Immediate M ulti-Threaded Dynamic Software Updates
Using Stack Reconstruction

Kristis Makris Rida A. Bazzi
Arizona State University
Tempe, AZ
{makristis,bazzi@asu.edu

Abstract mapping functionS to s to obtain a statS(s) = spew
We propose a new approach for dynamic software up-(l.oadl_ng new code segments_can be a part of th_e map
. ’ S ing); and (3) resume execution of the new version us-
dates. This approach allows updating applications tha o .
) > INg s, as the initial state. In general, a state mapping
until now could not be updated at runtime at all or could . .
needs not happen instantaneously and can be done lazily

be updated but with a possibly indefinite delay betwee_nm stages. The state mapping should be safe in that the

the time an u_pdate_ is ini_tiated and t_he Fime th_e update L?‘esulting states,.,, Should be a valid state of the new
effected (during this period no service is provided). Un'a lication (in a sense that we will make precise in Sec-
like existi h llow arbitrary ch to. PP P

e existing approacnes, we allow arbitrary changes tq;., , 2). In general, a valid state mapping is not always

functions active on the stack and without requiring the . o : L g
.) possible, and, when it is possible, it is not necessarily
programmer to anticipate the future evolution of a pro-

. . a{)ossible for all states of the old application.
gram. We argue, using actual examples, that this capd- The d ic softw q bl i ;
bility is needed to dynamically update common real ap- € dynamic software up ate problem CQnS'StS of two
plications. components. First, DSU needs to determine the states,

At the heart of our approach isstack reconstruction or ex_ecution points, of.the old application for which it is
technigue that allows all functions on the call stack toposgble to f’ipp'y a va!|d upda}te, and, for thqse states for
be updated at the same time to guarantee that all activ\gh'Ch.a valid quate Is possible, to deter”."”? the state
functions have the same version after an update. This i apping function to effect the update - this is -
the first general approach that maintains both code an ate safety problemSecond, DSU needs to effect the_
data representation consistency for multi-threaded applium"ﬁe through a mec_hanlsm that maps an old execution
cations. Our systenmpStarewas used to update the stqte to a new execution state - this is tprlate mech-
PostgreSQL database management system (more th&f'SM problem !n _gengral, the ;afety problem is undg-
200,000 lines of code) and apply 5.5 years-worth OfC|dable [6]. This _|mpI|es that, in ge_neral, user help is
updates to the very secure FTP server vsFTPd (abo&eeded to o_letermlng safe update points z_;md to specify the
12,000 lines of code). state_ mapping fur_lct|on. Nevertheless, this does no'F mean

that it is not possible to solve the problem automatically
or semi-automatically without or with little user help for
1 Introduction many practical cases of interest.

Since user help is unavoidable, it is important to pro-
Downtime experienced by applications due to softwarevide the user with an update mechanism and safety
updates (feature additions, bug fixes, security patcheg)hecks that make it easier to reason about the update.
can be prohibitive for applications with high-availahjlit Current DSU mechanisms are limited in their support of
requirements. Dynamic Software Update (DSU) canthe update ofctive functions and data structurasd in
help minimize the downtime by allowing applications to their support foimmediate updatesTo support the up-
be updated at runtime. Instead of completely stoppinglate of functions that are active on the call stack and for
the application process and then executing the newer vethe update of stack-resident data structures, current DSU
sion, DSU would only momentarily pause the applica-systems require the user to anticipate the future evolu-
tion while applying the changa-memory A typical dy- tion of a program [3, 14]. Immediate updates are not
namic update would consist of: (1) pausing the executiorsupported by existing DSU systems. An update is imme-
of the old version in a given state, (2) applying a state diate if it satisfies: (1) atomicity: before the update only

old code executes and after the update only new code exantees the following: (1) Representation consistency; (2)
ecutes; (2) bounded delay: if a valid mapping is knownUpdate immediacy for multi-threaded and multi-process
for a given state and the execution is in that state, then thapplications; (3) High updateability; (4) No data-access
mapping is applied in a bounded amount of time. Atom-indirection.
icity is desirable because it is sufficient to guarandge UpStareis able to update real-world applications of
ical consistency16, 13]: the execution of the applica- significant size, such as vsFTPd and PostgreSQL, with
tion is indistinguishabldrom an execution in which the minimal manual adjustments from the user and with
old version executes for some time, then the new versiomodest overhead. Still our current implementation has
executes. While bounded wait is not necessary for logisome limitations. First, it is not optimized for perfor-
cal consistency, we argue that for multithreaded applicamance due to a limitation of existing compilers when
tions, immediate updates are needed to provide logicallpartitioning code in hot-cold blocks given branch predic-
consistent updatesithout service interruptioni.e. the tion hints. This limitation can lead to large overhead for
update does not cause the service to be unavailable for aystems with a small instruction cache and large func-
unbounded amount of time. tions. Second, it does not yet integrate support to au-
To address the limitations of current DSU systems, wetomatically transform pointers, which we developed in
propose a new DSU mechanism and a new DSU systermrevious work [10]. Third, it does not support updates
for C programs. Our systetdpStaresupports the im- of data in shared memory or in-transit data in internal
mediate update of functions that are active on the calbuffers, but this is not a limitation of the approach; it is
stack as well as the update of stack-resident data strue limitation of the current implementation. Finally, since
tures without requiring the user to anticipate the futureour emphasis in this work is on the updating mechanism,
evolution of the program. Our system is also the first syswe do not provide automatic safety checks through code
tem to allow immediate update for multi-threaded as wellanalysis as in other DSU systems. Adopting such checks
as multi-process applicationsJpStareapplies source- would increase the usefulnessldhStare
to-source transformations to make applications dynam- The rest of the paper is organized as follows. Sec-
ically updateable. At the heart of the mechanism is ation 2 introduces the DSU problem. Section 3 describes
novelstack reconstructiompdating mechanism that al- our DSU system. Section 4 presents our implementation.
lows an application to unroll the call stack when an up-Section 5 evaluates the performance of our system and
date occurs (while saving all the stack frames) and themnalyzes the sources of overhead. Section 6 discusses
reconstitute the call stack by replacing old versions ofrelated work.
functions with their updated versions (while at the same
time mapping data structures in the old frames to their)
updated versions). Stack reconstruction guarantees th& 1 he Dynamic Software Update Problem
after an update is applied only new code executes. Map-
ping to the new state is automated with an effectiveln this section, we reintroduce the dynamic software
heuristic: a patch generator produces data transformetdate problem (DSU), describe some common safety
for global variables and for local variables of all stack guarantees that are desirable for DSU systems and argue
frames, and a default stack execution continuation mapfor the need forimmediate updates.
ping resumes execution from the new version. These
mappings and transformers can be further fine-tuned b ;
the user.UpStarés immediate data mappingliminates 21 Dynamic Software Update
the need for data wrappetbat are used by other DSU Gjven (I1, s), wherell is program code anslis an exe-
systems [5, 14, 11, 2] to allow updating datatypes. Thecution state, updatingl to I1,,..,, wherell,.., is a new
elimination of data wrappers greatly reduces executioRersjon ofll, consists of:(1) pausing the executidn(2)
overhead for data intensive applications. applying a state mapping functighto s to obtain a state
UpStaresupports the update of applications anywhereS(s) = s,,..,; and (3) resuming execution &F,,.,, from
during their execution including multithreaded applica- states,, .., .
tions with blocking system calls. This is achieved by By updating an executing program, we obtain a hy-
inserting update points in long-lived loops and trans-brid execution that in general needs not satisfy the se-
forming blocking system calls into non-blocking calls. mantics of either the old or the new versions. In general,
This guarantees that we can update threads and processfg desired semantics for the hybrid executions needs to
without interrupting service indefinitglgince we are not be determined by the user. We say that a stdte pro-
constrained by the need for an active function to exit begramII is valid for updatefrom II to I,,.,, if there is a
fore we can update it as in other DSU systems. state mapping functiof that can be by applied in state
In summary, our immediate update mechanism guarsuch that the resulting hybrid execution satisfies the de-

