
FlexFS: A Flexible Flash File System for MLC NAND Flash Memory

Sungjin Lee†, Keonsoo Ha†, Kangwon Zhang†, Jihong Kim†, and Junghwan Kim∗

†Seoul National University, Korea
{chamdoo, air21c, kwzhang, jihong}@davinci.snu.ac.kr

∗Samsung Electronics, Korea
junghwani.kim@samsung.com

Abstract

The multi-level cell (MLC) NAND flash memory
technology enables multiple bits of information to be
stored on a single cell, thus making it possible to in-
crease the density of the memory without increasing the
die size. For most MLC flash memories, each cell can
be programmed as a single-level cell or a multi-level cell
during runtime. Therefore, it has a potential to achieve
both the high performance of SLC flash memory and the
high capacity of MLC flash memory.

In this paper, we present a flexible flash file system,
called FlexFS, which takes advantage of the dynamic re-
configuration facility of MLC flash memory. FlexFS di-
vides the flash memory medium into SLC and MLC re-
gions, and dynamically changes the size of each region to
meet the changing requirements of applications. We ex-
ploit patterns of storage usage to minimize the overhead
of reorganizing two different regions. We also propose a
novel wear management scheme which mitigates the ef-
fect of the extra writes required by FlexFS on the lifetime
of flash memory. Our implementation of FlexFS in the
Linux 2.6 kernel shows that it can achieve a performance
comparable to SLC flash memory while keeping the ca-
pacity of MLC flash memory for both simulated and real
mobile workloads.

1 Introduction

As flash memory technologies quickly improve, NAND
flash memory is becoming an attractive storage solution
for various IT applications from mobile consumer elec-
tronics to high-end server systems. This rapid growth is
largely driven by the desirable characteristics of NAND
flash memory, which include high performance and low-
power consumption.

There are two types of NAND flash memory in the
market: a single-level cell (SLC) and a multi-level cell
(MLC) flash memory. They are distinctive in terms of

capacity, performance, and endurance. The capacity of
MLC flash memory is larger than that of SLC flash mem-
ory. By storing two (or more) bits on a single memory
cell, MLC flash memory achieves significant density in-
creases while lowering the cost per bit over SLC flash
memory which can only store a single bit on a cell. How-
ever, SLC flash memory has a higher performance and
a longer cell endurance over MLC flash memory. Es-
pecially, the write performance of SLC flash memory is
much higher than that of MLC flash memory.

As the demand for the high capacity storage system is
rapidly increasing, MLC flash memory is being widely
adopted in many mobile embedded devices, such as
smart phones, digital cameras, and PDAs. However, be-
cause of a poor performance characteristic of MLC flash
memory, it is becoming harder to satisfy users’ require-
ments for the high performance storage system while
providing increased storage capacity.

To overcome this poor performance, in this paper, we
propose exploiting the flexible programming feature of
MLC flash memory [1]. Flexible programming is a writ-
ing method which enables each cell to be programmed
as a single-level cell (SLC programming) or a multi-level
cell (MLC programming). If SLC programming is used
to write data into a particular cell, the effective proper-
ties of that cell become similar to those of an SLC flash
memory cell. Conversely, MLC programming allows us
to make use of the high capacity associated with MLC
flash memory.

The most attractive aspect of flexible programming is
that it allows fine-grained storage optimizations, in terms
of both performance and capacity, to meet the require-
ments of applications. For instance, if the current capac-
ity of flash memory is insufficient for some application,
MLC flash memory can change its organization and in-
crease the number of multi-level cells to meet the space
requirement. However, to exploit flexible cell program-
ming effectively, several issues need to be considered.

First, heterogeneous memory cells should be managed

�������������	�
��� �� �� �� ����� ��� �� ����������� �� ������ ��
!�"�#�$�� %&���'�

Figure 1: Threshold voltage distributions for SLC (1
bit/cell) and MLC (2 bits/cell)

in a way that is transparent to the application layer, be-
cause flexible programming allows two different types of
a cell to exist in the same flash chip simultaneously.

Second, dynamic cell reconfigurations between the
SLC and MLC must be handled properly. For example, if
too many flash cells are used as single-level cells, the ca-
pacity of flash memory might be critically impaired, even
though the overall I/O performance is improved. There-
fore, it is important to determine the number of SLC cells
and MLC cells so that both the performance and capacity
would be optimally supported.

Third, the cost of dynamic cell reconfigurations should
be kept as low as possible. Changing the type of a cell
requires expensive erase operations. Since an erase op-
eration resets cells to their initial bit value (e.g., 1), the
data stored in the cells must first be moved to elsewhere.
The performance overhead of this data migration impairs
the overall I/O performance.

Finally, write and erase operations required to change
the type of a cell reduce the endurance of each cell, re-
sulting in the decrease of the lifetime of flash memory.
This problem also needs to be addressed properly.

In this paper, we propose a flexible flash file system,
calledFlexFS, for MLC flash memory that addresses the
above requirements effectively. FlexFS provides appli-
cations with a homogeneous view of storage, while in-
ternally managing two heterogeneous memory regions,
an SLC region and an MLC region. FlexFS guarantees
the maximum capacity of MLC flash memory to users
while it tries to write as much data as possible to the
SLC region so as to achieve the highest I/O performance.
FlexFS uses a data migration policy to compensate for
the reduced capacity caused by overuse of the SLC re-
gion. In order to prolong the lifespan of flash memory, a
new wear management scheme is also proposed.

In order to evaluate the effectiveness of FlexFS, we
implemented FlexFS in the Linux 2.6.15 kernel on a
development board. Evaluations were performed using
synthetic and real workloads. Experimental results show
that FlexFS achieves 90% of the read and 96% of the
write performance of SLC flash memory, respectively,
while offering the capacity of MLC flash memory.

The rest of this paper is organized as follows. In Sec-

tion 2, we present a brief review of NAND flash memory
and explain MLC flash memory in detail. In Section 3,
we give an overview of FlexFS and introduce the prob-
lems that occur with a naive approach to exploiting flexi-
ble cell programming. In Section 4, we describe SLC and
MLC management techniques. In Section 5, we present
experimental results. Section 6 describes related work on
heterogeneous storage systems. Finally, in Section 7, we
conclude with a summary and future work.

2 Background

2.1 NAND Flash Memory

NAND flash memory consists of multiple blocks, each
of which is composed of several pages. In many NAND
flash memories, the size of a page is between 512 B and 4
KB, and one block consists of between 4 and 128 pages.
NAND flash memory does not support an overwrite op-
eration because of its write-once nature. Therefore, be-
fore writing new data into a block, the previous data must
be erased. Furthermore, the total number of erasures
allowed for each block is typically limited to between
10,000 and 100,000 cycles.

Like SRAM and DRAM, flash memory stores bits in a
memory cell, which consists of a transistor with a float-
ing gate that can store electrons. The number of electrons
stored on the floating gate determines the threshold volt-
age,Vt, and this threshold voltage represents the state of
the cell. In case of a single-level cell (SLC) flash mem-
ory, each cell has two states, and therefore only a single
bit can be stored in that cell. Figure 1(a) shows how the
value of a bit is determined by the threshold voltage. If
the threshold voltage is greater than a reference voltage,
it is interpreted as a logical ‘1’; otherwise, it is regarded
as a logical ‘0’. In general, the write operation moves the
state of a cell from ‘1’ to ‘0’, while the erase operation
changes ‘0’ to ‘1’.

