy. We perform
these experiments for grids of size 2x2 to 4x4 and linear
networks of size 2 to 10 nodes. We choose four software
change cases, one from each equivalence class: Case 1
for Class 1 (SC), Case D for Class 2 (MC), Case 7 for
Class 3 (LC), and Case C for Class 4 (VLC). Note that in
the evaluations that follow, Rsync refers to the approach
by Jeong and Culler [8].

8.3.1 Reprogramming time
Time to reprogram the network is the sum of the time to
download the delta script and the time to rebuild the new
image. Time to download the delta script is the time in-
terval between the instant 9;: when the base node sends
the first advertisement packet to the instant 9 , when the
last node (the one which takes the longest time to down-
load the delta script) completes downloading the delta
script. Since clocks maintained by the nodes in the net-
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Figure 8: Comparison of reprogramming times for grid and linear networks. The last graph shows the time to rebuild
the image on the sensor node.

Table 2: Ratio of reprogramming times of other approaches to Zephyr
Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
Deluge:Zephyr 22.39 48.9 32.25 25.04 48.7 30.79 14.89 33.24 17.42 1.92 3.08 2.1
Stream:Zephyr 14.06 27.84 22.13 16.77 40.1 22.92 10.26 20.86 10.88 1.54 2.23 1.46
Rsync:Zephyr 1.03 8.17 2.55 5.66 12.78 8.07 5.22 10.89 6.50 1.34 1.71 1.42

Optimized Rsync:Zephyr 1.01 1.1 1.03 2.01 4.09 2.71 2.05 3.55 2.54 1.27 1.55 1.35

work are not synchronized, we cannot take the difference
between the time instant 9 , measured by the last node and
9<: measured by the base node. To solve this synchro-
nization problem, we use the approach of [17], which
achieves this with minimal overhead traffic.

Figure 8 (all except the last graph) compares repro-
gramming times of other approaches with Zephyr for
different grid and linear networks. Table 2 compares
the ratio of reprogramming times of other approaches to
Zephyr. It shows minimum, maximum and average ratios
over these grid and linear networks. As expected, Zephyr
outperforms non-incremental reprogramming protocols
like Deluge and Stream significantly for all the cases.
Zephyr is also up to 12.78 times faster than Rsync, the
approach by Jeong and Culler [8]. This illustrates that the
Rsync optimization and the application-level modifica-
tions of Zephyr are important in reducing the time to re-
program the network. Zephyr is also significantly faster

than optimized Rsync without application-level modi-
fications for moderate, large, and very large software
changes. In these cases, the software change causes the
function shifts. So, these results show that application
level modifications greatly mitigate the effect of function
shifts and reduces the reprogramming time significantly.
For small change case where there are no function shifts,
Zephyr, as expected, is only marginally faster than opti-
mized Rsync without application-level modifications. In
this case, the size of the delta script is very small (17 and
23 bytes for Zephyr and optimized Rsync respectively)
and hence there is not much to improve upon. Since
Zephyr transfers less information at each hop, Zephyr’s
advantage will increase with the size of the network. The
last graph in Figure 8 shows the time to rebuild the new
image on a node. It increases with the increase in the
scale of the software change, but is negligible compared
to the total reprogramming time.
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Figure 9: Comparison of number of packets transmitted during reprogramming.

Table 3: Ratio of number of packets transmitted during reprogramming by other approaches to Zephyr
Class 1(SC) Class 2(MC) Class 3(LC) Class 4(VLC)

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.
Deluge:Zephyr 90.01 215.39 162.56 40 204.3 101.12 12.27 55.46 25.65 2.51 2.9 2.35
Stream:Zephyr 53.76 117.92 74.63 28.16 146.1 82.57 8.6 36.19 15.97 1.62 2.17 1.7
Rsync:Zephyr 2.47 7.45 5.38 6.66 38.28 21.09 3.28 12.68 6.69 1.50 1.78 1.60

Optimized Rsync:Zephyr 1.13 1.69 1.3 4.38 22.97 9.47 2.72 10.58 3.95 1.38 1.64 1.49

8.3.2 Reprogramming energy
Among the various factors that contribute to the energy
consumption during reprogramming, two important ones
are the amount of radio transmissions and the number
of flash writes (the downloaded delta script is written
to the external flash). Since both of them are propor-
tional to the number of packets transmitted in the net-
work during reprogramming, we take the total number
of packets transmitted by all nodes in the network as
the measure of energy consumption. Figure 9 and Ta-
ble 3 compare the number of packets transmitted by
Zephyr with other schemes for grid and linear networks
of different sizes. The number of bytes transmitted by
all nodes in the network for reprogramming by Deluge,
Stream, Rsync, and optimized Rsync is up to 215, 146,
38, and 22 times more than that by Zephyr. The fact
that Rsync:Zephyr = 1 indicates that Zephyr is more en-
ergy efficient than the incremental reprogramming ap-
proach of [8]. The application-level modifications are

significant in reducing the number of packets transmitted
by Zephyr compared to optimized Rsync without such
modifications. Note that in cases like Case 7 and Case D
(moderate to large change class), application-level modi-
fications have the greatest impact where the functions get
shifted. Application-level modifications preserve maxi-
mum similarity between the two images in such cases
thereby reducing the reprogramming traffic overhead.
In cases where only some parameters of the software
change without shifting any function, the application-
level modifications achieve smaller reduction. But the
size of the delta is already very small and hence repro-
gramming is not resource intensive in these cases. Even
for very large software changes, Zephyr significantly re-
duces the reprogramming traffic.

8.4 Simulation Results
We perform TOSSIM [12] simulations on grid networks
of varying size (up to 14x14) to demonstrate the scala-
bility of Zephyr and to compare it with other schemes.



Figure 10 shows the reprogramming time and number
of packets transmitted during reprogramming for Case D
(Class 2 (MC)). We find that Zephyr is up to 92.9, 73.4,
16.1, and 6.3 times faster than Deluge, Stream, Rsync
[8], and optimized Rsync without application-level mod-
ifications, respectively. Also, Deluge, Stream, Rsync [8],
and optimized Rsync transmit up to 146.4, 97.9, 16.2,
and 6.4 times more number of packets than Zephyr, re-
spectively. Most software changes in practice are likely
to belong to this class (moderate change) where we see
that application-level modifications significantly reduce
the reprogramming overhead. Zephyr inherits its scala-
bility property from Deluge since none of the changes
in Zephyr (except the dynamic page size) affects the
network or is driven by the size of the network. All
application-level modifications are performed on the host
computer and the image rebuilding on each node does not
depend upon the number of nodes in the network.
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Figure 10: Simulation results for (a) reprogramming
time and (b) number of packets transmitted during

reprogramming (Case D, i.e. Class 2 (MC))

9 Conclusion
In this paper, we presented a multi-hop incremental re-
programming protocol called Zephyr that minimizes the
reprogramming overhead by reducing the size of the
delta script that needs to be disseminated through the
network. To the best of our knowledge, we are the first
to use techniques like function call indirections to mit-
igate the effect of function shifts for reprogramming of
sensor networks. Our scheme can be applied to systems
like TinyOS which do not provide dynamic linking on
the nodes as well as to incrementally upload the changed
modules in operating systems like SOS and Contiki that

provide the dynamic linking feature. Our experimental
results show that for a large variety of software change
cases, Zephyr significantly reduces the volume of traffic
that needs to be disseminated through the network com-
pared to the existing techniques. This leads to reductions
in reprogramming time and energy. We can also use mul-
tiple nodes as the source of the new code instead of a
single base node to further speed up reprogramming.
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