sired semantics. The dynamic software update problena transaction and in other parts of the program, then de-
has two aspects: termining the execution state requires knowledge of the
) _ stack contents. Alternatively, transaction safety can be

e Update safety: Identify a valid stateand a corre- gngyred at compile time by conservatively estimating up-

sponding state mapping function. date points that will not violate the transactional require
e Update mechanism: Implement the state mappingmems'
function. More generally, a DSU system may be able to provide

the user with a more flexible notation to specify that an
Gupta [6] showed that, even for weak requirements orupdate is not valid in a given state. For example, stat-
the semantics of the hybrid execution, it is undecidableéng that an update is not allowed if Thread 1 is executing
to determine if a given stateis valid for update fromI in (say)<functionA,lines 135-160> while Thread 2 is
toIL,..,. The problemiis related to the problem of identi- executing anywhere withircfunctionB> can be suffi-
fying semantic differences [7] between two versions of acient input to a DSU system to apply the update when
program. Identifying semantic differences has been studthese threads do not violate this safety constraint.

ied extensively and is also undecidable although safe ap- 5 Representation Consistency: Both state and pro-

proan_atlons are known [8]- . . gram representation consistency hold. An update guar-
So, in general, assistance from the user is required 19 oo state representation consisteriéwt no time the
both identify valid states and guide the state mappinge,ecyting application expects different representatiéns
Nonetheless, there are many situations in which a default; ;o (such as global variables or the stack-frame con-
state m_apping can _produce a new state that will Sati5f¥ents). An update guarantepsogram representation
the desired semantics. consistencyif following the update onlyll,,.., is exe-
cuted over the new statg,..,; no part ofIl is executed
2.2 Safety again. Representation consistency (state and program)
makes it easier to reason about the effects of executing
Given that it is not possible in general to guarantee thggge on the state becaulg,..,, and s,e, i Memory
safety of updates without user help, it is helpful to pro- match the source code, but it is not an end-goal in itself.
vide some restricted safety guarantees that are satisfieghe gifference between state representation consistency
by the updated program. The goal is to make it easier fog g type-safety is that one could provide type-safety by
the user to establish that the default mappings result "&Ilowing new and old definitions of a type to be valid
valid updates and, if they do not, to supplement the stat@jmultaneously. For example, one could apply forward
mapping to make it valid. Some useful guarantees are: gnq packward datatype transformers [5], but this makes
1. Type-safety: No old version of coddl should be it harder to reason about updated programs. Addition-
executed on a newer version of a datatype representatio({“y, it may not be possible to convert a datatype for new
7' (oldcode-type-safety) and no new version of céHe code, then backward for old code, and then forward for
should be executed on an older version of a datatype regrew code again, since updated types often contain more

resentation (newcode-type-safety). information than older types and data could be lost.
As an example, consider adding in as@tuct that

contains five fields a new field as the third field listed
and properly constructing a new statg,, for a variable
of this datatype. If code from the old version accesse

4. Logical Representation Consistency: An update
system provides logical consistency if the hybrid execu-
(}ion is indistinguishable to an outside observer from exe-

. . . .) cutions that are obtained with representationally consis-
the newer version of this datatype i, it would in- P y

' aentupdates [16, 13].
correctly access the memory area used by the new fiel . .
when intending to access the fourth field, and corrupt 5. Thread-X-safety: An update is thread-X-safe if X-
data. safety is provided in a multithreaded applications. For
2. Transaction-safety: Some sections of code are de- €xample, thread-type-safety means that type-safety is

noted as transactions and are specified by the user to eRrovided for a multithreaded application. In general if
ecute completely in the old version or completely in the@ DSU system guarantees that X-safety is satisfied for
new version. individual threads independently, then thread-X-safgty i

Unlike type safety, transaction safety requires user anD'0t necessarily guaranteed.
notations. One way to ensure transaction safety is by pro- Our update mechanism provides the user with the abil-
hibiting updates when execution is in such a user speciity to initiate a representationally consistent update in
fied section. This can be done at runtime by querying ifany state of the program. The emphasis is on the mech-
the current state is in a forbidden region, but this is notanism though. Determining the validity of a particular
straightforward to achieve. If a functidris called inside state for update requires other analyses [8, 16, 13].

2.3 Immediate Updates collective immediate update. The update mechanism we
. . _ . . propose is the first that can support immediate update of
In this section, we introduce immediate updates and aréi]['lgle-threaded as well as multi-threaded applications.
gue that they are needed to guarantee that the update o

common multithreaded applications is logically consis-

tent and can be achieved without unbounded service in3 Dynamic Update System

terruption. We first introduce the concept of update with

bounded delay. We describe our proposed update model and how we ap-

Bounded delay update: If a valid mapping is known Ply state mappings under this model.
for a valid old states and the application is in statg a
state mapping can be applied without pausing the appli3,1 Update M odel
cation for an unbounded amount of time.

An update isimmediateif it satisfies representation Ve propose an update model that is more flexible than
consistency and bounded delay. To understand the nedfe update models of existing works in two respects.
for immediate updates, consider a multithreaded applifirst, we consider stack frames as part of updateable pro-
cation in which each server thread handles a client condram state. Stack frames include local variables, for-
nection and threads read/write in a shared data structuf®al parameters, and return addresses. Second, we con-
after receiving client requests. In general, there might besider the Program Counter as updateable program state.
a long delay between successive client requests. Unlike existing work, we can ensure updates meet the

Now, consider an update that changes the specificatiof@fety guarantees of Section 2 while employing an up-
of the data structure and how it is accessed and assume®&ting model that can modify all aspects of the old pro-

number of connections are active. To effect the updategram states. This means our approach has a wider reach
there are a number of options: (more old valid states) in applying an update compared to

existing work that needs to accept fewer old valid states
¢ Do not allow any new connections and wait until if it is to meet these safety guarantees.
all active connections terminate. When all connec- A program(II, s) is a pair of program codd and pro-
tion terminate, apply the update. This is not a goodgram states. Program codgl is a set containing the exe-
option because it can result in the service being uncutable code of all the functions of the program. Program
available for an unbounded amount of time. states = (h,Tss, Tpc) is a tuple consisting of a sét
) , , containing all global variables on the heap, an arfay
e Allow new connections, but using the old version of ¢ o jered lists;f of stack frames, one for each thread of
_th_e code. This can result in the updat_e being indefy, o program, and an arr@i of Program Counters for
initely delayed because the new version may NeveL. h Thread. Each stack frani@, p, a) in sf contains
get to be executed. a set/ of local variables on the stack, the formal param-
Allow new connections using the new version of the etersp and the return address. We omit the semantics

code while connections created with the old version®f Program execution from this description. .

are active (possibly blocked for client input). This _ Software updates are effected by replaciigwith

is the more interesting case. Once the shared datdnew. @PPlying a state transformérto s, and continu-
structure is accessed by threads running the ned'd €xecution from prograrl,,.,, in stateS(s) = snew.
version, the data representation would have to rePynamic updates take placewgdate pointswhich are
flect the semantics of the new version. This mean Subset of possibIEC" locations for the program. Our
that on the next access by the old version we ej-compiler inserts update points automatically when com-

ther violate logical representation consistency or wePiling @ program to be update-enabled, as we discuss
force the thread running the old version to be trans-Section 4. The update mechanism allows the state trans-

formed to the new version. Since violating logical former to modify the entire old program state. For ex-
consistency is not an option, we are left with the @Mple, for each new stack franf&(l’, p’, ra’) it can add
need to immediately update the thread running thd"eW local variables to produég change function signa-
old version. Otherwise the connection will not be tures by extending or reducing the formal parameters to

available for its client for an unbounded amount of ©Ptain the new formal parameters or adjust the return
time. addressa’ of a stack frame to continue from a different

execution point on the parent stack frame. It can insert
So, for all cases, the capability to immediately updatenew stack frames ifT’s;. or remove stack frames. It can
individual threads is necessary. If multiple threads ofalso set a new Program Countesc. for all threads. For
the old version are attempting to access the shared dagxample it can set threads to “escape” from execution of
structures, the updated mechanism should support the& loop or a function.