If flash memory is composed of memory cells which
have more than two states, it is called a multi-level cell
(MLC) flash memory, and two or more bits of informa-
tion can be stored on each cell, as shown in Figure 1(b).
Even though the density of MLC flash memory is higher
than that of SLC flash memory, it requires more precise
charge placement and charge sensing (because of nar-
rower voltage ranges for each cell state), which in turn
reduces the performance and endurance of MLC flash
memory in comparison to SLC flash memory.

2.2 MLC NAND Flash Memory Array

In MLC flash memory, it is possible to use SLC pro-
gramming, allowing a multi-level cell to be used as a
single-level cell. To understand the implications of SLC

...

...

.
.
.

.
.
.

.
.
.

()*+, ()*-, ()*.,
...

/)*+,/)*0,/)*1,

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

232456 73889: ;<=>?
@ABCD EFGH
IJK LMNOKPQRS
TJK LMNO@UBCDVWLMNOH

Figure 2: An organization of an MLC flash memory ar-
ray (2 bits/cell)

programming, it is necessary to know the overall archi-
tecture of a flash memory array. Figure 2 illustrates the
array of flash memory cells which forms a flash memory
block. We assume that each cell is capable of holding
two bits. For a description purpose, this figure does not
show all the elements, such as source and drain select
gates, which are required in a memory array. (For a more
detailed description, see references [2, 3].)

As shown in Figure 2, the memory cells are arranged
in an array of rows and columns. The cells in each
row are connected to a word line (e.g.,WL(0)), while
the cells in each column are coupled to a bit line (e.g.,
BL(0)). These word and bit lines are used for read and
write operations. During a write operation, the data to be
written (‘1’ or ‘0’) is provided at the bit line while the
word line is asserted. During a read operation, the word
line is again asserted, and the threshold voltage of each
cell can then be acquired from the bit line.

Figure 2 also shows the conceptual structure of a flash
block corresponding to a flash memory array. The size
of a page is determined by the number of bit lines in the
memory array, while the number of pages in each flash
block is twice the number of word lines, because two
different pages share the memory cells that belong to the
same word line. These two pages are respectively called
the least significant bit (LSB) page and the most signif-
icant bit (MSB) page. As these names imply, each page
only uses its own bit position of a bit pattern stored in a
cell. (This is possible because each memory cell stores
two bits, for example, one bit for the LSB page and the
other for the MSB page.) Thus, if a block has 128 pages,
there are 64 LSB and 64 MSB pages.

Because multiple pages are mapped to the same word
line, read and write operations must distinguish the des-
tination page of each operation. For example, if a cell is
in an erased state (i.e., a logical ‘11’) and a logical ‘0’ is
programmed to the MSB position of the cell, the cell will
then have a bit pattern of ‘01’, which is interpreted as a

Table 1: Performance comparison of different types of
cell programming (us)

Operation SLC MLCLSB MLCBOTH

Read (page) 399 409 403
Write (page) 417 431 994
Erase (block) 860 872 872

logical ‘0’ for the MSB page. If the LSB position is then
programmed as ‘0’, the bit pattern will change to ‘00’.

2.3 SLC Programming in MLC

Since MLC flash memory stores multiple pages in the
same word line, it is possible for it to act as SLC flash
memory by using only the LSB pages (or MSB pages,
depending on the manufacturer’s specification). Thus,
SLC programming is achieved by only writing data to the
LSB pages in a block. In this case, since only two states
of a cell, ‘11’ and ‘10’, are used shown in Figure 1(b),
the characteristics of a multi-level cell become very sim-
ilar to those of a single-level cell. The logical offsets of
the LSB and MSB pages in a block are determined by the
flash memory specification, and therefore SLC program-
ming can be managed at the file system level. Naturally,
SLC programming reduces the capacity of a block by
half, because only the LSB pages can be used.

Table 1 compares the performance of the three dif-
ferent types of cell programming method. TheSLC
column shows the performance data in a pure SLC
flash memory; theMLCLSB column gives the perfor-
mance data when only the LSB pages are used; and the
MLCBOTH column gives the data when both the LSB
and MSB pages are used. The access times for page reads
and writes, and for block erase operations were measured
using the Samsung’s KFXXGH6X4M flash memory [4]
at the device driver interface level. As shown in Table 1,
there are no significant performance differences between
page read and block erase operations for the three pro-
gramming methods. However, the write performance is
significantly improved withMLCLSB, and approaches
to that ofSLC.

This improvement in the write performance under
MLCLSB is the main motivation for FlexFS. Our pri-
mary goal is to improve the write performance of MLC
flash memory using theMLCLSB method, while main-
taining the capacity of MLC flash memory using the
MLCBOTH method.

3 Overview of the FlexFS File System

We will now describe the overall architecture of the pro-
posed FlexFS system. FlexFS is based on JFFS2 file sys-

XYZ [\]^_ `abb_\cd efghYZ [\]̂ _ `abb_\cd efgijklmnompqqrso tjklmnompqqrsotjk uvnwxyz{| }~�ijkuvnwxy{�z }~��s�pvr� �p�p �pvr� �p�p �m�� uvnwxy�sxsn�s�tjk uvnwxyz{| }~� ijkuvnwxy{�z }~�
�mr�� m������

��� jno uvnwx� ���jnoorso
Figure 3: The layout of flash blocks in FlexFS

tem [5], and hence the overall architecture is very simi-
lar to JFFS2 except for some features required to manage
heterogeneous cells and to exploit flexible programming.
Therefore, in this section, we focus on how FlexFS deals
with different types of a cell. We also introduce a base-
line approach to exploit flexible cell programming in or-
der to illustrate the need for better policies, which will be
introduced in detail on the following section.

3.1 Design Overview

In order to manage heterogeneous cells efficiently,
FlexFS logically divides the flash memory medium into
an SLC region, composed of SLC blocks, and an MLC
region consisting of MLC blocks. If a block does not
contain any data, it is called a free block. In FlexFS, a
free block is neither an SLC block nor an MLC block; its
type is only determined when data is written into it.

Figure 3 shows the layout of flash memory blocks in
FlexFS. We assume that the number of pages in a block is
128, and the page size is 4 KB. (These values will be used
throughout the rest of this paper.) When a write request
arrives, FlexFS determines the type of region to which
the data is to be written, and then stores the data tem-
porarily in an appropriate write buffer. This temporary
buffering is necessary because the unit of I/O operations
is a single page in flash memory. Therefore, the write
buffer stores the incoming data until there is at least the
page size of data (i.e., 4 KB), which can be transferred
to flash memory. In order to ensure the data reliability,
if there is an explicit flush command from the operating
system, all the pending data is immediately written to
flash memory. In FlexFS, separate write buffers are used
for the SLC and MLC regions.

