
Layering in Provenance Systems

Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland,
Peter Macko, Diana Maclean, Daniel Margo, Margo Seltzer, Robin Smogor

Harvard School of Engineering and Applied Sciences
pass@eecs.harvard.edu

Abstract
Digital provenance describes the ancestry or history of a
digital object. Most existing provenance systems, how-
ever, operate at only one level of abstraction: the sys-
tem call layer, a workflow specification, or the high-level
constructs of a particular application. The provenance
collectable in each of these layers is different, and all of
it can be important. Single-layer systems fail to account
for the different levels of abstraction at which users need
to reason about their data and processes. These systems
cannot integrate data provenance across layers and can-
not answer questions that require an integrated view of
the provenance.

We have designed a provenance collection structure
facilitating the integration of provenance across multi-
ple levels of abstraction, including a workflow engine,
a web browser, and an initial runtime Python prove-
nance tracking wrapper. We layer these components atop
provenance-aware network storage (NFS) that builds
upon a Provenance-Aware Storage System (PASS). We
discuss the challenges of building systems that integrate
provenance across multiple layers of abstraction, present
how we augmented systems in each layer to integrate
provenance, and present use cases that demonstrate how
provenance spanning multiple layers provides function-
ality not available in existing systems. Our evaluation
shows that the overheads imposed by layering prove-
nance systems are reasonable.

1 Introduction

In digital systems, provenance is the record of the cre-
ation and modification of an object. Provenance pro-
vides answers to questions such as: How does the an-
cestry of two objects differ? Are there source code files
tainted by proprietary software? How was this object
created? Most existing provenance systems operate at
a single level of abstraction at which they identify and

record provenance. Application-level systems, such as
Trio [29], record provenance at the semantic level of
the application – tuples for a database system. Other
application-level solutions record provenance at the level
of business objects, lines of source code, or other units
with semantic meaning to the application. Service-
oriented workflow (SOA) approaches [8, 9, 23], typically
associated with workflow engines, record provenance at
the level of workflow stages and data or message ex-
changes. System-call-based systems such as ES3 [3],
TREC [28], and PASS [21] operate at the level commu-
nicated via system calls – processes and files. In all of
these cases, provenance increases the value of the data it
describes.

While the provenance collected at each level of ab-
straction is useful in its own right, integration across
these layers is crucial but currently absent. Without
a unified provenance infrastructure, individual compo-
nents produce islands of provenance with no way to re-
late provenance from one layer to another. The most
valuable provenance is that which is collected at the layer
that provides user-meaningful names. If users reason in
terms of file names, then a system such as PASS that
operates at the file system level is appropriate. If users
want to reason about abstract datasets manipulated by a
workflow, then a workflow engine’s provenance is ap-
propriate. As layers interoperate, the layers that name
objects produce provenance, transmitting it to other lay-
ers and forming relationships with the objects at those
different layers. For example, this might associate many
files that comprise a data set with the single object rep-
resenting the data set. PASS captures provenance trans-
parently without application modification, but it might
not capture an object’s semantics. If applications encap-
sulate that semantic knowledge, then those applications
require modification to transmit that knowledge to PASS.
In summary, application and system provenance provide
different benefits; the value of the union of this prove-
nance is greater than the sum of its parts.



Figure 1: Example of a layered architecture introduced in Section 1. This scenario demonstrates a workflow
application running on a workstation, but accessing its inputs and outputs on remote file servers. The workflow
engine, local file system, and remote file system all capture provenance, but only by integrating that provenance can
we respond to queries that require complete ancestry of an object.

Consider the scenario in Figure 1. A workflow en-
gine running on a workstation reads input files from an
NFS-mounted file system, runs a workflow that produces
intermediate files stored on the the workstation’s disk,
and ultimately produces three output files that are stored
on a second NFS-mounted file system. Imagine that we
run the workflow on Monday, and unbeknownst to us,
a colleague modifies one of the input files on Tuesday.
When we run the workflow on Wednesday, we find that
it produces different results. If we capture provenance
only on the local or remote file systems, we cannot see
any of the processing stages that occur inside the work-
flow engine. If we capture provenance inside the work-
flow engine, then we lose track of the fact that one of
the inputs to the workflow changed, since it changed in
a manner transparent to the workflow engine (on a re-
mote server). Properly tracing the ancestry of the output
file requires the full provenance chain: from one remote
server through the local system and workflow engine to
another remote server.

This example illustrates the challenges that we en-
countered in developing a layered provenance architec-
ture. We will use this example throughout the rest of the
paper to discuss these challenges and describe our solu-
tions to them. We describe the PASSv2 system, a new
version of PASS that enables the seamless integration
of provenance from different layers of abstraction. In

such a layered system, data and provenance flow together
through the different layers. The resulting system pro-
vides a unified provenance infrastructure allowing users
to get answers to queries that span layers of abstraction,
including information about objects in different applica-
tions, the local file system, remote file systems, and even
those downloaded from the Web. Furthermore, the sys-
tem allows an arbitrary number of layers to stack on each
other (we demonstrate a three layer stack in Section 7).

The contributions of this work are:

• Use cases demonstrating the utility of integrating
provenance-aware applications and a provenance-
aware operating system.
• An architecture for provenance-aware systems that

integrates provenance across multiple abstraction
layers.
• A prototype demonstrating the capabilities of this

layered architecture through the creation of an inte-
grated set of provenance-aware components: NFS,
a workflow engine, a browser (links), and an ini-
tial runtime Python provenance tracking wrapper.

The rest of this paper is organized as follows: In
Section 2, we place this work in the context of exist-
ing systems and introduce the idea of integrating prove-
nance across semantic layers in a system. In Sec-
tion 3, we present use cases that highlight the benefits



of layering. In Section 4, we discuss the fundamen-
tal challenges inherent in building systems that integrate
provenance across multiple layers, and in Section 5, we
present our layered architecture, demonstrating how it
addresses these challenges. In Section 6, we describe
the provenance-aware applications and remote file server
we developed. Section 7 presents the cost of providing
these features in terms of time and space overheads. In
Section 8, we discuss related work, and we conclude in
Section 9.

2 Background

Previous work exists at each of the layers discussed in
the introduction, but there is no approach that integrates
across the different levels of abstraction to provide a uni-
fied solution.

At the domain-specific level, systems like GenePat-
tern [10] provide provenance for environments in which
biologists perform routine analyses. Experiments done
within the analysis environment record and maintain in-
formation about the particular algorithms and parameters
used, but this information can be lost if data is manipu-
lated outside of the environment.

Tracking provenance at the level provided by work-
flow engines – such as Pasoa [23], Chimera [9], and Ke-
pler [2] – allows users to group collection of related ob-
jects into single logical entities. For example, scientists
frequently refer to logical data sets containing hundreds
or thousands of individual files. These systems can an-
swer queries such as: What were all the output files of
a particular experiment? or What version of the soft-
ware release are we using for this analysis? These sys-
tems lose some of the semantic knowledge available at
the domain-specific level, but do provide the ability to
handle abstractions such as data sets.