. struct vsf_transfer_ret
32 DefaUIt State M applng vsf_ftpdataio_transfer_file(
struct vsf_se_ssio_n* p_sess, in_t renot g_fd,
Default state mappings are needed to reduce the efforti "t file_fd, int is_recv, int is_ascii)
required from the user. In general we would hope that ~ // continuation point 1

the default mapping is what the user desires, but there ”ilﬁ”(isg' gg‘c’l)lg .

are no guarantees for that. The user is always given the /1 Continuation point 2

Capablllty to override default mappings. reggr_?i I e_send_ascii(p_sess, remote_fd, file_fd);
Our approach involves an effective heuristic that re- } else { _ _

lies on verification of its validity by the user. We apply 11 Continuation point 3

data transformers of global variables on the heamd do_file_send_binary(p_sess, remote_fd, file_fd);

local variabled of every stack framel’ys, and re-issue } else {

function parameters. Additionally we map execution /1 Continuation point 4

continuation of return addresses and Program Coun- return do_file recv(p sess, rem: et idj;

ters Top. Transformers and mappings are automatically }
generated, can be overridden by the user, and, for the!
cases we have tested, they are effective enough and re- (a) vsFTPd v1.2.2
quire minimal user involvement.
. f f
Datatype updates. When an update is requested, \S,ts;ifc: p\é;g} Li?faﬁrsf—reret_me(

stack framesl’s; and program countergp of all run- struct vsf_sessionx p_sess, int remote_fd,

. . int file_fd, int is_recv, int is_ascii)
ning threads are saved and the stack is unrolled up to they
thread entry-point function. At this point, the entire old filesize_t curr_offset;

. filesize_t numsend;

states at the time the update was initiated is available

(having just been saved) to systematically produce the _/4 (C?_ntsi ?ggtl)o? point 1
i lis_| \

new states,,.,,. FOr every global variable whose datatype if (is_ascii || p_sess->data use ssl) {
7 has changed, a new global variable of the new datatype /1 Continuation point 2 ,

s .oy . . return do_file_send_rw oop(p_sess, file_fd,
7' is allocated inh’. If the datatype is &truct or union is ascii);

and it has been extended, a transformer copies the old 1} else {))
/1 Continuation point 3

fields (only new fields must be initialized by the user). If curr_offset =
the datatype is reduced, the remaining fields are copied vajﬁtsyiu;it | aget a_f In: ezoffset(fi le_fd);
. . " N I nu I I
with no user assistance. If the variable is an array, a trans- num send = cal c_ﬁum_send(fi le fd, curr_offset):
former is applied on all array elements. If the datatype i{et ﬁztggu?”gnsgg;n;eidﬁ e(p_sess, remte fd
change simply extends an array with more elements (e.qg. T Trilefd, cu,,_f,’f—fset " num send) ;
parseconf_uint_array in vsFTPd offers more configura-) }el s {
tion options), a new array with more room is allocated /1 Continuation point 6
and the values of all old elements are copied.) return do_file_recv(p_sess, file fd, is_ascii);
Stack framesf’(I’,p’,ra’) are reconstructed with a 3
default automatic mapping by copying the old stack (b) vSFTPd v2.0.0
frame f(I,p,ra). Local variabled’ are grouped into a
struct and automatically copied frorh Variable addi- Figure 1: Continuation points in vsFTPd.

tions are treated as new field additions istauct and
can be initialized to a default value by a user-supplied
stack transformer. Datatype changes of local variablesve map continuation points with the same enumerator in
[are mapped in a way similar to global variableand II andIl,..,. If the call graph of the application did not
formal parameterg’ are automatically copied fromor ~ change and the loop structure did not change, this map-
further extended by the user. ping is very effective for actual updates. By adjusting
Execution continuations. Return addresses; and a continuation point a user can define how control flow
Program Counter§'»¢ are automatically preserved, and should continue upon returning to a parent stack frame.
they correspond to continuation points. ContinuationWe have not found it necessary to insert additional con-
points are all points prior to function calls and all up- tinuation points (e.g. one in every basic block).
date points. That's how execution control flow can de- Figure 1 shows an example of mapping the con-
scend to reconstruct a callee, or resume a program afteéinuation of do_file_send_binary in an update of vs-
an update, respectively. We take the simple approach dFTPd from v1.2.2 to v2.0.0. Updating this func-
assigning unigue numeric ids to continuation points intion requires mapping theq to its parent stack frame
the order they appear in each function body. By defaultysf_ftpdataio_transfer_file. It requires mapping con-

upst are_mappi ng_t mappi ngs_v200[] = {

{ "vsf_ftpdataio_transfer_file", dynamic updating
"vsf_ftpdataio_transfer_file", runtime

2, /1 2 continuation points are mapped

{{3 5} v

{4 61} source UpStare_cc | 0 i Ebegin
code vl | compiler P | VS SXEENI | 1 program
{ "do_file_send_binary", A execution
"do_file_send_sendfile", —_— e e e — e — . —] —— - —
5, // 5 continuation points are napped ! !
{{6 2}, : :
{7 31}, patch |, csc?duercveZ : !
{8 4} generator !
{9 51}, K :
{ 10, 6} TCP connection /' H
} to update 5
} } thread '.' \4
: R pause,
2 stiurr]ce B apply update,
- - . - patc ' continue from v2
Figure 2: Relevant continuation mapping for an update contorteo
of do_file_send_binary in vsFTPd v1.2.2 to v2.0.0. ! load patch
\ 4 Y
UpStare_cc 3| v2 .
i i A .)) . patch v2 executing
tinuation point 3 from v1.2.2 to continuation point | compiler i

5 in v2.0.0, including supplying the new parameters
curr_offset and num_send (initialized in the stack
transformer) to the new versiaio_file_send_sendfile. Figure 3: UpStare system architecture.
Without this mapping an update would incorrectly
resume fromrae=3 in v2.0.0, which would load
vsf_sysutil_get file_offset on the stack, and the old state Programs dynamically updateable. Itis written in OCaml
T, of callee stack frames alo_file_send_binary would ~ USing the CIL framework[15] v1.3.6 and is architecture
not be restored. and operating system independent. Users replace in their
Figure 2 shows the relevant declaration of the variabl?Uild process (e.g. Makefiles) calls to an existing com-
(source code in C) used to express the continuation magRiler like gcc with calls to the compiler of our system
ping to update to vsFTPd 2.0.0. There are two mappinghcucc.pl). No source code modifications by a user are
points forvsf_ftpdataio_transfer_file: 3 mapsto 5, and4 equiredin existing programs. Programs are transformed
maps to 6. 1 and 2 use the default mapping: they map t8S nNeeded to coordinate application of updates with the
their old values of 1 and 2. Alsdo_file_send_binaryis ~ dynamic updating runtime (written in C; 64KB memory
replaced withdo_file_send_sendfile and execution con- footprint). Updates are initiated by the user with a sep-
tinues from the replaced function at an offset continua-2raté dynamic updating control tool that connects using
tion of -4, which means some code from the beginning! CP to a thread waiting for update requests. Updates are
of do_file_send_binary was removed. loaded in memory usindlopen and applied under the