FlexFS manages flash memory in a similar fashion to
other log-structured file systems [5, 6, 7], except that two
log blocks (one for the SLC and another for the MLC re-
gion) are reserved for writing. When data is evicted from
the write buffer to flash memory, FlexFS writes them se-
quentially from the first page to the last page of the corre-
sponding region’s log block. MLC programming is used
to write data to the MLC block, and SLC programming

���� ����������������� �� ¡¢£¤¥¦ § ©̈��� �� ¡¢£¤¥¦ § ©̈
ª«¬ ������®¯ °±���� �� ¡¢£¤¥¦ § ©̈��� �� ¡¢£¤¥¦ § ©̈

ª«¬ ������®¯ °±����� ������������������ ��������������¬�²³´µ�¶· ²µ¸�¹ º�µ¹� �����¹»¼½ ¾¿ÀÁÀ¼Â ÃÁ¼ÁÄ »Å½ ÆÇÈÉÀ¿Ê Ë¼ÂÀÌ È¼ÊÄÃ ÍÄÎ¼ÃÀ¿Ê ÏÐÆ ÅÂÇÑÒÃ »Ñ½ ÓÀ¿¼Â ÃÁ¼ÁÄÔµ�¶· ·µÕµ Ö� ·µÕµ
Figure 4: Steps in data migration

is used to write to the SLC block. If existing data is up-
dated, the old version of the data is first invalidated, while
the new data is appended to the free space of a log block.
The space used by this invalid data is later reclaimed by
the garbage collector (Section 4.3).

After all the free pages in the current log block have
been exhausted, a new log block is allocated from the
free blocks. However, if there is not enough free space
to store the data, the data migrator triggers a data mi-
gration (Section 4.1.1) to create more free space. This
expands the effective capacity of flash memory by mov-
ing the data from the SLC region to the MLC region.
Figure 4 illustrates the steps in data migration. In this
example, there are initially two SLC blocks and one free
block, as shown in Figure 4(a). We assume that all the
pages in the two SLC blocks contain valid data. Dur-
ing the data migration, the free block is converted into an
MLC block, and the 128 pages in the two SLC blocks are
copied to this MLC block. Then the two SLC blocks are
erased, making them free blocks. This migration frees
up one block, doubling the remaining capacity of flash
memory, as shown in Figure 4(c).

When a read request arrives, FlexFS first checks
whether the write buffers contain the requested data.
If so, the data in the write buffer is transferred to the
page cache. Otherwise, FlexFS searches an inode cache,
which is kept in main memory, to find a physical address
for the requested file data. The inode cache maintains the
inode numbers and physical locations of data that belong
to each inode. If the physical address of the required data
is found, regardless of the type of block in which the data
is stored, FlexFS can read the data from that address.

3.2 Baseline Approach and Its Problems

The major objective of FlexFS is to support both high
performance and high capacity in MLC flash memory. A
simplistic solution, which we call the baseline approach,
is first to write as much data as possible into SLC blocks
to maximize the I/O performance. When there are no
more SLC blocks available, the baseline approach initi-
ates a data migration so that more space becomes avail-

able for subsequent write requests, so as to maximize the
capacity of flash memory. This simple approach has two
serious drawbacks.

First, if the amount of data stored on flash memory
approaches to half of its maximum capacity, almost all
the free blocks are exhausted. This is because the ca-
pacity of the SLC block is half that of the MLC block.
At this point, a data migration has to be triggered to free
some blocks before writing the requested data. But, this
reduces the overall I/O performance significantly. To ad-
dress this problem, we introduce techniques to reduce the
migration penalty, or to hide it from users.

Second, the baseline approach degrades the lifetime
of MLC flash memory seriously. Each block of NAND
flash memory has a finite number of erase cycles before
it becomes unusable. The baseline approach tends to in-
crease the number of erase operations because of the ex-
cessive data migration. In the worst case, the number of
erasures could be three times more than in conventional
flash file systems. We solve this problem by controlling
the degree of the migration overhead, with the aim of
meeting a given lifetime requirement.

4 Design and Implementation of FlexFS

4.1 Reducing the Migration Overhead

To reduce or hide the overhead associated with data
migrations, we introduce three techniques:background
migration, dynamic allocation, and locality-aware data
management. The background migration technique ex-
ploits the times when the system is idle to hide the data
migration overhead. This technique is effective for many
mobile embedded systems (e.g., mobile phones) which
have long idle time. The dynamic allocation technique,
on the other hand, is aimed at systems with less idle time.
By redirecting part of the incoming data into the MLC
region depending on the idleness of the system, it re-
duces the amount of data that is written into the SLC
region, which in turn reduces the data migration over-
heads. The third technique, locality-aware data manage-
ment, exploits the locality of I/O accesses to improve the
efficiency of data migration. We will now look at these
three techniques in more detail.

4.1.1 Background Migration Technique

Figure 5 shows the overall process of the background mi-
gration. In this figure, the X-axis shows the time and
the Y-axis gives the type of job being performed by the
file system. A foreground job represents I/O requests is-
sued by applications or the operating system.Tbusy is
a time interval during which the file system is too busy
to process foreground jobs, andTidle is an idle interval.

Twait

Tdelay

Tbusy Tidle

×ØÙ ÚÛÜÝÛÞß
àáâÛãäáß åæ âáçÚèßáåäéê ëèçÛì

t1 t2

íåÚÛçÚåÝäî×ØÙ ïåðñèòóçÚåÝäîâáçÚèßåÚéôõö÷øõöì Ttrig Ttrig

Figure 5: Overview of the background migration

During this idle time the background migrator can move
data from the SLC region to the MLC region, thus free-
ing many blocks. These free blocks can then be used as
SLC blocks to store data, and so we can avoid a compul-
sory data migration if there is sufficient idle time.

In designing the background migration technique,
there are two important issues: First, it is important to
minimize the delay in response timeTdelay inflicted on
foreground tasks by the background migration. For ex-
ample, in Figure 5, an I/O request arrives att1, but it
cannot proceed untilt2 because of interference from the
background migration. SoTdelay is t2 - t1. To reduce
this delay, the data migrator monitors the I/O subsystem,
and suspends the background migration process if there
is an I/O request. Since the unit of a data migration is a
single page, the maximum delay in response time will be
less than the time required to move a page from SLC to
MLC (about 1,403 us) theoretically. In addition, we also
design the background migrator so that it does not utilize
all available idle times. Instead, it periodically invokes
a data migration at a predefined triggering intervalTtrig.
If Ttrig is larger than the time required to move a single
page, FlexFS reduces the probability that a foreground
job will be issued while a data migration is running, thus
further reducingTdelay.

The second issue is when to initiate a background mi-
gration. Our approach is based on a threshold; if the du-
ration of the idle period is longer than a specific threshold
valueTwait, then the background migrator is triggered.
This kind of problem has been extensively studied in dy-
namic power management (DPM) of hard disk drives [8],
which puts a disk into a low-power state after a certain
idle time in order to save energy. However, the transition
to a low-power state has to be made carefully because
it introduces a large performance penalty. Fortunately,
becauseTdelay is quite short, more aggressive transition-
ing is possible in our background migration technique,
allowingTwait to be set to a small value.

4.1.2 Dynamic Allocation Technique

The background migration technique works well when a
system has sufficient idle time. Otherwise, the migration

ùúû üûýþ þÿ�û �ÿü������û�ÿ�þû� ÿ��û þÿ�û 	
��� �û�ÿ�����û �û�ÿ�� ������ ùúû ��û�ÿ�� þÿ�û �ÿü�����û���û� ÿ��û þÿ�û 	
 ����ûüþ þÿ�û
T idle

pred
T idle
measure

Figure 6: Our approach to idle time prediction

overhead cannot be avoided. But it can be ameliorated
by writing part of the incoming data into the MLC re-
gion, so as to reduce the amount of data to be moved by
the background migrator. Although this approach results
in a lower I/O performance than SLC flash memory, it
can prevent significant performance degradation due to a
compulsory data migration.