System level solutions like ES3 [3] and PASSv1 [21]
capture information at the operating system level, losing
both the semantic information of domain-specific solu-
tions and also the relationships among data sets and pro-
cessing units found in workflow engines. However, these
systems provide a wealth of information about the envi-
ronment in which objects are created, such as the specific
binaries, libraries, and kernel modules in use.

Provenance is not the same as a security label, and
provenance systems are different from label-based se-
curity systems such as HiStar [31], Asbestos [6], and
Flume [18]. These systems track information flow but
not in sufficient detail for general provenance querying.
ES3 and PASSv1 capture not only the fact of relation-
ships among data sets but also the means, including data
such as process arguments and environment variables,
and support queries over this information.

All of these solutions fundamentally fail to account for
the different levels of abstraction at which users need to
reason about their data and processes. Users should be
able to work at any or all levels as desired, rather than
being limited to one. This requires being able to relate
objects that appear in one layer to their manifestations in
other layers.

It seems that perhaps it is sufficient for each system
to generate its own provenance independently and then
use the names of objects to link the layers together, as
by a relational join. However, the Second Provenance
Challenge [25] showed that even at a single level of ab-
straction, uniform object naming is both fundamental to
provenance interoperability and nontrivial. Across ab-
straction boundaries, it is harder yet. For example, an
object that exists in one layer may in other layers have
some local manifestation, such as a collection of files
forming a data set, but no clearly defined name. Thus,
using only object names or identifiers is not sufficient.

Providing a uniform basis for object identity and link-
age requires an integrated provenance solution with ex-
plicit layer support, where data moving from one layer to
the next carries its provenance with it.

3 Use Cases

We have explored provenance collection in a variety of
different contexts ranging from NFS to web browsers.
We began with NFS, as a large number of users store
their data on network-attached storage. Developing
provenance-aware NFS (PA-NFS) helped us understand
how to extend provenance outside a single machine.
Next, we decided to explore integrating a provenance-
aware workflow engine with PASSv2 as most prior
provenance systems operated at the level of a workflow
engine [2, 9, 23]. We selected the Kepler open-source
workflow enactment engine [2] in which to explore in-
tegrating workflow provenance with PASSv2. We then
explored adding provenance collection to an application
that bears little similarity to workflow engines and op-
erating systems: a web browser. We used the links text
based web browser for this purpose. Last, we built a set
of Python wrappers to capture provenance for Python ap-
plications.

In this section, we present scenarios and differentiate
the problems that provenance-aware systems can address
with and without layering.

3.1 Provenance Aware NFS
Use Case: Finding the Source of Anomalies

Scenario: Implementing the scenario depicted in Figure
1, we use Kepler to execute the Provenance Challenge



workflow [24], reading inputs from one NFS file server
and writing outputs to another. Between two executions,
unbeknownst to us someone modifies an input file. When
we examine the new output, we see that it is different
from the old output, and we would like to understand
why.
Without Layering: If we examine only the Kepler
provenance, we would think that the two executions were
identical, since the change in the input file is invisible to
Kepler. If we examine only the PASSv2 provenance, we
would see that there was a different input to the Kepler
workflow, but we would not know for sure that the input
was actually used to produce the output since we cannot
see how the multiple inputs and outputs are related.
With Layering: If Kepler runs on PASSv2, then the
PASSv2 provenance store contains the provenance from
both systems. Hence, it is possible to both determine and
verify that the input file modification was responsible for
the different output.

3.2 Provenance-Aware links
Use Case: Attribution

Scenario: A professor is preparing a presentation and
has a number of graphs and quotes that have been pre-
viously downloaded from the Web. She copies these ob-
jects into the directory containing the presentation. Now,
she would like to include proper attribution for them, but
none remain in the browser’s history and some of them
are no longer even accessible on the Web.
Without Layering: Any browser can record the URL
and name of a downloaded file and, when the site is re-
visited, can verify if the file has changed. (In fact, this
is how most browser caches function.) However, if the
user moves, renames, or copies the file, the browser loses
the connection between the file and its provenance. The
provenance collected by PASSv2 alone is insufficient as
it only records the fact that the file was downloaded by
the browser.
With Layering: A provenance-aware browser generates
provenance records that include the URL of the down-
loaded file and transmits them to PASSv2 when it writes
the file to disk. PASSv2 ensures that the file and its
provenance stay connected even if it was renamed or
copied. Our absent-minded professor can now determine
the browser provenance for the file included in the pre-
sentation.

Use Case: Determining Malware Source

Scenario: Suppose Alice downloaded a codec from a
web site. Suppose further that Eve, unbeknownst to Al-
ice, has hacked the web site and caused this codec to
contain malware. Alice later discovers that her computer

has been infected. She would like to be able to find the
origin of the malware and the extent of the damage.
Without Layering: Alice can traverse the provenance
graph recorded by PASSv2 (similar to Backtracker [17]
and Taser [11]) to identify and remove the malware bina-
ries and recover any corrupted files. However, PASSv2
by itself cannot identify the web site from which the mal-
ware was downloaded. Conversely, a provenance-aware
browser can identify the web site from which a known
malware file was downloaded, but it cannot track the
spread of that malware through the file system.
With Layering: A provenance-aware browser integrated
with PASSv2 can help identify the web site that Al-
ice was visiting when malware was downloaded, any
linked third party site where the malware download orig-
inated, as well as other details about the browsing session
(for example, the user may have been redirected from a
trusted site). It can also find other files and descendants
of files downloaded from the same web site, which may
now be suspect. Layering with PASSv2 also provides an
extra level of protection. The malware can compromise
the browser, but to hide the fact that it was ever on the
system, it also needs to compromise the operating sys-
tem. If the operating system is compromised, we can en-
sure the integrity of the provenance collected before the
compromise by using a selective versioning secure disk
system [27].

3.3 Provenance-Aware Python

Use Case: Determining Data Origin

Scenario: Through approximately 400 experiments on
60 specimens over the course of a week, colleagues in
Iowa State’s Thermography Research Group developed
a set of data quantitatively relating crack heating to the
vibrational stresses on the crack. The experiment logs
for these data were stored in a series of XML files by the
team’s data acquisition system. A team member devel-
oped a Python script to plot crack heating as a function
of crack length for two different classifications of vibra-
tional stress. Our goal was to determine the sources of
the specific XML data files that contributed to each plot.
Without Layering: This might have been a simple prob-
lem for PASSv2, except that the analysis program reads
in all the XML data files to determine which ones to use.
PASSv2 reports that the plot derives from all the XML
files. Provenance-Aware Python knows which XML doc-
uments were actually used, but it does not know the
source files of those documents.
With Layering: In a layered Provenance-Aware
Python/PASSv2 system, queries over the provenance of
the resulting plot can report both the precise XML doc-
uments, the files from which they came, and the prove-



nance of those files.