Mapping pointers. Mapping pointers of datatypes 9uidance of the runtime.
known at compile-time is straightforward. However, Given the source code of the old and updated pro-

void* pointers are cast at runtime to generic datatype9rams, & patch generator automatically produces the
and are harder to map. Support for tracking pointer typeSeUurce code for a dynamic update patch. The patch in-

at runtime is needed to invoke the appropriate datatyp&'Udes the newer versions of functions, and the old and
transforms. We have developed this support in previoué‘pdated datatype definitions of modified variables, either

work [10] and it has low overhead (1-7%), but we do not 9lobal or declared on the stack. It also includes automati-
yet integrate it with UpStare. cally generated datatype and stack transformers, and, op-

tionally, user-defined execution continuation mappings
that override the default ones to produce the new state.
4 Implementation
: _ 4.1 Stack Reconstruction
UpStare consists of a compiler to generate updateable
programs, a runtime environment for dynamically apply- Stack reconstruction consists of two major steps. It saves
ing updates, a patch generator, and a dynamic updatinipe existing stack state when unrolling and restores the
tool, as shown in Figure 3. This architecture is similar toupdated state when reconstructing. To reduce the size
those of existing updating systems. The compiler applie®f active instrumented code, wrapper functions that effi-
high-level, source-to-source transformations that makeiently save and restore stack frames are produced away

functionA() functionA()

char a; char a;

int param int param

fluhcti onB(paran) ; funct i onB(param ;
L1:...

}
(a) Non-Instrumented
(a) Non-Instrumented

typedef struct {

char a; functionA_transformed()
int param {
} stack_functionA vl_t; stack_functionA vl t locals;
(*functionB_ptr) (int) = if (may_reconstruct && nust_reconstruct()) {
&f unctionB_transf or ned; restore_frame__functi onA(& ocal s);
functionA_transfornmed() switch (next_continuation_point()) {
stack_functionA vl_t |ocals; case 3:

goto try_to_update_3_after;

functionB_6_before: case 6:
functionB_ptr(locals.param; goto functionB_6_before;
if (may_reconstruct && nust_reconstruct()) { ..
if (must_unroll _up(*‘functionA ")) { }
save_frane__functi onA(& ocals, 6); }
return; C
} functionB_6_before:
goto functionB_6_before; functionB_ptr(locals.paranm;
} if (may_reconstruct && nust_reconstruct()) {
} if (must_unroll _up(‘‘functionA ")) {
save_frame__functionA(& ocals, 6);
(b) Instrumented return;
}
Figure 4: Transformation of function calls for stack re- ~, %'° functiong 6_before;

constructionfunctionB_ptr just returned). I}.1: o

(b) Instrumented
from the text segment in a separate memory area of cold
code executed only during reconstruction. Figure 5: Transformation of function entrypoints for
Figure 4 shows how stack frames are savéanc- Stack reconstruction (enterifignctionA_transformed).
tionA is transformed to check upon returning from the
callee functionB whether the stack should be recon-
structed. Note thamay_reconstruct is a global flag ~ment. Execution flow continues by callirfgnctionB.
raised only in reconstruction mode to improve perfor-When the update is completedy_reconstruct is false:
mance. Ifmust_reconstruct is true (this thread should We are no longer in reconstruction mode) dmactionB
participate in reconstruction) and execution should beinishes, execution continues normally (frarh).
unrolled fust_unroll_up is true: the topmost frame, by ~ Thread entry-points. If the main function or the start
default, has not been reached yet, but the user can spexputine passed to pthread_create attempt toreturn
ify that unrolling stops at a different frame), the stack during reconstruction they will terminate permanently.
frame and continuation poitare saved anflinctionA To allow the update afain or thread entry points, calls
returns to its caller. Returning to callers continues untilto such functions are initiated from a wrapper function.
the start of the program is reached: thain functionin ~ To accurately discover thread entry-points (and signal-
single-threaded applications or the start routine passeblandlers, discussed next) we use the points-to alias anal-
to a pthread_create call for multi-threaded applica- Ysis provided by CIL.
tions. Otherwise unrolling should stom(@st_unroll_up Signal handlers. The address of signal handlers, de-
is false). Agoto statement resumes execution framc- fined with sigaction andsignal, is stored inside the op-
tionB_6_before and descends ifunctionB for recon- erating system. To avoid resetting signal handlers when
struction. they are updated calls to them are initiated from a wrap-
Figure 5 shows how execution is resumed friumc- per function. Additionally, signal handlers return execu-
tionA. If on function entry the stack should be recon- tion to the kernel and are incompatible with stack recon-
structed downwards, the stack frame is restored. Astruction. They are instrumented to raise a flag on entry
switch statement maps the continuation pdirtb con- and reset the flag before exiting. Requests to update are
tinuation labelfunctionB_6_before using agoto state- rejected when a program is executing a signal handler.

functionA()

except 250-259 should effect the update.

char a; Exporting local variables. The dlopen library call

tnt param will successfully load a dynamic update patch only if

whi | e(condi ti on) the patch references global variables. References to vari-

{ o ables that were declared local in the original version (us-

} ing thestatic keyword) are not accessible after dynamic

loading, leading to system exceptions when executing

(a) Non-Instrumented state transformers. Our compiler removesgstagic key-

word from all local variables and exports them to global.
functionA_transforned()

stack_functionA vl_t locals; 42 M Ultl-Threaded Updates
whi | e(condi t i on) Updating a multi-threaded or multi-process application
{ if (must_update) { requires all threads to be blocked. If some threads are
coor di nat e_updat e_t op(& ocal s, 3); not blocked the possibility of thread-safety violations re
tr;/ii gr_ﬂbdat e_3_after: mains open.
coor di nat e_updat e_bot t or() ; We adapted an algorithm that blocks all threads
i. _ in heterogeneous checkpointing for multi-threaded
} applications[9] to dynamic updates. The idea is to force
} all but one thread to block when the application must
(b) Instrumented update. The one thread that is not blocked will be the

coordinator of the update. It polls the status of the re-
Figure 6: Insertion of an update point at the beginning ofmaining threads until it can tell for sure that all threads
aloop. are blocked, as defined below.
When a thread reaches an update point and the appli-
cation must update, it raises a flag indicating that it is
They are immediately satisfied when the program conwilling to cooperateon the update and then attempts to
tinues in normal execution mode, and can update signadcquire acoordination lock The first thread to acquire
handlers at that point. Signal handlers are discovered ushe coordination lock is theoordinatorof the update.
ing points-to alias analysis provided by CIL. The coordinator can tell that some threads are blocked
Redirecting function calls. Function calls are exe- if their cooperation flags are raised. But this does not
cuted using pointer indirection. For each functfownl, cover all threads. Some threads might be blocked wait-
a global variablé_ptr is created that points #&f vl and ing on an application lock owned by a thread that is al-
calls tof_v1 are transformed to calls td_ptr. For each ready willing to cooperate and that is blocked on tbe
function pointer*g_vl, wrapper functions are created ordination lock To that end, the system needs to keep
that call it. track of the blocking status of various threads. Calls
Inserting update points. Update points are auto- to pthread_mutex_lock andpthread_mutex_unlock are
matically inserted at the beginning of each function andeplaced with wrapper calls to keep track of the blocking
each loop so they can be encountered often to allow imstatus of threads. When a thread attempts to acquire a

mediate updates. Figure 6 shows an example updal€ck, it adds the lock to &ANT list. When the lock is
point inserted at the beginning of a |Oop_ When theacqulred, the lock is removed from tNEANT list and

must_update flag is raised, the current thread partici- Placed on aHAVE list. When the thread releases the

pates in synchronization to block all threads. The curJock, the lock is removed from theAVE list.