The dynamic allocator determines the amount of data
that will be written into the SLC region. Intuitively, it
is clear that this must depend on how much idle time
there is in a given system. Since the amount of idle time
changes dynamically with user activities, we need to pre-
dict it carefully. Figure 6 illustrates the basic idea of our
idle time prediction approach, which is based on previ-
ous work [9]. In this figure, each time window repre-
sents the period during whichNp pages are written into
flash memory. The dynamic allocator stores measured
idle times for several previous time windows, and uses
them to predict the idle time,T pred

idle , for the next time
window. The value ofT pred

idle is a weighted average of
the idle times for the latest 10 time windows; the three
most recent windows are given a higher weight to take
the recency of I/O pattern into account.

If we know the value ofT pred
idle , we can use it to calcu-

late an allocation ratio, denoted byα, which determines
how many pages will be written to the SLC region in the
next time window. The value ofα can be expressed as
follows:

α =

8

<

:

1 if T pred

idle ≥ Tmig

T pred

idle

Tmig

if T pred

idle < Tmig ,
(1)

where Tmig = Np · (Ttrig + T SLC
erase/SSLC

p), (2)

whereT SLC
erase is the time required to erase an SLC flash

block which containsSSLC
p pages. As mentioned in

Section 4.1.1,Ttrig is the time interval required for one
page to migrate from the SLC region to the MLC re-
gion. Therefore,Tmig is the migration time, which in-
cludes the time taken to move allNp pages to the MLC
region and the time for erasing all used SLC blocks. If
T pred

idle ≥ Tmig, there is sufficient idle time for data mi-
grations, and thusα = 1. Otherwise, the value ofα
should be reduced so that less data is written into the
SLC region, as expressed by Eq. (1).

Once the value ofα has been determined, the dynamic
allocator tries to distribute the incoming data across the

P0������ P1����� P2������ P3������ P3������
P4������ P1����� P5������ P6������P4������ P1����� P5������ P6��������� ��� �������� !"�#�$� �%%$�����&� ��� �������� �#�$� �%%$����

t1 t2

'�(�
'��)���� �* ��� +,- $�.��" ��

t1

'��)���� �* ��� +,- $�.��" ��
t2

P1�����/0123452675
Figure 7: A comparison of the locality-unaware and
locality-aware approaches

different flash regions depending onα. Therefore, the
number of pages to be written into the SLC region,
NSLC

p , and the amount of data destined for the MLC
region,NMLC

p , can be expressed as follows:

NSLC
p = Np · α, NMLC

p = Np · (1 − α). (3)

Finally, after writing allNp pages, the dynamic allocator
calculates a new value ofα for the nextNp pages.

4.1.3 Locality-aware Data Management Technique

FlexFS is based on a log-structured file system, and
therefore it uses the out-place update policy. Under this
policy, hot data with a high update frequency generates
more outdated versions of itself than cold data, which is
updated infrequently. Our locality-aware data manage-
ment technique exploits this characteristic to increase the
efficiency of data migration.

Figure 7 compares the locality-aware and the locality-
unaware approaches. We assume that, at timet1, three
cold pagesp0, p2, andp3, and one hot pagep1, exist in
the SLC region. Betweent1 andt2, there are some idle
periods, and new pagesp1, p4, p5, andp6 are written
into the SLC region. Note thatp1 is rewritten because
it contains hot data. In the case of the locality-unaware
approach shown in Figure 7(a), we assume that pages
p0, p1, andp2 are moved to the MLC region during idle
time, butp3 cannot be moved because there is not enough
idle time. Therefore, at timet2, there are five pages in
the SLC region. If the value ofNp is 4, the value ofα
should decrease so that data will not accumulate in the
SLC region. However, if we consider the locality of the
data, we can movep3 instead ofp1 during idle periods,
as shown in Figure 7(b). Sincep1 has a high locality,
it is highly likely to be invalidated byt2. Therefore, an
unnecessary page migration forp1 can be avoided, and
only four pages remain in the SLC region. In this case,
we need not to reduce the value ofα, and more data will
be written into the SLC region.

Using this observation, Eq. (2) can be rewritten as
follows:

Tmig = (Np − Nhot
p) · (Ttrig + T SLC

erase/SSLC
p), (4)

whereNhot
p is the number of page writes for hot pages

stored in the SLC region. For instance, in the above ex-
ample,Nhot

p is 1. Because we only need to moveNp

- Nhot
p pages into the MLC region, the value ofTmig

can be reduced, allowing an increase inα for the same
amount of idle time.

To exploit the locality of I/O references, there are two
questions to answer. The first is to determine the local-
ity of a given data. To know the hotness of data, FlexFS
uses a 2Q-based locality detection technique [10], which
is widely used in the Linux operating system. This tech-
nique maintains a hot and a cold queue, each containing
a number of nodes. Each node contains the inode num-
ber of a file. Nodes corresponding to frequently accessed
files are stored on the hot queue, and the cold queue con-
tains nodes for infrequently accessed files. The locality
of a given file can easily be determined from queue in
which the corresponding node is located.

Second, the data migrator and the dynamic allocator
should be modified so that they take the locality of data
into account. The data migrator tries to select an SLC
block containing cold data as a victim, and an SLC block
containing hot data is not selected as a victim unless very
few free blocks remain. Since a single block can con-
tain multiple files which have different hotness, FlexFS
calculates the average hotness of each block as the cri-
terion, and chooses a block whose hotness is lower than
the middle. It seems better to choose a block containing
only cold pages as a victim block; if there are only a few
bytes of hot data in a victim, this results in useless data
migrations for hot data. However, this approach incurs
the delay in reclaiming free blocks, because even if the
small amount of hot data is stored on a block, the block
will not be chosen as a victim.

The dynamic allocator tries to write as much hot data
to the SLC region as possible in order to increase the
value ofNhot

p . The dynamic allocator also calculates a
new value ofα afterNp pages have been written and, for
this purpose, the value ofNhot

p for the next time window
need to be known. Similar to the approach used in our
idle time prediction, we count how many hot pages were
written into the SLC region during the previous 10 time
windows, and use their average hotness value asNhot

p

for the next time window. The value ofNhot
p for each

window can be easily measured using an update variable,
which is incremented whenever a hot page is sent to the
SLC region.

4.2 Improving the Endurance

To enhance the endurance of flash memory, many flash
file systems adopt a special software technique called
wear-leveling. In most existing wear-leveling tech-
niques, the primary aim is to distribute erase cycles

evenly across the flash medium [11, 12]. FlexFS uses
this approach, but also needs to support more specialized
wear management to cope with frequent data migrations.

The use of FlexFS means that each block undergoes
more erase cycles because a lot of data is temporarily
written to the SLC region, waiting to move to the MLC
region during idle time. To improve the endurance and
prolong the lifetime, it would be better to write data to
the MLC region directly, but this reduces the overall per-
formance. Therefore, there is another important trade-off
between the lifetime and performance.

To efficiently deal with this trade-off, we propose a
novel wear management technique which controls the
amount of data to be written into the SLC region depend-
ing on a given storage lifetime.

4.2.1 Explicit Endurance Metric

We start by introducing a new endurance metric which
is designed to express the trade-off between lifetime and
performance. In general, the maximum lifetime,Lmax,
of flash memory depends on the capacity and the amount
of data written to them, and is expressed as follows:

Lmax =
Ctotal · Ecycles

WR
, (5)

whereCtotal is the size of flash memory, andEcycles is
the number of erase cycles allowed for each block. The
writing rateWR indicates the amount of data written in
unit time (e.g., per day). This formulation ofLmax is
used by many flash memory manufacturers [13] because
it clearly shows the lifetime of a given flash application
under various environments.