Use Case: Process Validation

Scenario: They upgraded the Python libraries on one of
their analysis machines, introducing bugs in a calculation
routine used to estimate crack heating temperatures. The
group discovered this bug after running the experiments
and wanted to identify the results that were affected by
the erroneous routine.
Without Layering: PASSv2 can distinguish which out-
put files were generated using the new Python library,
but cannot determine which of those files were generated
by invoking the erroneous routine. Provenance-Aware
Python can determine which files were generated by in-
voking the calculation routine, but cannot tell which ver-
sion of Python library was used.
With Layering: Integrating the provenance collected by
PA-Python and PASS identifies the files that have in-
correct data, because they descend from both the new
Python library and the calculation routine.

4 Challenges in Layering

Mapping objects between the different layers of abstrac-
tion is only one of the challenges facing layered prove-
nance systems. We identified six fundamental challenges
for a layered provenance architecture:

Interfacing Between Provenance-Aware Systems:
The manner in which different provenance-aware sys-
tems stack is not fixed. A workflow engine might in-
voke a provenance-aware Python program (see Section
6.4) in one instance and in another instance be invoked by
it. Thus, provenance-aware components must be able to
both accept and generate messages that transmit prove-
nance. We designed a single universal API appropriate
for communication among PASSv2 components and also
among different provenance systems. It took several iter-
ations to develop an API that was both general and sim-
ple; we discuss the resulting Disclosed Provenance API
(DPAPI) in Section 5.2.

Object Identity: As mentioned earlier, objects may
be tangible at one layer and invisible at another. Imagine
tracking provenance in a browser, as in Section 6.3. It
would be useful to track each browser session as an in-
dependent entity. However, browser sessions do not exist
as objects in the file system, so it is not obvious how to
express a dependence between a browser page and a file
downloaded from it. We show how the DPAPI makes ob-
jects from one layer visible to other layers and how the
distributor lets us manage objects that are not manifest
at a particular layer in Section 5.5.

Consistency: Provenance is a form of metadata; we
need to define and enforce consistency semantics be-

tween the data and its metadata, so users can make ap-
propriate use of it. The DPAPI bundles data and prove-
nance together to achieve this consistency and our lay-
ered file system, Lasagna (Section 5.6), maintains this
consistency on disk.

Cycles: In earlier work, we discussed the challenge
of detecting and removing cycles in PASSv1 [21]. This
problem becomes even more complicated in a layered
environment. Since there are objects that appear at one
layer and not at others, we may need to create relation-
ships between objects that exist in different layers, and
then detect and remove cycles that these relationships in-
troduce. In Section 5.4, we discuss how the analyzer
performs cross-layer cycle detection.

Query: Collecting provenance is not particularly
valuable if we cannot make it available to a user or ad-
ministrator in a useful fashion. We shadowed several
computational science users to understand what types
of queries they might ask a provenance system. Af-
ter struggling through three generations of query lan-
guages for provenance, we incorporated the input from
our users and derived the following list of requirements
for a provenance query language [16]:

• The basic model should be paths through graphs;
• Paths should be first-class language level objects;
• Path matching should be by regular expressions

over graph edges; and
• The language needs sub-queries and aggregation.

Query languages for semi-structured data proved the
best match; our query language PQL (Path Query Lan-
guage) derives from one of these. Section 5.7 provides a
brief overview.

Security: While there has been research showing the
use of provenance for auditing and enhancing security
[13], there has been little work on security controls for
the provenance itself. The fundamental provenance secu-
rity problem is that provenance and the data it describes
do not necessarily share the same access control. There
is no universally correct rule that dictates which of the
two (data or provenance) requires stronger control. For
example, consider a report generated by aggregating the
health information of patients suffering a certain ailment.
While the report (the data) can be accessible to the pub-
lic, the files that were used to generate the report (the
provenance) must not be. The provenance must be more
tightly controlled than the data. Conversely, a document
produced by a government panel (the data) might be clas-
sified, but the membership of the committee and the iden-
tities of all participants in briefings (the provenance) may
nonetheless be entirely public. The data carries stronger
access control than the provenance. Creating an access
control model for provenance is outside the scope of this



Figure 2: PASSv2 Architecture

paper; however, a related paper presents an in-depth dis-
cussion of the problem and our approach to solving it
[4].

5 Architecture

We begin with a high level overview that introduces the
main components of the PASSv2 system. Then we ex-
plain each component of the system in detail and show
how it addresses the challenges discussed above.

5.1 Overview

From a user perspective, PASSv2 is an operating
system that collects provenance invisibly. Application
developers can also use it to develop provenance-aware
applications. Figure 2 shows the seven main components
of the PASSv2 system. These are:
libpass: libpass is a library that exports the DPAPI to
user-level. Application developers develop provenance-
aware applications by augmenting their code to collect
provenance and then issuing DPAPI calls to libpass.
Interceptor: The interceptor intercepts system calls and
passes information to the observer.
Observer: The observer translates system call events
to provenance records. For example, when a process P
reads a file A, the observer generates a record P → A,
indicating that P depends on A. Hence, together the
observer and the interceptor generate provenance.
Analyzer: The analyzer processes the stream of prove-
nance records and eliminates duplicates and ensures that
cyclic dependencies do not arise.

Distributor: The distributor caches provenance for ob-
jects that are not persistent from the kernel’s perspective,
such as pipes, processes and application-specific objects
(e.g., a browser session or data set) until they need to be
materialized on disk.
Lasagna: Lasagna is the provenance-aware file system
that stores provenance records along with the data.
Internally, it writes the provenance to a log. The log
format ensures consistency between the provenance and
data appearing on disk.
Waldo: Waldo is a user-level daemon that reads prove-
nance records from the log and stores them in a database.
Waldo is also responsible for accessing the database on
behalf of the query engine.

5.2 Disclosed Provenance API (DPAPI)

The DPAPI is the central API inside PASSv2. It al-
lows transfer of provenance both among the compo-
nents of the system and between layers. Applications
use the DPAPI to send (“disclose”) provenance to the
kernel. The same interface is used to send prove-
nance to the file system. The DPAPI consists of six
calls: pass_read, pass_write, pass_freeze,
pass_mkobj, pass_reviveobj, and pass_sync
and two additional concepts: the pnode number and the
provenance record.

A pnode number is a unique ID assigned to an object
at creation time. It is a handle for the object’s prove-
nance, akin to an inode number, but never recycled. A
provenance record is a structure containing a single unit
of provenance: an attribute/value pair, where the attribute
is an identifier and the value might be a plain value (in-
teger, string, etc.) or a cross-reference to another object.
Provenance records may contain ancestry information,
records of data flows, or identity information.

The pass_read and pass_write operations are
like read and write but are provenance-aware. This
ensures that provenance and data move together, provid-
ing consistency of provenance and data as required by
Section 4.

The pass_read call returns both the data requested
and the exact identity of what was read: the file’s pnode
number and version as of the moment of the read. This
ensures that applications or other higher layers can con-
struct provenance records that accurately describe what
they read, also a critical component of consistency.

The pass_write call takes both a data buffer and
a “bundle” of provenance records that describe the data.
A provenance bundle is an array of object handles and
records, each potentially describing a different object.
The complete provenance for a block of data written to
a file might involve many objects (e.g., several processes



and pipes in a shell pipeline). This organization allows
all of the separate objects to be sent as a single unit.