rent continuation poinB and the stack frame dfinc- The coordinator determines that a threadréally
tionA are saved, and execution returns to the function'dlockedif:

caller. When the stack is reconstructed dndctionA

is called again (see Figure 5b), execution flow resumes

fromtryto_update.3.after. 2. The thread is blocked waiting on a lock owned by
Our current implementation is restricted to a coarse- another thread that igally blocked

activation of update points using a singieist_update

flag. However, it is straightforward to support more The coordinator keeps on checking the status of the
fine-grain selective activation by dynamically disengag-other threads until it can determine that all other threads
ing update points. For example, the user could specifyarereally blocked at which time the coordinator initiates
when requesting an update that (say) all update pointthe actual update: the stack of each thread is unrolled

1. The thread is willing to update;

and the threads block; all datatypes are transformed; thefficient as the self-pipselect solution, due to the cost
stacks are reconstructed and the threads block; and, thof pthread_create (we did not try worker threads).
threads resume executing the updated version.
The algorithm outlined above has been extended to)
support blocking threads that use semaphores[9], butodp Evaluation
current implementation does not yet integrate that capa-
bility with the dynamic update system. We demonstrate the working of UpStare on three appli-
Multi-process updates. We extend multi-threaded cations. The data-intensive KissFFT, the vsFTPd server,
updates in multi-process applicatiorferk calls are re- and the PostgreSQL database. We give a detailed analy-
placed with wrapper calls that maintain a hierarchy ofsis of the sources of overhead, such as runtime overhead,
children. This information is used by the parent processmemory footprint, and network overhead.
which acts as a central coordinator of the individual up-
date steps, to apply an atomic update among all children. .
it waits for all threads of all children to block; all stack q‘s'l KissFFT
frames to be unrolled; transfqrms datatypes; reconstructy . compiled (atO3) the KissFFE v1.2.0 Fast Fourier
stacks; and, releases all c_hlldr_en after_aI_I their threads o - <form library (1936 lines of code) usinfipat
are ready to resume executuw_vmt and_wa|tp|d are also datatypes to be dynamically updateable and performed
intercepted to cleanup the children hierarchy. 100,000 iterations on 20,000 points. This is an applica-
tion with heavy data access and for which source code
4.3 Blocking System Calls instrumented with Ginseng was made available to us.
We did not update this application, but we compiled it
To enable the runtime to regain execution when an upto be updateable. We used this application to get a bet-
date is initiated, we transform blocking 1/O calls into ter understanding of the sources of overhead introduced
non-blocking calls and we segment write calls into writespy our instrumentation. We ran experiments that selec-
of smaller chunks. tively omitted parts of the code that UpStare introduces
Calls to sendfile, which is used in vsFTPd for file in an application. We measured the time to run this ap-
transfer, are segmented into 256KB chunks. We do noplication: (1) using the original compiler, (2) using CIL,
yet implement segmentation feend but it should be (3) when only wrapper functions to save/restore stack
straightforward to do soread, recv, accept, andse- frames are produced, (4) when functions were called di-
lect calls are wrapped to check if the file descriptor is rectly without pointer indirection, (5) when if-statemsnt
set to blocking mode. If it is, the file descriptor is con- without a body are inserted for update points (Figure 6),
verted to non-blocking mode, the operation is issued, anghe switch statement prologue (Figure 5b), or upwards
execution is voluntarily blocked in a manner that allows stack unrolling (Figure 4b); here we aim to measure
unblocking: we issue select that includes inits read set the overhead of branch checks when thest_update

the file descriptor of a pipe created by the runtime. If anandmust_reconstruct flags are not raised, and (6) after
update must be applied, hence we need to unblock, wadding the body of these if-statements.

write to the pipe to forceelect to return and encounter Figure 7 shows the impact of the presence of

an update point. A bottom handler executed after the upreconstruction-aware code in the program. To compare
date point resets the file descriptor to blocking mode. Tahe results we identify the best compiler to use with
allow state transformation while a blocking system call is3 non-instrumented KissFFT and the best compiler to
issued without corrupting the data bufferrefid orrecv, yse under instrumentation. Given an non-instrumented
these calls are issued with a buffer allocated on the heajkissFFT, gcc 4.1 (GNU C Compiler) is the best com-
When the operations complete, the data are copied badkjler and given an instrumented KissFFT the best com-
to the original buffer. A possible optimization, which we pjjers areicc 10.1 (Intel C Compiler) for Ginseng and
have not yet implemented, is to transform programs tqycc 3.4 for UpStare, all on a Pentium M. Under this
a.IWa.yS allocate I/O data buffers on the heap instead o Omparison’ the best performing Ginseng reports over-
the stack, to avoid copying data back to the buffer whemead of 149.8% (87.1% for UpStare) and the best per-
such operations complete. forming UpStare reports overhead of 38.2% (179.3% for
A more general approach to handling any blockingGinseng). The overhead of Ginseng stems from access-
system call, not just I/O calls, is to always issue the calling data through a versioned pointer indirection instead
in a separate thread. This allows the runtime to remairpf accessing them directly. In comparison, the overhead

in control and initiate reconstruction even if the systemof UpStare is rooted at the increase of function size that
call has not returned yet. Our original implementation of

blocking I/O calls followed this approach but was not as ‘!http://sourceforge.net/projects/kissfft

KissFFT of 100000 iterations on 2000 points
70

60 |- B

50 B

40 1 |

30

Seconds

20

10 -

gcc 3.4 gcc 4.l icc 10.1 gcec 3.4 gcc 4.l icc 10.1 gce 3.4 gcc 4.1 icc 8.0 icc9.1 icc 10.1

8KB L1 8KB L1 32KB L1
256KB L2 256KB L2 1MB L2
Pentium 4 Xeon Pentium M

1.6Ghz 1.5Ghz 1.3Ghz

cC mm— UpStare - if—stmts—no—gody [—

i Lo C]L [. ,Up tare —

UpStare - no—1f—str§ts—no—md1 ection mmmmm Ginseng - update—pm&t_s—on y —
UpStare - no-1f-stmts Inseng

Figure 7: KissFFT: Impact of reconstruction code on runring.

overexerts the ITLB and branch predict unit of the pro-events like ITLB misses, retired mispredicted branches
cessor. and page walks showed no significant deviation.