Unfortunately,Lmax is not appropriate to handle the
trade-off between lifetime and performance because it
expresses the expected lifetime, and not the constraints to
be met in order to improve the endurance of flash mem-
ory. Instead, we use an explicit minimum lifespan,Lmin,
which represents the minimum guaranteed lifetime that
would be ensured by a file system. Since FlexFS can con-
trol the writing rateWR by adjusting the amount of data
written into the SLC region, this new endurance metric
can be expressed as follows:

Control WR by changing a wear index,δ
Subject to

Lmin ≈
Ctotal · Ecycles

WR
,

(6)

whereδ is called the wear index. In FlexFSδ is propor-
tional toWR, and thereforeδ can be used to control the
value ofWR. If δ is high, FlexFS writes a lot of data
to the SLC region; and this increasesWR due to data
migrations; but ifδ is low, the writing rate is reduced.
Our wear management algorithm controlsδ so that the
lifetime specified byLmin is to be satisfied.

89: ;<=>?@ABC DEFG9: ;<=>?@CAH DEF 89: ;<=>?@ABC DEF
89: ;<=>?@ABC DEFG9: ;<=>?@CAH DEF G9: ;<=>?@CAH DEF G9: ;<=>?@CAH DEF 89: ;<=>?@ABC DEF89: ;<=>?@ABC DEF

IJK LMNOP IQK LMPOR ISK LMPOP
TUV WX YZ[\]]^_`abb]^cZbZ dae`Zbaf^a[gfdhi]b] G9: ;<=>?@CAH DEF G9: ;<=>?@CAH DEF 89: ;<=>?@ABC DEF>=jk >=jk lmnn op<qr rpsptuvp<qr rpsp
Figure 8: How the number of blocks used depends onδ

4.2.2 Assigning a Writing Budget

The proposed wear management algorithm divides
the given lifetime Lmin into n time windows
(w0, w1, ..., wn−2, wn−1), and the duration of each
window is given asTs. The writing rateWR(wi)
for each time windowwi can also be expressed as
WB(wi)/Ts, where WB(wi) is the amount of data
and represents the writing budget assigned to the time
windowwi.

SinceTs is fixed, the assignment of a writing budget
to each window significantly impacts the overall perfor-
mance as well as the rate at which flash memory wears
out. For example, if too large a writing budget is as-
signed to each window, it markedly increases the number
of erase cycles for each block; on the other hand, if too
small a writing budget is allocated, it lowers the overall
performance. Therefore, we determine a writing budget
for the windowwi as follows:

WB(ti) =
(Ctotal · Ecycles) − W (ti)

n − (ti/Ts)
, (7)

whereti is the time at the start of windowwi, andW (ti)
indicates the amount of a writing budget that has actu-
ally been used byti. The remaining writing budget is
(Ctotal · Ecycles) − W (ti), and the number of remain-
ing windows is(n − (ti/Ts)). Therefore, the remaining
writing budget is shared equally between the remaining
windows. The writing budget is calculated at the begin-
ning of every time window, so as to take changes in the
workload pattern into consideration.

4.2.3 Determining the Wear Index

Once the writing budget has been assigned to a time win-
dow, the wear manager adjusts the wear index,δ, so that
the amount of a writing budget actually used approxi-
mates the given writing budget. The wear index is used
by a dynamic allocator, similar to Eq. (3), to distribute
the incoming data across the two regions.

Figure 8 shows how the number of blocks used de-
pends on the value ofδ. The size of the SLC and MLC

blocks is 256 KB and 512 KB, respectively. Suppose
that 512 KB data is written, and the data migrator moves
this data from the SLC region to the MLC region. If
δ is 1.0, as shown in Figure 8(a), 512 KB is written to
two SLC blocks, and then the data migrator requires one
MLC block to store the data from two SLC blocks. In
this case, the total amount of a writing budget used is 1.5
MB because three blocks have been used for writing. Ifδ
is 0.5, as shown in Figure 8(b), 1 MB of a writing budget
is used, requiring one SLC block and one MLC block.
Figure 8(c) shows the case whenδ is 0.0. Only 512 KB
is used because there is no data to be moved.

This simple example suggests that we can generalize
the relationship between the wear index, the amount of
incoming data, and the amount of a writing budget actu-
ally used, as follows:

IW (wi) · (2 · δ + 1) = OW (wi), (8)

whereIW (wi) is the amount of data that arrives during
the windowwi, andOW (wi) is the amount of a writing
budget to be used depending onδ. In the example of
Figure 8(b),IW (ti) is 512 KB andδ is 0.5, and thus
OW (ti) is 1 MB. IW (wi) · (2 · δ) is the amount of a
writing budget used by the SLC region andIW (wi) is
the amount of data to be written to the MLC region.

The wear index should be chosen so thatOW (wi) =
WB(ti), and can therefore be calculated as follows:

δ =
WB(ti) − IW (wi)

2 · IW (wi)
. (9)

The value ofδ is calculated at the beginning ofwi when
the exact value ofIW (wi) is unknown.IW (wi) is there-
fore estimated to be the average value of the previous
three time windows. IfWB(ti) < IW (wi), thenδ is
0, and therefore all the data will be written to the MLC
region. IfIW (wi) is always larger thanWB(ti), it may
be hard to guaranteeLmin. However, by writing all the
data to the MLC region, FlexFS can achieve a lifetime
close to that of a pure MLC flash memory.

A newly determined value ofδ is only used by the dy-
namic allocator ifδ < α. Therefore, the wear manage-
ment algorithm is only invoked when it seems that the
specified lifetime will not be achieved.

4.3 Garbage Collection

The data migrator can make free blocks by moving data
from the SLC region to the MLC region, but it cannot re-
claim the space used by invalid pages in the MLC region.
The garbage collector, in FlexFS, reclaims these invalid
pages by selecting a victim block in the MLC region, and
then by copying valid pages in the victim into a different
MLC block. The garbage collector selects a block with
many invalid pages as a victim to reduce the requirement

Figure 9: A snapshot of the flash development board
used for experiments

for additional I/O operations, and also utilizes idle times
to hide this overhead from users. Note that, it is never
necessary to choose a victim in the SLC region. If cold
data is stored in SLC blocks, it will be moved to the MLC
region by the data migrator; but hot data need not to be
moved because it will soon be invalidated.

5 Experimental Results

In order to evaluate the efficiency of the proposed tech-
niques on a real platform, we implemented FlexFS on
Linux 2.6.25.14 kernel. Our hardware system was the
custom flash development board shown in Figure 9,
which is based on TI’s OMAP2420 processor (running
at 400 MHz) with a 64 MB SDRAM. The experiments
were performed on Samsung’s KFXXGH6X4M-series
1-GB flash memory [4], which is connected to one of
the NAND sockets shown in Figure 9. The size of each
page was 4 KB and there were 128 pages in a block.

To evaluate the FlexFS file system objectively, we
used two types of workload. In Section 5.1, we present
experimental results from synthetic workloads. In Sec-
tion 5.2, we evaluate FlexFS using actual I/O traces col-
lected from executions of real mobile applications.