Cycle-breaking sometimes requires creating new ver-
sions of objects. In a layered system, versions must
be handled at the bottom level (the storage system),
but cycle-breaking may occur at any level. The
pass_freeze call breaks cycles by requesting a new
version.

As discussed in Section 4, provenance-aware applica-
tions may need to represent objects, such as browser ses-
sions, data sets, or program variables, that do not map
to a particular file system object. The pass_mkobj
call allows applications to create such objects. These
objects are referenced like files, with file handles. The
objects can also be used to relate names/objects at one
level to names/objects at another level. A system at any
layer can create objects using pass_mkobj and create
dependencies between its objects and objects at differ-
ent layers of abstraction by issuing pass_write calls.
Users can then issue queries using the name in the most
convenient abstraction layer (e.g., filename) and PASSv2
can retrieve the appropriate objects across the layers us-
ing these dependencies.

We initially designed the objects returned by
pass_mkobj to be transient and applications had
no means to access these objects again after clos-
ing them. However, when developing provenance-
aware applications, we discovered occasions where we
needed to access these objects. Hence, we added the
pass_reviveobj call that takes a pnode number and
version and returns an object previously created via
pass_mkobj.

By default, the provenance associated with an object
returned via pass_mkobj is not flushed to disk unless
it becomes a part of the ancestry of a persistent object
on a PASS-enabled volume. This is correct behavior for
purely transient objects with no descendants (e.g., pro-
cesses), but it would lose objects that exist only at lay-
ers above PASS. Applications can use the pass_sync
function to make persistent provenance associated with
an object created via pass_mkobj even if is not in the
ancestry of a persistent PASS-volume object.

Applications link against libpass to use the user-
level DPAPI to record provenance. Such applications
are provenance-aware. The DPAPI enables an arbitrary
number of layers of provenance-aware applications. For
example, we can construct a system with five layers
using a provenance-aware Python application that uses
a provenance-aware Python library, both of which ex-
ecute on a provenance-aware Python interpreter. That
provenance-aware Python interpreter might then use a
PA-NFS utilizing PASSv2. Note that the provenance-
aware library and provenance-aware interpreter both ac-
cept DPAPI calls from higher layers and issue DPAPI

calls to lower layers.

5.3 Provenance Generation
Provenance generation involves two system components:
the interceptor and observer. The interceptor captures
system call events and reports them to the observer.
The PASSv2 interceptor handles the following system
calls: execve, fork, exit, read, readv, write,
writev, mmap, open, and pipe, and the kernel oper-
ation drop_inode. The interceptor is a thin operating
system specific layer, while the remaining system com-
ponents can be mostly operating system independent.

The observer takes the information it receives from the
interceptor, constructs provenance records, and passes
those records to the analyzer via DPAPI calls. For ex-
ample, when a process issues a read system call, the
observer first issues a pass_read on the file. When
the pass_read returns with the data, pnode, and ver-
sion of the file, the observer creates a record stating that
the particular version of the file is an input to the pro-
cess, thereby creating a dependency between the process
and the file. It then sends the record to the analyzer by
issuing a pass_write with the provenance record, but
no data. When that process then issues a write system
call, the observer creates a record stating that the process
is an input to the written file and issues a pass_write
containing both this provenance record and the data from
the write system call, thereby creating a dependency
between the process and the file.

The observer is also the entry point for provenance-
aware applications that use the DPAPI to explicitly dis-
close provenance records to PASSv2. The observer is the
appropriate entry point, since PASS might need to gen-
erate additional provenance records even when an appli-
cation is disclosing provenance. For example, when an
application invokes a pass_write DPAPI call, apart
from the explicit provenance disclosed by the appli-
cation, the observer has to create a record that cap-
tures the dependency between the application and the
file. The observer converts the provenance that higher-
level provenance-aware applications explicitly disclose
via DPAPI calls into appropriate kernel structures and
passes the records to the analyzer.

5.4 Analyzer
The analyzer eliminates redundant provenance and cy-
cles in the stream of provenance records that it re-
ceives. Programs generally perform I/O in relatively
small blocks (e.g., 4 KB), issuing multiple reads and
writes when manipulating large files. Each read or
write call causes the observer to emit a new record,
most of which are identical. The analyzer removes such



duplicates. Meanwhile, cycles can occur when multiple
processes are concurrently reading and writing the same
files. The analyzer prevents cycles by creating new ver-
sions of objects. In PASSv1, we used an algorithm that
maintains a global graph of object dependencies and ex-
plicitly checks for cycles. On detecting a cycle, the algo-
rithm merged all the nodes in the cycle into a single en-
tity. This proved challenging, and there were cases where
we were not able to do this correctly. In PASSv2, we use
a more conservative algorithm, called the cycle avoid-
ance algorithm that uses only an object’s local depen-
dency information to avoid cycles. We discuss and ana-
lyze this algorithm in detail in earlier work [20]. Since
any semantic information that the higher-level applica-
tions disclose to PASSv2 is via objects returned through
pass_mkobj, the analyzer works in a layered environ-
ment without modification.

5.5 Distributor
Since processes are first-class objects, the system must
track and store their provenance. However, processes
are not by themselves persistent objects residing on a
PASS-enabled volume. Where should their provenance
be stored? Similar issues arise with pipes, files from non-
PASS volumes, and objects introduced by provenance-
aware applications. In these cases, PASSv2 must se-
lect some PASS-enabled volume on which to store their
provenance. The distributor addresses this issue.

The distributor caches provenance records for all ob-
jects that are not PASS files. When those objects be-
come part of the ancestry of a persistent object on
a PASS-enabled volume or are explicitly flushed via
pass_sync, the distributor assigns these objects to a
PASS volume (either that of the persistent ancestor or the
one specified when an object was created) and flushes
the provenance records by issuing a pass_write to
Lasagna.

5.6 Lasagna & Waldo
Lasagna is our provenance-aware file system that stores
both provenance and data. Lasagna is a stackable file
system, based upon the eCryptfs [12] code base. Lasagna
implements the DPAPI interface in addition to the regular
VFS calls. We implement pass_read, pass_write,
pass_freeze as inode operations and pass_mkobj
and pass_reviveobj as superblock operations.

PASSv1 wrote provenance directly into databases that
provided indexed access to provenance. This arrange-
ment was neither flexible nor scalable, so PASSv2 writes
all provenance records to a log. A user-level daemon pro-
cess, Waldo, later moves the provenance to a database
and indexes it. When the log file exceeds a parametrized

maximum size or has been dormant for a parametrized
length of time, the kernel closes the log and creates a
new one. Waldo uses the Linux inotify interface to
monitor this activity, processing and removing log files.

We use a write-ahead-provenance (WAP) protocol to
ensure that on-disk provenance accurately reflects on-
disk data. WAP is analogous to database write-ahead
logging. Enforcing WAP requires that all provenance
records be written to disk before the data they describe.
This eliminates the possibility that unprovenanced data
exists on the disk. In addition, we use transactional struc-
tures in the log along with MD5sums of data so that dur-
ing file system recovery, we identify any data for which
the provenance is inconsistent. This indicates precisely
the data that was being written to disk at the time of a
crash. Thus, Lasagna’s DPAPI interface along with the
WAP protocol ensures that provenance is consistent with
the data it describes (or, after a crash, inconsistencies are
identified).