CIL. CIL transforms source code in simpler terms and We attempted to use inline assembly to place the body
should not alter performance. It generally doesn't, but itof if-statements outside the text segment. Inline assem-
reported up to 4.2% overhead (Pentiumiet 10.1) and bly convention prohibits using branch instructions since
up to 1.0% improvement (Pentium Nec 10.1). their presence is not available to high-level optimiza-

Wrapper save/restore functions. Compared to CIL, tions. The compiler would produce intermediate assem-
producing wrapper functions to save/restore stack frame8ly code for the stack unrolling code that would fail to
should not report overhead because these functions at&k (inline code supplying linking directives in unreach-
stored outside the text segment. However, on a Pentiurble basic blocks would not be produced). We also at-
M it reported 11.8% overhead witficc 4.1 and 11.0% tempted to partition code in hot and cold blocks with

improvement withgcc 3.4. Intel compilers report no freorder-blocks-and-partition using bothgcc 4.1 and
overhead, suggesting a problem wittxc. icc 10.1 but the compilers moved the cold blocks only to

Function indirection. Functions called via pointer in- the end of the function image without reducing the over-

direction should incur constant overhead. They reporf'®@d- Placing the cold blocks to the end of the process

overhead up to 3.0% on a Pentium M(10.1), 1.2% on IMmage instead may reduce the final overhead. _

a Xeon fcc 4.1), and 10.3% on a Pentium gog 3.4). Memory footprint. We measured the resident set size
If-satements. On a Pentium M, inserting if- at the various stages of instrumentation. CIL does not in-

statements adds an overhead of 7.2%dor10.1, 7.2% Crease the working set. Wrapper code that saves/restores

for gcc 4.1 and 11.3% fogec 3.4. This suggests branch stack frames is responsible for.most of the memory in-
prediction can be a significant factor in final perfor- Créase, up to 236KB (48.7%) usiggc 4.1 on a Pentium

mance. Still, update points in Ginseng and UpStare incuM If-statements marginally inc_rease memory by 4-8KB
comparable overhead. (0.9-1.7%). The best performing UpStare in respect to

Incr function size. In comparison to the to- running time (Pentium Mgcc 3.4), increased memory

0 b i]
tal overhead of if-statements without a body (Pentium.byamtaII 0f 260KB (53.7%), while Ginseng (Pentium M:

. 0 X
M: 18.0% forgcc 4.1; 9.2% foricc 10.1), an increased icc 10.1) increased memory by 76KB (13.3%). Ginseng

e . increases memory by type wrappistruct datatypes,
function image size adds an overhead of 23.0% an%hile UpStare adds updateable code inside functions and

57.4% respectively, and is responsible for most of thewrapper functions to save/restore stack frames
system overhead. We used OProfile to collect perfor- ’
mance statistics on the Pentium 4 wihc 4.1 (over-
head 31.3%) and further investigate this issue. We obg 2 The Very Secure FTP Daemon

served a 15% increase in the number of ITLB trans-

lations and an 11% increase in the number of instrucvsFTPd is a fast, secure, widely used FTP application

tion fetch requests from the branch predict unit. Otherthat forks connection handlers that do not communicate

10

Ver. Date LoC? Types Variables Functions

Tot. | Same| Add. | Del. | Upd. || Tot. | Same| Add. | Del. | Upd. || Tot. | Same| Add. | Del. [Upd.
1.1.0 || 2002-07-31| 8,389 || 628 - - - - 158 - - - - 436 - - - -
1.1.1 || 2002-10-07| 8,468 || 628 628 0 0 0 || 161 156 3 0 2 || 436 420 0 0 16
1.1.2 || 2002-10-16| 8,731 || 639 626 11 0 2 || 165 159 4 0 2 || 447 428 11 0 8
1.1.3 || 2002-11-09| 8,839 || 646 638 7 0 1| 167 164 2 0 1 || 449 439 2 0 8
1.2.0 || 2003-05-29| 10,011 || 659 641 16 3 2 201 163 35 1 3 481 378 39 7 64
1.2.1 || 2003-11-13| 10,506 || 664 655 7 0 2 205 196 7 3 2 486 447 6 1 33
1.2.2 || 2004-04-26| 10,547 || 664 664 0 0 0 || 204 202 1 2 1 || 487 476 1 0 10
2.0.0 || 2004-07-01| 11,527 || 998 649 | 342 8 7 || 218 200 16 2 2 || 513 421 35 9 57
2.0.1 || 2004-07-02| 11,543 || 687 674 8 319 5 219 218 1 0 0 513 506 0 0 7
2.0.2 || 2005-03-03| 11,612 || 688 687 1 0 0 219 219 0 0 0 513 489 1 1 23
2.0.3 || 2005-03-19| 11,743 || 688 688 0 0 0 226 216 8 1 2 516 481 5 2 30
2.0.4 || 2006-01-09| 11,857 || 694 687 6 0 11l 229 225 3 0 1 || 519 499 4 1 16
2.0.5 || 2006-07-03| 11,923 || 694 693 0 0 11l 234 228 5 0 1 || 519 494 0 0 25
2.0.6 || 2008-02-13| 12,202 || 701 691 7 0 3 239 231 5 0 3 523 497 4 0 22

Table 1: vsFTPd: Source code evolution.

with each other or their parent. We applied 13 updatestack needed to be updated. 5 of those 7 updates were
spanning 5.5 years of application evolution, compiledof forward control flow that had not been executed yet
with gcc 4.1 on a 2.4Ghz Xeon. The updates were preand was pending on the stack. For a file transfer, in 9
pared automatically using the patch generator. They reeut of 13 updates functions on the stack needed to be up-
quired a total of 11 user-defined continuation mappingslated and 6 of those 9 updates were of forward control
for the two use cases we tested. Additional mappingdlow. Additionally, we observed a case where an update
will probably be needed to update from other updateapplied during a large file transfer possibly needed to es-
points. They also involved some manual initialization cape a loop. During the update from v1.1.2 to 1.1.3 the
of new variables andtruct fields. new code indo_sendfile should be executed only if a
Table 1 studies the source code evolution of vsFTPdnew global flag is on. If the update requires the initial
New datatypes are more often added than modified. Varistate of this flag to be off, execution should break out of
able additions are common, and there are few datatypthe loop and stop transferring the file.
changes or variable deletions. Functions are updated 613 update points where automatically inserted in vs-
very often and are less likely to be deleted. We alsoFTPd v2.0.5. Updating during a large file transfer oc-
note that a large collection of functions and variablescurred at stack depth 11 (maximum depth is 16, aver-
are added in major revisions of the program, such asge 8.9) and took 59.7ms: 50.2ms to block all processes;
from v1.1.3 to v1.2.0 and from v1.2.2 to v2.0.0. The 0.4ms to unroll the stack; 0.95ms to unroll the stack of
large number of types added in v2.0.0 is due to includingchildren processes; 0.45ms to reconstruct; 1ms to recon-
header files from GnuTLS (for secure communication)struct the stack of children processes. In comparison,
while in v2.0.1 (released one day later) the OpenSSLGinseng applies a vsFTPd update in under 5ms [14].
header files were removed. We applied updates to vs- While Ginseng can support the updatesef_session
FTPd under two use cases: struct, it achieves that with data padding whose limita-
tions we have already discussed.

o Idleclient. Aclient connected to the server, authen- \ye setup a client-server configuration connected with
ticated correctly, and was waiting idle for user input 3 cross-over cable to eliminate network fluctuations. We
on the command line. An update was applied. found this setup necessary to accurately measure per-

formance: in preliminary measurements our system re-
authenticated correctly, and requested to retrieve 2 ort_e_d performance Improvement, Wh'ch was counter-
large file. The file begun being transmitted to themtu'twe' . We installed VS.FTPd 0 serve files both fr_o"_‘
client but has not finished transmission. An update™ hard-disk and from an in-memory filesystem to elimi-
was applied. nate performance perturbation of hard-disk accesses and
identify the worst-case overhead. We measured the la-

Our goal was to determine if vsFTPd required update ency _Of establis_hing a connection and retrieving a_32-
of functions on the stack under these use cases, whic yte file 1000 times and the throughput of retrieving

are typical for this type of application. In 7 out of 13 up- a 300MB file. Table 2 reports the med@n of 11 runs
dates thessf_session struct variable allocated imain and shows comparable performance for files served ei-

was extended with new fields and needed to be updateg)er frlom a dhard-d|sk Oc; fromanemIS_:_)l/:.)dStaéclg recogitruc-
For an idle client, in 7 out of 13 updates functions on thellon Slows down an up ate_a evs v2.0.548y37-
0.50ms (4.9-5.3%), multi-process support by.65-