5.1 Experiments with Synthetic Workloads

5.1.1 Overall Throughput

Table 2 summarizes the configurations of the four
schemes that we used for evaluating the throughput of
FlexFS. In the baseline scheme, all the data is first writ-
ten into SLC blocks, and then compulsorily moved to
MLC blocks only when fewer than five free blocks re-
main. Three other schemes, BM, DA, and LA, use tech-

Table 2: Summary of the schemes used in throughput
evaluation

Schemes Baseline BM DA LA

Background migration × © © ©

Dynamic allocation × × © ©

Locality-aware × × × ©

niques to reduce the overhead of data migrations. For
example, the BM scheme uses only the background mi-
gration technique, while the LA scheme uses all three
proposed techniques. In all the experiments,Twait was
set to 1 second,Np was 1024 pages, andTtrig was 15
ms. To focus on the performance implications of each
scheme, the wear management scheme was disabled.

All the schemes were evaluated on three synthetic
benchmark programs:Idle, Busy, and Locality. They
were designed to characterize several important proper-
ties, such as the idleness of the system and the locality
of I/O references, which give significant effects on the
performance of FlexFS. TheIdle benchmark mimics the
I/O access patterns that occur when sufficient idle time is
available in a system. For this purpose, theIdle bench-
mark writes about 4 MB of data (including metadata) to
flash memory every 25 seconds. TheBusybenchmark
generates 4 MB of data to flash memory every 10 sec-
onds, which only allows the I/O subsystem small idle
times. TheLocality benchmark is similar toBusy, ex-
cept that about 25% of the data is likely to be rewritten
to the same locations, so as to simulate the locality of
I/O references that occurs in many applications. All the
benchmarks issued write requests until about 95% of the
total MLC capacity has been used. To speed up the eval-
uation, we limited the capacity of flash memory to 64
MB using the MTD partition manager [14].

Figure 10 compares the throughput of Baseline and
BM with the Idle benchmark. The throughput of Base-
line is significantly reduced close to 100 KB/s when the
utilization approaches 50%, because before writing the

1.5

2

2.5

3

3.5

T
h

ro
u

g
hp

ut
 (

M
B

/s
e

c)

0

0.5

1

7 14 21 27 34 41 47 54 61 67 74 81 88 94

T
h

ro
u

g
hp

ut
 (

M
B

/s
e

c)

Flash Memory Utilization (%)

Baseline

BM

Figure 10: Performance comparison of Baseline and BM
with the Idle benchmark

1.5

2

2.5

3

3.5
T

h
ro

ug
h

pu
t (

M
B

/s
ec

)

0

0.5

1

7 14 21 27 34 41 47 54 61 67 74 81 88 94

T
h

ro
ug

h
pu

t (
M

B
/s

ec
)

Flash Memory Utilization (%)

BM

DA

Figure 11: Performance comparison of BM and DA with
theBusybenchmark

incoming data, the data migrator should make enough
free space in the SLC region, incurring a noticeable per-
formance degradation. However, BM achieves the same
performance as SLC flash memory until the utilization
exceeds 94%. Since theIdle benchmark allows FlexFS
a lot of idle time (about 93.6% of the total execution
time), it should be possible to reclaim a sufficient num-
ber of free blocks before new write requests arrive and
require them. When the utilization reaches 94%, the per-
formance of BM is significantly reduced because almost
all of the available blocks is occupied by valid data, and
fewer than 5 free blocks remain available.

Figure 11 compares the performance of BM and DA
while running theBusybenchmark. In this evaluation,
BM shows a better throughput than DA when the utiliza-
tion is less than 67%. However, its performance quickly
declines because the idle time is insufficient to allow BM
to generate enough free blocks to write to the SLC re-
gion. DA does exhibit a stable write performance, re-
gardless of the utilization of flash memory. At the be-
ginning of the run, the value ofα is initially set to 1.0
so that all the incoming data is written to the SLC re-
gion. However, since insufficient idle time is available,
the dynamic allocator adjusts the value ofα to 0.5. DA
then writes some of the arriving data directly to the MLC
region, avoiding a significant drop in performance.

Figure 12 shows the performance benefit of the
locality-aware approach using theLocality benchmark.
Note thatLocalityhas the same amount of idle time com-
pared as theBusybenchmark. LA achieves 7.9% more
write performance than DA by exploiting the locality of
I/O references. The overall write throughput of LA is
2.66 MB/s while DA gives 2.45 MB/s. The LA scheme
also starts with anα value of 1.0, but that is reduced to
0.5 because the idle time is insufficient. However, after
detecting a high degree of locality from I/O references,
α is partially increased to 0.7 by preventing useless data
migrations of hot data, and more data can then be written
into the SLC region.

1.5

2

2.5

3

3.5

T
h

ro
ug

h
pu

t (
M

B
/s

ec
)

0

0.5

1

7 14 21 27 34 41 47 54 61 67 74 81 88 94

T
h

ro
ug

h
pu

t (
M

B
/s

ec
)

Flash Memory Utilization (%)

DA

LA

Figure 12: Performance comparison of DA and LA with
theLocalitybenchmark

5.1.2 Response Time

Although the background migration contributes to im-
proving the write throughput of FlexFS, it could incur
a substantial increase in response time because I/O re-
quests can be issued while the background migrator is
running. In this subsection, to investigate the impact of
the background migration on the response time, we per-
formed evaluations with a following scenario.

We first wrote 30 MB of bulk data in order to trigger
the background migrator. FlexFS was modified for all
the incoming data to be written into the SLC region, re-
gardless of the amount of idle time. After writing this
data, we made 10 page write requests. The idle time be-
tween two consecutive write requests was generated us-
ing a pseudo-random number generator, but this was ad-
justed at least larger thanTwait so that all write requests
was randomly issued after the background migrator has
been initiated. To collect accurate and reliable results,
we performed this scenario more than 30 times.

We performed our evaluation for the following four
configurations. In order to know the effect of the idle
time utilization, we measured the response time while
varying the idle time utilization. The configurations,
U100, U50, and U10 represent when FlexFS utilizes
100%, 50%, and 10% of the total idle time, respectively.
This idle time utilization can be easily controlled by the
value ofTtrig. For example, the time required to move
a single page from SLC to MLC is about 1.5 ms, and so
the utilization of 10% can be made usingTtrig of 15 ms.
To clearly show the performance penalty from the back-
ground migration, we evaluated the response time when
the background migration is disabled, which is denoted
as OPT. The migration suspension mentioned in Section
4.1.1 was enabled for all the configurations.

Figure 13 shows the cumulative distribution function
of the response time for the four configurations. As ex-
pected, OPT shows the best response time among all the
configurations. However, about 10% of the total I/O re-
quests requires more than 2,000 us. This response time

0.4

0.5

0.6

0.7

0.8

0.9

1
C

um
ul

a
tiv

e
 P

ro
b

ab
ili

ty

OPT

0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64 128

C
um

ul
a

tiv
e

 P
ro

b
ab

ili
ty

Response Time (ms)

OPT
U10
U50
U100

Figure 13: A comparison of response time delays on dif-
ferent system configurations

delay is caused by the writing of the metadata informa-
tion. Although we wrote 4 KB of data into flash memory,
the amount of data actually written was slightly larger
than 4 KB because of the metadata overhead. Conse-
quently, this results in additional page writes, incurring
the delay in response time.

U10 exhibits a longer response time than OPT for
about 10% of the total I/O requests, but it shows a fairly
good response time. On the other hand, the performance
of U50 and U100 is significantly deteriorated because
they utilize a lot of idle time for data migrations, increas-
ing the probability of I/O requests being issued while
the background migrator is working. Especially, when
two tasks (the foreground task and the background mi-
gration task) compete for a single CPU resource, the per-
formance penalty caused by the resource contention is
more significant than we expect.