5.7 Querying

Most existing provenance systems use either an XML-
based or a relational representation. We found both lack-
ing. XML has a notion of paths (XPath) but is inherently
tree-structured and does not extend well to graphs. SQL
has no native concept of paths; writing path-like queries
in SQL requires mentally translating the paths into recur-
sive queries, which are themselves expensive and unnat-
ural in a relational environment. It seemed most appro-
priate to find a query language that was designed specif-
ically for querying graphs.

The Lore semistructured database project at Stanford
provided us with the Lorel [1] query language and its
“OEM” data model. A semistructured database is one
with no fixed schema; the data model in Lore is that of a
collection of arbitrary objects, some holding values and
some holding tables of named linkages to other objects.
The data types of values and linkages are not fixed, and
the query language is designed accordingly.

The OEM data model is appealing for provenance,
since it naturally represents both graphs and object at-
tributes, and Lorel provides the path-oriented query
model for which we were looking. Unfortunately, we
found that Lorel had several shortcomings. In particu-
lar, it did not support boolean values in the database, its
formal grammar was ambiguous, and there were corner
cases where the semantics were not well defined. We
also needed to extend Lorel to allow traversal of graph
edges in both directions. We present a more in-depth
discussion of these issues in a recent publication [16].

We developed a new query language based on Lorel,
which we call Path Query Language (PQL or “pickle”).
It is specifically geared to handle our requirements for



querying provenance. PQL’s query model is based on
following paths through an object graph to find and re-
trieve data. The typical query returns a set of values.
The general structure of a PQL query is: select outputs
from sources where condition. Sources are path expres-
sions, which represent paths through the graph, outputs
are anything we can compute on paths, and conditions
are boolean predicates like in a SQL query. The PQL
reference manual is available online [15].

The following sample query determines the cause of
the anomaly in the output in the use case described in
Section 3.1.

select Ancestor
from Provenance.file as Atlas

Atlas.input* as Ancestor
where Atlas.name = "atlas-x.gif"

The query returns all the ancestors of one output file,
atlas-x.gif (by following zero or more input re-
lationships), which will include both the Kepler work-
flow entities and the PASS data for the input files. PQL
queries, if not posed carefully, can result in information
overload. Pruning the query results to produce more fo-
cused results is an area of ongoing research.

6 Provenance-Aware Applications

The following sections present technical details about
how we implemented provenance collection in a vari-
ety of different provenance-aware layers, and the prove-
nance we collect in each. We conclude this section with a
summary of the lessons learned while constructing these
provenance-aware components. Table 1 summarizes the
provenance collected by each provenance-aware system.

6.1 Provenance-Aware NFS
We implemented provenance-aware NFS using
NFSv4 [26] in Linux 2.6.23.17. Making NFS prove-
nance aware involves addressing two questions: First,
while provenance-aware NFS can leverage the PASSv2
analyzer, should that analyzer reside on the client or
the server? And second, how do we extend the NFSv4
protocol to support the six DPAPI operations?

6.1.1 Cycles vs. NFS

An analyzer must process all the provenance records at
its abstraction layer in order to properly avoid cycles.
Consider a process on an NFS client machine access-
ing data from two different storage servers. The analyzer
must reside at the client, because only there is it possible
to see all relevant provenance records.

Record Type Description
PA-NFS
BEGINTXN Beginning record of a transaction
ENDTXN Terminating record of a transaction
FREEZE Freeze record sent in pass_write
PA-Kepler
TYPE Type of object: set to OPERATOR
NAME Name of the operator
PARAMS Operator parameters
INPUT Dependency between operators
PA-links
TYPE Type of object: set to SESSION
VISITED_URL Session and URL dependency
FILE_URL File and URL dependency
CURRENT_URL URL user was viewing while

download was initiated
INPUT File and Session dependency
PA-Python
TYPE Type of object: e.g., FUNCTION
NAME object name (e.g., method name)
INPUT method input and invocation

dependency or invocation and output
dependency

Table 1: Provenance records collected by each
provenance-aware application.

Next, consider two programs running on different
clients accessing a single server. By the same logic, the
analyzer must reside on the server, because only there
can it see all related provenance records.

Finally, combine these two scenarios: two client pro-
grams each accessing files from two different file servers.
In this case, we need analyzers on both clients and
servers.

This means that in general we must have an analyzer
on every client and also an analyzer on every server;
this in turn means that the client instance of the analyzer
must be able to stack on top of the server instance, which
means that the input and output data representations must
be the same. This requirement is easily satisfied as all
the components in PASSv2, including the client and the
server, communicate via the DPAPI. In fact, it was pre-
cisely this observation that motivated layering and the
use of the DPAPI as a universal interface.

6.1.2 DPAPI in NFS

pass_write: Supporting pass_write requires that we
transmit provenance with data to enforce consistency.
Accordingly, we created an NFS operation analogous to
the local pass_write, called OP_PASSWRITE, that
transmits both data and provenance to the server. As long
as the combined data and provenance size is less than the



NFSv4 client’s block size (typically 64 KB in NFSv4),
this approach is sufficient.

Unfortunately, not all data and provenance packets
satisfy this constraint. In these cases, we use NFS
transactions to encapsulate a collection of operations
that must be handled atomically by the server. To
support transactions, we introduced two new opera-
tions, OP_BEGINTXN and OP_PASSPROV, and two
new provenance record types, BEGINTXN and ENDTXN.
First, we invoke an OP_BEGINTXN operation to ob-
tain a transaction ID from the exported PASS vol-
ume. We record the transaction ID in a BEGINTXN
record at the server. Then, we send the provenance
records to the server in 64 KB chunks, using a se-
ries of OP_PASSPROV operations, each identified by
the transaction ID acquired by OP_BEGINTXN. Finally,
we invoke an OP_PASSWRITE operation that trans-
mits the data along with a single ENDTXN record. The
ENDTXN record contains the transaction ID obtained in
OP_BEGINTXN and signals the end of that transaction.
A corresponding ENDTXN record is written to the log at
the server.

We considered an alternate implementation that ob-
tains a mandatory lock on the file, writes the provenance,
and then writes the data as a separate operation. This ap-
proach would have provided the coupling between prove-
nance and data; however, it does not allow us to recover
from a client crash. If the client wrote the provenance,
crashed before sending the data, and then came back up,
there is no way for the server to determine that the prove-
nance must be discarded. Our implementation solves this
problem, because the transaction ID enables the server’s
Waldo daemon to identify the orphaned provenance.

pass_read: For NFS pass_read, we introduced a
new operation OP_PASSREAD, which returns both the
requested data and its pnode number and version.

pass_freeze: We send pass_freeze opera-
tions to the server as a provenance record type in
OP_PASSWRITE. When the analyzer at the client is-
sues a pass_freeze, the client increments the ver-
sion locally and attaches a freeze record to the file. The
client can then return the correct version of the file on a
pass_read without a trip to the server. Later, when
the client sends the file’s provenance to the server with
an OP_PASSWRITE, the server processes the freeze
records, incrementing its version number accordingly.