2Generated using David A. Wheeler's 'SLOCCount’. 0.70ms (6.8-7.4%), and support for blocking system calls

e File transfer. A client connected to the server,

11

v2.0.5 - UpStare-FULL

11.15 (16.09%4)11.06 (16.5%]

v7.4.16 - UpStare-FULL

vsFTPd Configuration Connection Latency(ms) PostgreSQL Configuratign pgbench throughput (t/s)
32-byte file 100,000 transactions
Hard-disk | Memory Hard-disk [Memory
v2.0.5 - NonlInstrumented9.61 9.49 v7.4.16 - NonInstrumentetl75.6 319.7
v2.0.5-CIL 9.64 (0.3%) 9.54 (0.5% v7.4.16 - CIL 169.7 (3.4%)319.0 (0.2%
v2.0.5 - Reconstruction {10.08 (4.9%) 9.99 (5.3% v7.4.16 - Reconstruction|133.0 (24.3%}199.2 (37.7%
v2.0.5 - MultiProcess |10.26 (6.8%)10.19 (7.4% v7.4.16 - MultiProcess |170.5 (2.9%]312.9 (2.1%
v2.0.5 - BlockingCalls | 9.97 (3.8%) 9.76 (2.9% v7.4.16 - BlockingCalls |161.1 (8.3%)293.4 (8.2%

130.7 (25.6%

1189.7 (40.7%

v2.0.6 - NonInstrument
v2.0.6 - CIL

d9.62
9.63 (0.1%

9.52
9.54 (0.2%

v7.4.17 - NonInstrumenteil74.3

v7.4.17 - CIL

171.3 (1.7%

317.8
1316.6 (0.4%]

v2.0.6 - UpStare-FULL [11.16 (16.0%)11.09 (16.5%
v2.0.5 - update to v2.0.611.22 (16.6%)11.12 (16.8%

v7.4.17 - UpStare-FULL |128.0 (26.6%4)189.8 (40.3%
v7.4.16 - update to v7.4.1731.8 (24.4%)188.8 (40.6%

Table 2: vsFTPd: Impact of instrumentation on latency. Table 3: PostgreSQL: Impact of instrumentation on
throughput.

by ~0.27-0.36ms (2.9-3.8%). The worst-case overhead
is from memory: 1.57ms (16.5%), and 1.63ms (16.8%)hoth in serial and parallel execution. For the remain-
when updated to v2.0.6. Ginseng reported overhead dhg 8 testcases we verified with MPatrol and Valgrind
3% for an updateable and 5% for an updated vsFTPd, bihat a non-instrumented PostgreSQL was causing buffer
did not report if it eliminated hard-disk accesses or thegverflows, illegal memory accesses, and uses of unini-
network from the experiment. In terms of throughput, antialized data. While these access errors seem to produce
updateable v2.0.5 and an update to v2.0.6 reported zefgo problems for an non-instrumented PostgreSQL, they
overhead, like Ginseng. were contributing to failures of other testcases or crashes
The numbers for latency are presented as a worst-cassf a PostgreSQL instrumented with stack reconstruction.
scenario because, in a practical situation, transferring &ince the memory corruption bugs of PostgreSQL can
file remotely would incur a latency that is considerably produce unpredictable results we cannot guarantee our
larger than the latency of retrieving a 32-byte file. Forimplementation will work in the presence of such bugs.
transferring files, throughputis more relevantand forthat \We measured over a cross-over cable the overhead of
measure our system reports zero overhead. an updateable v7.4.16 compared to a non-instrumented
v7.4.16 using the PostgreSQigbench tool that runs a
“TPC-B like” benchmark: five SELECT, UPDATE, and
53 PostgreSQL Database INSERT commands per transaction. We measured the
PostgreSQL is an advanced DBMS that forks connectime to run 100,000 transactions after a ramp-up time
tion handlers that communicate with each other througlof 40,000 transactions. Table 3 measures the through-
shared memory. It is a large application of 369K lines put when the database is loaded both on hard-disk and in
of code, with the postmaster process consuming 225Kknemory. Stack reconstruction reports 37.7% overhead
lines of code (source code frosrc/backend/). Us- in memory but this is a worst-case scenario because a
ing the patch generator, we automatically prepared amdlatabase needs stable storage to be durable (24.3% on
update from v7.4.16 to v7.4.17 compiled with gcc 4.1 hard-disk). Although only one client connection was
on a 2.4Ghz Xeon. v7.4.17 updated 64 functions andestablished overall, multi-process support reported-over
added one variable. The update was applied dynamicallpjead 2.1%-2.9% and blocking system calls 8.3%. An
without any user-specified continuation mappings whertipdateable v7.4.16 was 40.7% slower in memory and
a client was waiting idle for user input. User-specified 25.6% slower on hard-disk. For these cases, the trans-
mappings will probably be needed to update from otheractions were all executed over the same connection. The
update points (9931 update points where automaticalljjumbers show that each transaction consumes 5.7ms and
inserted in v7.4.16). The update occurred at stack deptd.7ms for the non-instrumented and updateable v7.4.16
10 (maximum depth is 35, average 15) and took 60mscases respectively. This translates into a latency ovdrhea
53.7ms to block all processes; 0.2ms to unroll the stackf 34.4% for each transaction on average. This latency is
0.45ms to unroll the stack of children processes; 0.3méor transactions over the same connection.
to reconstruct the stack; 0.4ms to reconstruct the stack of To measure a worst-case scenario, we measured la-
children processes. tency for establishing a connection and running only one
The instrumented v7.4.16 and the update to v7.4.1Transaction over the connection. We measure the latency
passed 85 (out of 93) tests of the PostgreSQL testsuitdyy running a transaction 1000 times (1000 connections

12

PostgreSQL Configuratign pgbench latency (ms)
Average of 1000 transactiof)s

POLUS [4] accomplishes type-safety of global vari-
ables by trapping all data accesses for the duration of

Hard-disk | Memory an update and synchronizing the state of the old and
V7.4.16 - Nonlnstrumenteas.62 23.56 U new types. But it cannot update data on the stack, and
v7.4.16-CIL 25.70 (0.39%)23.77 (0.9% does not address representation consistency or the thread