5.1.3 Endurance

We evaluated our wear management scheme using a
workload scenario in which the write patterns change
over a relatively long time. We set the size of flash mem-
ory, Ctotal, to 120 MB, and the number of erase cycles
allowed for each block,Ecycles, was 10, allowing a max-
imum of 1.2 GB to be written to flash memory. We set
the minimum lifetime,Lmin, to 4,000 seconds, and our
wear management scheme was invoked every 400 sec-
onds. So, there are 10 time windows,w0, ..., w9, and the
duration of each,Ts, is 400 seconds. To focus our eval-
uation on the effect of the wear management scheme on
performance, the system was given enough idle time to
write all the data to the SLC region if the lifetime of flash

Table 3: The amount of data (MB) arrives for each win-
dow during the evaluation of wear management policy.

Time window w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Size (MB) 40 40 40 80 80 20 20 40 40 40

0.4

0.5

0.6

0.7

0.8

0.9

1

400

600

800

1000

1200

δ

A
m

o
un

t o
f

da
ta

 w
rit

te
n

(M
B

)

0

0.1

0.2

0.3

0

200

400

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

A
m

o
un

t o
f

da
ta

 w
rit

te
n

(M
B

)

Time window (Ts = 400 s)

Written data

δ

Figure 14: The changes in the size of written data and
theδ value

memory is not considered.
Table 3 shows the amount of data (MB) written to flash

memory for each window,wi, and Figure 14 shows how
the proposed wear management scheme adapts to chang-
ing write sizes while satisfying the minimum lifetime.
Initially, FlexFS allocates a writing budget of 120 MB (=
1.2 GB / 10) to each time window. This budget is large
enough to allow all the incoming data to be written to
the SLC region if less than or equal to 40 MB of data
arrives during each window. Therefore, during the first
three windows, the value ofδ is set to 1.0. Duringw3 and
w4, however, about 160 MB of data arrives, and FlexFS
reducesδ to cut the migration cost. Because only 40 MB
of data arrives duringw5 andw6, FlexFS can increase
δ to give a larger writing budget to the remaining win-
dows. We measured the amount of data written to flash
memory, including extra overheads caused by migrations
from the SLC region to the MLC region. FlexFS writes
about 1.2 GB of data to flash memory, and thus achieving
the specified minimum life span of 4,000 seconds.

We also counted the number of erase operations per-
formed on each block while running FlexFS with and
without the wear management scheme using the same
workload scenario. A wear-leveling policy was disabled
when the wear management scheme was not used. Fig-
ure 15 shows distributions of block erase cycles, and Ta-
ble 4 summarizes the results relevant to a wear-leveling.

0

2

4

6

8

10

12

14

16

18

1 32 64 96 128 160 192 224 256

E
ra

se
 c

ou
nt

Block number

0

2

4

6

8

10

12

14

16

18

1 32 64 96 128 160 192 224 256

E
ra

se
 c

ou
nt

Block number

(a) Without wear management (b) With wear management

Figure 15: Distributions of block erase cycles

Table 4: Summary of results relevant to a wear-leveling
Avg. erase cycles Std.Dev.

w/ wear management 9.23 1.20
wo/ wear management 10.73 2.43

These results clearly indicate that with the wear manage-
ment scheme FlexFS gives a good wear characteristic;
the maximum erase cycle of each block is effectively lim-
ited to less than or equal to 10, and the block erase op-
erations are evenly distributed across the flash memory
medium.

5.2 Experiments with Mobile Workloads

5.2.1 Generating Mobile Workloads

In addition to the synthetic workloads discussed in Sec-
tion 5.1, which were designed to evaluate one aspect of
FlexFS at a time, we evaluated FlexFS using I/O traces
collected from a real-world mobile platform to assess the
performance of FlexFS with mobile applications.

To collect and replay I/O traces from real applica-
tions, we developed a custom mobile workload gen-
eration environment based on the Qtopia Phone Edi-
tion [15], which includes representative mobile appli-
cations such as PIMS, SMS, and media players. This
environment includes three tools: a usage pattern gen-
erator, an I/O tracer, and a replayer. The usage pattern
generator automatically executes mobile applications as
if the user is actually interacting with applications dur-
ing runtime. The I/O tracer captures I/O system calls
(e.g., fopen, fread, and fwrite) while running the usage
pattern generator on the Qtopia platform, and then stores
collected traces in a log file. The replayer uses this log
file to replay the I/O requests in our development board.
Note that this log file allows us to repeat the same usage
patterns for different system configurations.

For the evaluation, we executed the several mobile ap-
plications shown in Table 5 on our workload generation
environment for 30 minutes. We followed a represen-
tative usage profile of mobile users reported in [16] ex-
cept that more multimedia data was written in order to
simulate data downloading scenario. The trace includes

Table 5: Applications used for evaluations
Application Description

SMS Send short messages
Address book Register / modify / remove addresses

Memo Write a short memo
Game Play a puzzle game

MP3 player Download 6 MP3 files (total 18 MB)
Camera Take 9 pictures (total 18 MB)

Table 6: A performance comparison of FlexFSMLC and
FlexFSSLC under mobile workloads

Response time Throughput
Read Write Write
(us) (us) (MB/s)

FlexFSSLC 34 334 3.02
FlexFSMLC 37 345 2.93

JFFS2 36 473 2.12

43,000 read and write requests. About 5.7 MB was read
from flash memory and about 39 MB was written.

5.2.2 Evaluation Results

In order to find out whether FlexFS can achieve SLC-
like performance, we evaluated the performance of
two FlexFS configurations, FlexFSMLC and FlexFSSLC.
FlexFSMLC is the proposed FlexFS configuration us-
ing both SLC and MLC programming, while FlexFSSLC

mimics SLC flash memory by using only SLC program-
ming. To know the performance benefits of FlexFSMLC,
we evaluated JFFS2 file system on the same hardware. In
this subsection, we will focus on the performance aspect
only, since the capacity benefit of FlexFSMLC is clear.

For FlexFSMLC, Ttrig was set to 15 ms,Np to 1024
pages, andTwait to 1 second. We assumed a total ca-
pacity of 512 MB, a maximum of 10,000 erase cycles for
a block, and a minimum lifetime of 3 years. The wear
management policy was invoked every 10 minutes.

Table 6 compares the response time and the through-
put of FlexFSMLC, FlexFSSLC, and JFFS2. The response
time was an average over all the I/O requests in the trace
file, but the throughput was measured when writing a
large amount of data, such as MP3 files. Compared to
JFFS2, FlexFSMLC achieves 28% smaller I/O response
time and 28% higher I/O throughput. However, the per-
formance difference between FlexFSMLC and JFFS2 is
noticeably reduced compared to the difference shown in
Table 1 because of computational overheads introduced
by each file system. JFFS2 as well as FlexFSMLC re-
quires a lot of processing time for managing internal data
structures, such as block lists, a metadata, and an error
detecting code, which results in the reduction of the per-
formance gap between two file systems.

The performance of FlexFSMLC is very close to that
of FlexFSSLC. The response times of FlexFSMLC are
10% and 3.2% slower for reads and writes, compared
with FlexFSSLC. The I/O throughput of FlexFSMLC is
3.4% lower than that of FlexFSSLC. This high I/O perfor-
mance of FlexFSMLC can be attributed to the sufficiency
of idle time in the trace. Therefore, FlexFSMLC can write
most incoming data into the SLC region, improving the
overall I/O performance.