We implement freeze as a record type instead of an
operation because operations may arrive at the server
out of order. pass_freeze is order-sensitive with
respect to pass_write. pass_freeze breaks cy-
cles in the records that are about to be written with a
pass_write and an out of order arrival can result in a
failure to break cycles. Making pass_freeze a record
type couples pass_freeze with pass_write and

avoids the problem.
Due to the close-to-open consistency model that NFS

supports, two different clients can open the same ver-
sion of a file and concurrently make modifications to it.
Hence, our approach of versioning at the client and up-
dating versions at the server can lead to version branch-
ing, where two clients create independent copies of an
object with the same version. This has not caused any
problems in our existing applications, and given the over-
all lack of precise consistency semantics in NFS, we do
not expect it to be problematic for existing applications.

pass_mkobj: We added a new operation called
OP_PASSMKOBJ that returns a unique pnode referenc-
ing the object in future interactions. The client then con-
structs an in-memory anonymous inode that has a refer-
ence to the pnode and exports the inode to user-level as a
file.

We could have implemented pass_mkobj by creat-
ing a file handle at the server and returning it to the client.
The client would then use the handle to write provenance.
However, this approach would make it difficult to recover
from either a server or client crash. The advantage of our
approach is that the server only needs enough state to ver-
ify that the pnode is a valid on pass_reviveobj and
requires no complicated recovery. If the server crashes
and comes back up, the client can continue to use the pn-
ode as though the crash never happened, as the pnode is
just a number. Similarly, if the client crashes, the server
does not have to clean up state as it has only allocated a
(cheap) pnode number to the client.

pass_reviveobj: We added a new operation called
OP_PASSREVIVEOBJ that verifies that the given pn-
ode number is valid and returns an anonymous inode as
we do for pass_mkobj.

pass_sync: This is implemented by invoking the
OP_PASSPROV operation. When the provenance ex-
ceeds 64KB, we encapsulate the operation in a transac-
tion as we do for pass_write.

6.2 Provenance-Aware Kepler
Kepler records provenance for all communication be-
tween workflow operators, recording these events ei-
ther in a text file or relational database. We added a
third recording option: transmitting the provenance into
PASSv2 via the DPAPI. This integration was simple. We
implemented methods in Kepler’s provenance recording
interface that translate Kepler’s provenance events into
explicit ancestor-descendant relationships.

We create a PASS object for every workflow opera-
tor using pass_mkobj and set its properties, such as
NAME, TYPE, and PARAMS, which specify the names
and values of its parameters (such as “fileName” or “con-
firmOverwrite” for a file output operator). When an op-



erator produces a result, Kepler notifies our recording in-
terface with its event mechanism. Upon receipt of the
event, we add an ancestry relationship between this op-
erator and every recipient of the message by issuing a
pass_write call that records the ancestry between the
sender and the recipient. This is the only one of Kepler’s
recording operations that needs to send data to PASSv2.

Unfortunately, the recording interface does not pro-
vide methods to generate provenance for reading or writ-
ing files or downloading data from the Internet. In-
stead, Kepler knows about data sink and source opera-
tors, which open and close files. We modified the Kepler
routines used by these operators to infer the files that are
being read/written, linking Kepler’s provenance to that in
PASSv2.

6.3 Provenance-Aware links
We chose to add provenance collection to version 0.98 of
links, a text-based browser, as it had the simplest code
base of those browsers we examined. We are currently
exploring provenance collection in a Firefox [19].

A PA-browser can capture semantic information that
is invisible to PASS, such as:

• The URL of any file that a user downloads using the
browser;
• The web page a user was examining when she initi-

ated a download;
• The sequence of web pages a user visited before

downloading a file; and
• The set of pages that were active concurrently.

We group provenance by session, as it represents
a logical task performed by a user. On session cre-
ation, we create a PASS object that represents it (us-
ing pass_mkobj) and record the object TYPE (using
pass_write). Whenever a user visits a site, we gen-
erate a VISITED_URL record that describes the depen-
dency between the session and the URL and record it by
issuing the DPAPI call pass_write. These records
identify the sequence of URLs that a user visited before
downloading a file.

Each time the browser downloads a file, we generate
three records. An INPUT record captures the depen-
dency between the file and the session, connecting the
file to the sequence of URLs visited during the session,
before initiating the download. A FILE_URL record
captures the URL of the file itself. A CURRENT_URL
record captures the dependency between the file and the
page the user was viewing when she decided to down-
load the file. We replace the write that the browser
issues to record the file on disk with a pass_write
that transmits the data and the three provenance records
to PASSv2.

6.4 Provenance-Aware Python Apps

We discovered that a colleague had written a set of wrap-
pers to track provenance in Python applications. His goal
was to explicitly identify relationships between input and
output files using Python scripts that read in a large num-
ber of data files, but used only a subset of them.

To make the Python analysis program provenance-
aware, we created Python bindings for our DPAPI inter-
face. We also wrap objects, modules, basic types, and
output files with code that creates PASSv2 objects repre-
senting our Python objects (using pass_mkobj), inter-
cepts method invocations, and then records the relation-
ships between the objects. By wrapping a few modules
and objects we record the information flow pertaining to
those objects and methods and relate them to the files
they eventually affect. For every object, we record the
object TYPE (for example, FUNCTION) and the object
NAME. For modules and methods, we add an intercept
for each method so we can connect method invocations
to their inputs and outputs. On every method invocation,
we issue DPAPI pass_write calls to record INPUT
records describing the dependencies between each input
and its method invocation and between the method invo-
cation and each of its outputs.

6.5 Summary and Lessons Learned

While provenance-aware applications are generally use-
ful and many developers develop ad hoc solutions to the
problems they solve, the ability to integrate such solu-
tions with system-level approaches increases the value
of both the system-level provenance and the application-
level provenance. Our system has a simple architecture
and API that enables such an integration. We now dis-
cuss some of the lessons we learned.

Our experience with links, Kepler, and Python led
us to the following guidelines for making applications
provenance-aware. First, application developers have to
identify the provenance they want to collect. Next, they
have to replace read calls with pass_read calls and
write calls with pass_write calls, obtaining and for-
warding provenance to the layers around them. In or-
der to record semantic provenance, application develop-
ers can create objects using pass_mkobj and record
such provenance via pass_write calls on those ob-
jects. They can then link the semantic provenance with
the system objects by creating appropriate records and
storing them via pass_write calls. Finally, layers that
are a substrate to higher level applications (like an inter-
preter) must export the DPAPI. If they do not export the
DPAPI, the applications cannot layer provenance on top
of them.

It is not trivial to extend existing complex applications,



which were not designed to collect provenance, to make
them provenance aware. We observe this in our ongoing
work with Firefox. In Firefox, interesting provenance
events such as page loads, bookmarks, etc. occur in the
user interface modules. However, the I/O manipulation
events such as cache and file writes occur in completely
different modules. Connecting provenance collected in
the UI modules to data writes in the I/O modules entails a
significant amount of re-engineering of Firefox modules
and interfaces. We are currently working on this.