v7.4.16 - Reconstruction
v7.4.16 - MultiProcess
v7.4.16 - BlockingCalls

34.98 (36.5%)83.03 (40.2%
27.33 (6.7%)25.44 (8.0%

26.94 (5.2%)25.45 (8.0%

safety issues of DSU.
Ginseng [14] pads datatypes with enough space to ac-

commodate future growth. Retrieving the appropriate
version of padded datatypes during runtime requires in-
direction for data access. This leads to considerable over-
head in data-intensive applications and after many up-
dates there may be no space left to accommodate the up-
date. Ginseng does not provide state and program rep-
Table 4: PostgreSQL: Impact of instrumentation on la-resentation consistency but it offers logical consistency
tency. through static analyses [16, 13] which improve safety
and updateability. Since its state mapping is restricted,
because of its updating mechanism, these conservative
were established and torn down). Table 4 reports thahnalyses may not always find safe update points for that
the combination of stack reconstruction, multi-processmapping. Still, Ginseng can update multi-threaded ap-
support and blocking system calls support have a severgjications [12], although continuation may not be imme-
impact on latency. When isolated, these features repodiate. Additionally, Ginseng requires users to anticipate
a total overhead of 48.4-56.2%. However, when com-ong-lived loops and mark them for “loop extraction” of
bined an updateable v7.4.16 is 22.41-22.47ms Sloweﬁhe |00p body into a Separate function to update them be-
(877-951%), and 89.2-96.4% slower when updated thre the next iteration begins_
V7.4.17. We speculate this is due to the limited size of the - Geperally, existing systems have difficulty in updat-
processor cache and we intend to run more experimen1;§|g functions [11, 2, 3, 1, 4, 14] and datatypes [1, 3, 4]
to better understand the results. Note that the overhea@ist are already active on the stack, or function re-
due to reconstruction is comparable to that of KissFFT4,rn addresses [17, 11, 2, 3, 1, 4, 14]. They mostly
We speculate that is due to the nature of the applicationjow functions to be updated the next time they are
(data-intensive). We could not obtain a number for Gin-¢51ed [11, 2, 1, 3, 4, 14]. This is due to their restric-
seng because it could not compile PostgreSQL but Wge ypdating mechanism that opens the possibility for
would expect that the data accesses through pointer indisyecuting part old code, part new code, and part old code
rection in Ginseng would result in high overhead. again, which can be undesirable. Some systems elimi-
nate the possibility of executing mixed code by requiring
quiescence before they update[1, 3, 4] but this limits up-
dateability in practice [1, 4]. In Table 5 the overall alyilit

Table 5 compares existing DSU systems WiipStare It~ to update from as many old states as possible is coarsely
first compares kernel updating systems, and then applicaptured in theipdateabilityparameter.
cation updating systems. UpStare offers high updateability because of its up-
DynAMOS [11] demonstrates transaction safetydating mechanism. It can modify all aspects of the old
through user-supplied adaptation handlers. However iprogram state (stack-resident functions, datatypes, and
may need to wait indefinitely for a safe update point.return addresses), which allows updating from a wider
Its newcode-type-safety relies on pointer indirectionrange of old valid states. Although it provides useful
through “shadow data structures”, which incurs over-safety guarantees, it requires some involvement from the
head, to access the new fields of updated datatypes. Buttiser in validating semantic safety of updates. UpStare
cannot guarantee oldcode-type-safety if old types changlas the potential to provide transaction-safety by dynam-
their semantics, like other binary instrumentation sys-ically disengaging update points, although this is not im-
tems [17, 2, 1]. plemented yet. The transaction safety analysis [13] of-
K42 [3] is an OS that is particularly crafted to be up- fered by Ginseng could be used by UpStare to reduce
dateable and its approach cannot be generally applied taser input in validating state transformers.
existing systems without significant re-engineering. By Acknowledgements. We would like to thank our
design it requires all kernel-threads to be short-lived andshepherd George Candea, the anonymous reviewers, and
non-blocking to guaranteguiescenceno to-be-updated Michael Hicks for their feedback. This work was sup-
functions should be active on the stack. ported in part by NSF Grant CSR-0849980.

v7.4.16 - UpStare-FULL |48.09 (87.79%405.97 (95.1%

v7.4.17 - NonInstrument¢#5.56 23.53

v7.4.17 - CIL 25.73 (0.7%)23.64 (0.5%)
v7.4.17 - UpStare-FULL [48.34 (89.1%[%5.85 (94.9%
Vv7.4.16 - update to v7.4.148.36 (89.2%%16.21 (96.4%

6 Reated Work

13

References

(1]

(2]

[3] Andrew Baumann, Gernot Heiser, Jonathan Appavoo

(4]

(5]

(6]

(7]

(8]

(9]

| DynAMOS[11] | K42[3] | POLUS[4] | Ginseng[14] | UpStare |
Domain Kernel Kernel Applications | Applications | Applications
Preparation Binary Source Binary Source Source
No program anticipation by user v X v X v
Datatype access Direct Direct Direct Indirect Direct
Updated datatype access Part-indirect Direct Trap+Sync Indirect Direct
User involvement for update High Medium Low Low Medium
Oldcode type-safety X v Globals only | Static Analysis v
Newcode type-safety v Globals only | Static Analysis
Transaction safety Adaptive Quiescenceg Quiescence| Static Analysis| Possible
Representation consistency X v X X v
Logical representation consistengy X v X v v
Thread safety X v X V V
Immediate continuation X V X X v
Updateability Medium High Low Medium High

Table 5: Comparison of existing DSU systems.

Gautam Altekar, llya Bagrak, Paul Burstein, and Andrew
Schultz. OPUS: Online Patches and Updates for Secu-
rity. In 14th USENIX Security Symposiupages 287—
302, July 2005.

Jeff Arnold and M. Frans Kaashoek. KSplice: Automatic
Rebootless Kernel Updates. BuroSys 2009April 2009.

Dilma Da Silva, Orran Krieger, and Robert W. Wis-
niewski. Providing Dynamic Update in an Operating Sys-

tem. InUSENIX Symposium on Operating Systems De{13]

sign and Implementatioi\pril 2005.

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-
Chung Yew. Polus: A powerful live updating system. In
ICSE '07: Proceedings of the 29th International Confer-
ence on Software Engineeringages 271-281, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

Dominic Duggan. Type-based hot swapping of running
modules. Irinternational Conference on Functional Pro-
gramming pages 62-73, 2001.

Deepak Gupta, Pankaj Jalote, and Gautam Barua. A for-
mal framework for on-line software version chan&eft-
ware Engineering22(2):120-131, 1996.

Susan Horwitz. ldentifying the semantic and textuat dif
ferences between two versions of a programPiloceed-

ings of the ACM SIGPLAN '90 Conference on Program- [16]

ming Language Design and Implementationlume 25,
pages 234-245, White Plains, NY, June 1990.

Susan Horwitz and Thomas Reps. The use of program
dependence graphs in software engineering.InlRro-

ceedings of the Fourteenth International Conference on[17]

Software Engineeringpages 392-411, 1992.

Feras Karablieh and Rida A. Bazzi. Heterogeneous
Checkpointing for Multithreaded Applications. Rilst
Symposium on Reliable Distributed Systems (SROS)
tober 2002.

14

(11]

12]

(14]

(15]

[10] Feras Karablieh, Rida A. Bazzi, and Margaret Hicks.

Compiler-Assisted Heterogenous Checkpointing. In
20th IEEE Symposium on Reliable Distributed Systems
(SRDS)October 2001.

Kristis Makris and Kyung Dong Ryu. Dynamic and
Adaptive Updates of Non-Quiescent Subsystems in Com-
modity Operating System Kernels. EBuroSys 2007
March 2007.

lulian Neamtiu. Practical Dynamic Software Updating
PhD thesis, University of Maryland, August 2008.

lulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and
Polyvios Pratikakis. Contextual effects for version-
consistent dynamic software updating and safe concurrent
programming. InProceedings of the ACM Conference
on Principles of Programming Languages (POPhages
37-50, January 2008.

lulian Neamtiu, Michael Hicks, Gareth Stoyle, and
Manuel Oriol. Practical Dynamic Software Updating for
C. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation (PLD{ne
2006.

George C. Necula, Scott McPeak, S.P. Rahul, and Westley
Weimer. CIL: Intermediate Language and Tools for Anal-
ysis and Transformation of C Programs. Rroceedings

of Conference on Compilier Constructid2002.

Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter
Sewell, and lulian NeamtiuMutatis Mutandis Safe and
flexible dynamic software updatingACM Transactions
on Programming Languages and Systems (TOPLAS)
2006.

Ariel Tamches and Barton P. Miller. Fine-Grained Dy-
namic Instrumentation of Commodity Operating System
Kernels. InThird Symposium on Operating System De-
sign and Implementatiorirebruary 1999.