Considering that operating systems are, to this day,
introducing new system calls, we expect the DPAPI to
evolve over time. It has continued to evolve over the
course of the project and this paper. As we noted in
Section 5.2, we initially designed the objects returned by
pass_mkobj to be transient. However, while working
on Firefox provenance collection, we discovered that we
needed to revive these objects. For example, in Firefox,
we create an object per active session. Firefox stores the
sessions to disk and restores them when the user restarts
the browser. In this scenario, the application needs to
revive the objects used to record each session’s prove-
nance so as to record further provenance. Hence, in or-
der to support such scenarios, we extended the DPAPI to
include pass_reviveobj.

We initially believed that the Python wrappers we built
were sufficient to enable provenance-aware Python ap-
plications. We later realized that while we could wrap
functions, we lost provenance across built-in operators.
In retrospect, what we discovered with Python was the
difference between building a provenance-aware system
and provenance-aware applications. By wrapping func-
tion calls in Python, we make an application provenance-
aware, as we did for links and Kepler. Making Python
itself provenance-aware would require modifying the
Python interpreter, as we modified the operating sys-
tem to make it provenance-aware. While an interesting
project, we have left that undertaking for future research.

7 Performance Evaluation

While the main contribution of this work is in the new
capabilities available from the system, we wanted to ver-
ify that these capabilities do not impose excessive over-
heads. There are two concerns: the execution time over-
head due to the additional work done to collect prove-
nance and the space overhead for storing provenance.

We evaluate these overheads using five applications
representative of a broad range of workloads: 1) Linux
compile, in which we unpack and build Linux kernel ver-
sion 2.6.19.1. This represents a CPU intensive workload;
2) Postmark, that simulates the operation of an email
server. We ran 1500 transactions with file sizes rang-
ing from 4 KB to 1 MB, with 10 subdirectories and 1500

files. This benchmark is representative of an I/O inten-
sive workload; 3) Mercurial activity benchmark, where
we evaluate the overhead a user experiences in a nor-
mal development scenario. We start with a vanilla Linux
2.6.19.1 kernel and apply, as patches, each of the changes
that we committed to our own Mercurial-managed source
tree; 4) Blast, a biological workload used to find pro-
tein sequences in a species that are closely related to the
protein sequences in another species. The workload for-
mats two input data files with a tool called formatdb,
then processes the two files with Blast, and then mas-
sages the output data with a series of Perl scripts; and 5)
A PA-Kepler workload, that parses tabular data, extracts
values, and reformats it using a user-specified expres-
sion. The PA-Kepler workload, when located on a PA-
NFS volume, is similar to the situation presented in Sec-
tion 1, where provenance collection is integrated across
three layers.

We ran two batches of experiments: one comparing
PASSv2 to vanilla ext3 (in ordered mode) and another
on comparing provenance-aware NFS (PA-NFS) to NFS
exporting ext3 (also in ordered mode). We ran all local
benchmarks on a 3GHz Pentium 4 machine with 512MB
of RAM, an 80GB 7200 RPM Western Digital Caviar
WD800JB hard drive and with a kernel (Vanilla/PASS)
based on Linux 2.6.23.17. For experiments involving
NFS, we used the previous machine as the server and a
2.8GHz 2 CPU Opteron 254 machine with 3GB of RAM
as the client. The client machine has the same software
configuration as the server.

PASSv2 Elapsed Time Results: Table 2 shows the
elapsed time overheads. The general pattern we observed
is that the elapsed times are affected when provenance
writes interfere with the workload’s regular writes. The
Mercurial activity benchmark has the highest elapsed
time overhead of 23.1% despite having minimal space
overhead. This is because patch performs many meta-
data operations (it creates a temporary file, merges data
from the patch file and the original file into the tempo-
rary file, and finally renames the temporary file). The
provenance writes interfere with patch’s metadata I/O,
leading to extra seeks, which increase overhead. The
Linux kernel compile has an overhead of 15.6% due to
provenance writes. Postmark has an overhead of 11.5%,
and the overheads, unlike the former two benchmarks,
are due to the double buffering in Lasagna (stackable file
systems cache both their data pages and lower file system
data pages). Blast and PA-Kepler are heavily CPU bound
and hence their elapsed time are minimally affected due
to provenance writes.

PA-NFS Elapsed Time Results: The PA-NFS
elapsed time overheads are lower for Linux compile
and Mercurial activity benchmarks compared to PASSv2
overheads, as the additional delay introduced by the net-



Benchmark Ext3 PASSv2 Overhead NFS PA-NFS Overhead
Linux Compile 1746 2018 15.6% 3320 3353 11.0%
Postmark 453 505 11.5% 636 743 16.8%
Mercurial Activity 614 756 23.1% 2842 3089 8.7%
Blast 69 69.5 0.7% 52 53 1.9%
PA-Kepler 1246 1264 1.4% 160 164 2.5%

Table 2: Elapsed time overheads (in seconds).

Benchmark Ext3 Provenance Provenance+Indexes
Linux Compile 1287.9 88.9 (6.9%) 236.8 (18.4%)
Postmark 1289.5 0.8 (0.1%) 1.7 (0.1%)
Mercurial Activity 858.7 15.4 (1.8%) 28.9 (3.4%)
Blast 5.6 0.1 (1.1%) 0.2 (3.8%)
PA-Kepler 3.5 0.2 (4.7%) 0.5 (14.2%)

Table 3: Space overheads (in MB) for PASSv2. The space overheads for PA-NFS are similar.

work round trips affect both NFS and PA-NFS equally.
The Postmark overheads, though reasonable, are higher
in PA-NFS compared to PASSv2. Our experiments con-
firm that out of 16.8% overhead that Postmark incurs for
PA-NFS, 14.8% is due to the fact that Lasagna is imple-
mented as a stackable file system. The Blast and PA-
Kepler overheads remain minimal even in the PA-NFS
case.

Space Overheads: Table 3 shows the provenance
database space overhead and the total space overheads
(provenance database and indexes) for PASSv2. The
overheads are computed as a percentage of the Ext3
space utilization. Overall, the provenance database over-
heads are minimal with all overheads being less than
7%. The total space overheads are reasonable with Linux
compile having the highest overhead at 18.4%. PA-
Kepler combines both system provenance and applica-
tion provenance and has a total space overhead of 14.2%.
For the rest of the benchmarks, the space overhead is less
than 4%. The space overheads for PA-NFS as the over-
heads are similar to the overheads in PASSv2.

8 Related Work

Several systems have looked at propagating taint infor-
mation along with the data in order to debug applications
or to detect security violations [22, 30]. These systems
are, however, extremely slow as they track information
flow at a fine granularity and hence can never be used
in production systems. PASSv2 monitors only system
call events, which is much less expensive. The drawback
is that the information collected by PASSv2 can be less
accurate; but as we have shown in the use cases, it is
valuable nonetheless.

X-Trace [7] is a research prototype built to diagnose

problems in network applications that span multiple pro-
tocol layers and administrative domains. X-Trace’s ap-
proach is similar to ours in that it integrates information
from multiple layers in the system stack. The higher
layer generates a “taint” that is propagated through the
layers along with the data. The generated debug meta-
data is not sent with the data, but is instead sent out of
band to a destination. Hence the interface between lay-
ers can be much more limited compared to the DPAPI
in PASSv2. Furthermore, X-Trace does not need to deal
with cycles as the PASSv2 analyzer does.

Another class of systems that maintain dependencies
are software build systems such as Vesta [14]. These sys-
tems need the initial dependencies be specified manually.
Build systems maintain dependencies after those depen-
dencies have been specified; PASS derives dependencies
based upon program execution. As a result, while ex-
traordinarily useful for software development, they ig-
nore the central PASS challenge: automatically generat-
ing the derivation rules as a system runs.

Chanda et. al. [5] present a mechanism to use causal
information flow to introduce new functionality. For ex-
ample, one can send process priority along with data to
a socket. On receiving the data and the causal metadata
(priority), the server increases the priority for processing
this data. This mechanism is complementary to the ideas
we have explored in this work.

9 Conclusions

We have presented a provenance-aware storage system
that permits integration of provenance across multiple
layers of abstraction, ranging from Python applications
to network-attached storage. This integration requires a
layered architecture that dictates how provenance, data,



and versions must flow through the system. The archi-
tecture has proved versatile enough to facilitate integra-
tion with a variety of applications and NFS, providing
functionality not available in systems that cannot inte-
grate provenance across different layers of abstraction.

We have presented several use cases illustrating what
kinds of functionality this layering enables. The use
cases show efficacy in a variety of areas, such as mal-
ware tracking and scientific data processing. Finally,
we demonstrated an end-to-end system encompass-
ing provenance-aware applications and network-attached
storage, imposing reasonable space and time overheads
ranging between 1% and 23%.

Acknowledgments: We thank Stephen D. Holland for
providing us the PA-Python use cases and Joseph Bar-
illari for help with PA-Python development. We thank
Andrew Warfield, our shepherd, for repeated careful and
thoughtful reviews of our paper. We thank Keith Bostic,
Stephen D. Holland, Keith Smith, and Jonathan Ledlie
for their feedback on early drafts of the paper. We thank
the anonymous reviewers for the valuable feedback they
provided. This work was partially made possible thanks
to NSF grants CNS-0614784 and IIS-0849392.

References
[1] ABITEBOUL, S., QUASS, D., MCHUGH, J., WIDOM, J., AND

WIENER, J. L. The Lorel query language for semistructured data.
International Journal on Digital Libraries 1, 1 (1997), 68–88.

[2] ALTINTAS, I., BARNEY, O., AND JAEGER-FRANK, E. Prove-
nance collection support in the Kepler scientific workflow system.
In IPAW (2006), vol. 4145 of LNCS, Springer.

[3] BOSE, R., AND FREW, J. Composing lineage metadata with xml
for custom satellite-derived data products. In Proceedings of the
Sixteenth International Conference on Scientific and Statistical
Database Management (2004).

[4] BRAUN, U., SHINNAR, A., AND SELTZER, M. Securing Prove-
nance. In Proceedings of HotSec 2008 (July 2008).

[5] CHANDA, A., ELMELEEGY, K., COX, A. L., AND
ZWAENEPOEL, W. Causeway: operating system support for con-
trolling and analyzing the execution of distributed programs. In
HOTOS (2005).

[6] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S.,
FREY, C., ZIEGLER, D., KOHLER, E., MAZIÈRES, D.,
KAASHOEK, F., AND MORRIS, R. Labels and event processes
in the asbestos operating system. In SOSP (2005).

[7] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-trace: A pervasive network tracing framework. In
In NSDI (2007).

[8] FOSTER, I., AND KESSELMAN, C. Globus: A metacomput-
ing infrastructure toolkit. International Journal of Supercomputer
Applications and High Performance Computing (Summer 1997).

[9] FOSTER, I., VOECKLER, J., WILDE, M., AND ZHAO, Y. The
Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration. In CIDR (Asilomar, CA, Jan. 2003).

[10] GenePattern. http://www.broad.mit.edu/cancer/
software/genepattern.

[11] GOEL, A., PO, K., FARHADI, K., LI, Z., AND DE LARA, E.
The Taser intrusion recovery system. In SOSP (2005).

[12] HALCROW, M. A. eCryptfs: An enterprise-class encrypted
filesystem for linux. Ottawa Linux Symposium (2005).

[13] HASAN, R., SION, R., AND WINSLETT, M. The Case of the
Fake Picasso: Preventing History Forgery with Secure Prove-
nance. In FAST (2009).

[14] HEYDON, A., LEVIN, R., MANN, T., AND YU, Y. The Vesta
Approach to Software Configuration Management. Technical Re-
port 168, Compaq Systems Research Center, March 2001.

[15] HOLLAND, D. A. PQL language guide and reference. http://
www.eecs.harvard.edu/syrah/pql/docs/. Harvard
University, 2009.

[16] HOLLAND, D. A., BRAUN, U., MACLEAN, D., MUNISWAMY-
REDDY, K.-K., AND SELTZER, M. I. A Data Model and Query
Language Suitable for Provenance. In Proceedings of the 2008
International Provenance and Annotation Workshop (IPAW).

[17] KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In
SOSP (Bolton Landing, NY, October 2003).

[18] KROHN, M., YIP, A., BRODSKY, M., CLIFFER, N.,
KAASHOEK, M. F., KOHLER, E., AND MORRIS, R. Informa-
tion flow control for standard OS abstractions. In symposium on
Operating systems principles (2007).

[19] MARGO, D. W., AND SELTZER, M. The case for browser prove-
nance. In 1st Workshop on the Theory and Practice of Provenance
(2009).

[20] MUNISWAMY-REDDY, K.-K., AND HOLLAND, D. A.
Causality-Based Versioning. In Proceedings of the 7th USENIX
Conference on File and Storage Technologies (Feb 2009).

[21] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference.

[22] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In NDSS (2005).

[23] Provenance aware service oriented architecture. http:
//twiki.pasoa.ecs.soton.ac.uk/bin/view/
PASOA/WebHome.

[24] The First Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge.

[25] The Second Provenance Challenge. http://
twiki.ipaw.info/bin/view/Challenge/
SecondProvenanceChallenge.

[26] SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW,
R., BEAME, C., EISLER, M., AND NOVECK, D. Network File
System (NFS) version 4 Protocol. http://www.ietf.org/
rfc/rfc3530.txt, April 2003.

[27] SUNDARARAMAN, S., SIVATHANU, G., AND ZADOK, E. Se-
lective versioning in a secure disk system. In Proceedings of the
17th USENIX Security Symposium (July-August 2008).

[28] VAHDAT, A., AND ANDERSON, T. Transparent result caching.
In ATEC ’98: Proceedings of the annual conference on USENIX
Annual Technical Conference (1998).

[29] WIDOM, J. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. In CIDR (Asilomar, CA, January 2005).

[30] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for mal-
ware detection and analysis. In CCS (2007).

[31] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. Making information flow explicit in histar. In
OSDI (2006).