0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

40
50
60
70
80
90

100

δ

N
u

m
be

r
o

f b
lo

ck
s

SLC block MLC block δ

0
0.1
0.2
0.3
0.4

0
10
20
30
40

3
0

12
0

21
0

30
0

39
0

48
0

57
0

66
0

75
0

84
0

93
0

10
2

0

11
1

0

12
0

0

12
9

0

13
8

0

14
7

0

15
6

0

16
5

0

17
4

0

18
3

0

N
u

m
be

r
o

f b
lo

ck
s

Time (second)

Figure 16: The changes in the number of SLC and MLC
blocks with a mobile workload in FlexFSMLC

The graph in Figure 16 shows in more detail how
FlexFSMLC achieves I/O efficiency. We counted the
number of each type of block every 30 seconds. In the
graph, the regions around 840 seconds clearly demon-
strate the effectiveness of the proposed techniques. Start-
ing from 750 seconds, many MP3 files of about 18 MB
are intensively written into flash memory. FlexFSMLC

can write all this data into the SLC region because the
idle time predictor in the dynamic allocator predicts there
will be enough idle time, which allows aggressive writes
to the SLC region.

From our observations on the representative mobile
workloads, there are two distinctive characteristics in I/O
access patterns. First, many mobile embedded systems
such as mobile phones and smart phones are likely to
have sufficient idle time; the average idle time accounts
for about 89% of the total execution time. Second, most
data is intensively written to flash memory within a short
time interval. As the experimental results show, FlexFS
is effectively designed for dealing with such characteris-
tics, and thus can achieve the I/O performance close to
SLC flash memory.

The small performance penalty of FlexFSMLC results
from ensuring the given minimum lifetime. As shown
in Figure 16, at around 1,200 seconds the wear manage-
ment policy reduces the value ofδ to 0.5, which degrades
the write performance of FlexFSMLC. However, this de-
cision was necessary because a large number of writes
to the SLC region for storing several MP3 files reduced
the number of erase cycles significantly. To meet the re-
quired minimum lifetime, FlexFS wrote 50% of the data
to the MLC region directly. This result indicates that the
poor wear characteristic of MLC flash memory could be
a hurdle for FlexFS to achieve its performance benefit.

However, it must be noted that 512 MB of flash ca-
pacity used in our evaluation is very small compared to
commercial flash applications. Actually, many flash de-
vices already employ several GB of flash memory and
its capacity doubles every two or three years. For exam-

ple, if a flash device has 16 GB MLC flash memory and
the minimum lifetime is set to 3 years, the writing bud-
get per day is about 146 GB. Therefore, it may safely be
assumed that the endurance problem would be mitigated
without a significant performance degradation.

6 Related Work

Many file systems for NAND flash memory have been
studied in recent years. JFFS2 [5] and YAFFS [7] are
representative, and are both the log-structured file sys-
tems [6], which write data sequentially to NAND flash
memory. JFFS2 was originally developed for NOR flash
memory, and later extended to NAND devices. JFFS2
stores metadata and regular data together. YAFFS is sim-
ilar to JFFS2 except that metadata is stored in a spare area
of each page to promote fast mounting of the file system.
They are both designed for the homogeneous flash mem-
ory media, and do not support the heterogeneous flash
memory devices discussed in this paper.

Recently, there have been several efforts to combine
both SLC and MLC flash memory. Chang et al. suggest a
solid-state disk which is composed of a single SLC chip
and many MLC chips [17], while Park et al. present a
flash translation layer for mixed SLC-MLC storage sys-
tems [18]. The basic idea of these two approaches is
to store frequently updated data in the small SLC flash
memory while using the large MLC flash memory for
storing bulk data. This brings the overall response time
close to that of SLC flash memory while keeping the cost
per bit as low as MLC flash memory. However, these ap-
proaches cannot break down when a large amount of data
has to be written quickly, because they only use the small
SLC flash memory so as to achieve their cost benefit. In
this situation, the overall I/O throughput will be limited
to the throughput of MLC flash memory. But FlexFS can
handle this case efficiently by flexibly increasing the size
of the SLC region, and therefore combines the high per-
formance of SLC flash memory with the high capacity of
MLC flash memory.

The hybrid hard disk [19, 20] is another heteroge-
neous storage system which uses flash memory as a non-
volatile cache for a hard disk. In a hybrid hard disk, flash
memory is used to increase the system responsiveness,
and to extend battery lifetime. However, this approach
is different from our study in which it does not give any
considerations on optimizing the storage system by dy-
namically changing its organization.

7 Conclusions

FlexFS is a file system that takes advantage of flexible
programming of MLC NAND flash memory. FlexFS is

designed to maximize I/O performance while making the
maximum capacity of MLC flash memory available. The
novel feature of FlexFS is migration overhead reduction
techniques which hide the incurred migration overhead
from users. FlexFS also includes a novel wear manage-
ment technique which mitigates the effect of the data mi-
gration on the lifetime of flash memory. Experimental
results show that FlexFS achieves 90% and 96% of the
read and write performance of SLC flash memory with
real-world mobile workloads.

There are a few areas where FlexFS can be further im-
proved. First, even though the background migration is
effective in hiding the migration overhead, it is less effi-
cient from the energy consumption perspective because
it reduces the probability that the system enters a low-
power state. In order to better handle both the perfor-
mance and energy consumption simultaneously, we are
developing a dynamic allocation policy that takes into ac-
count an energy budget of a system. Second, for FlexFS
to be useful on a wide range of systems, the poor wear
characteristic of MLC flash memory should be addressed
properly. To handle this problem, we are also investigat-
ing a wear management policy for a storage architecture
in which SLC flash memory is used as a write buffer for
MLC flash memory.

8 Acknowledgements

This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) grant funded by the Ko-
rea government (No. R0A-2007-000-20116-0) and the
Brain Korea 21 Project in 2009. This work was also
supported by World Class University (WCU) program
through KOSEF funded by the Ministry of Education,
Science and Technology (No. R33-2008-000-10095-0).
Samsung Electronics partially supported our FlexFS re-
search and the ICT at Seoul National University provided
research facilities for this study.

References

[1] F. Roohparvar, “Single Level Cell Programming in a Mul-
tiple Level Cell Non-volatile Memory Device,” InUnited
States Patent, No 11/298,013, 2007.

[2] M. Bauer, “A Multilevel-Cell 32 Mb Flash Memory,” In
Proceedings of the Solid-State Circuits Conference, Febru-
ary 1995.

[3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash Memory
Cells - An Overview,” InProceedings of the IEEE, vol. 85,
no. 8, 1997.

[4] Samsung Electronics Corp., “Flex-OneNAND‘ Specifica-
tion,” http://www.samsung.com/global/system/business/
semiconductor/product/2008/2/25/867322dskfxxgh6x4m
rev10.pdf.

[5] D. Woodhouse, “JFFS : The Journalling Flash File Sys-
tem,” In Proceedings of the Linux Symposium, July 2001.

[6] M. Rosenblum and J. Ousterhout, “The Design and Imple-
mentation of a Log-Structured File System,”ACM Trans-
actions on Computer Systems, vol. 10, no. 1, 1992.

[7] Aleph One, “YAFFS: Yet Another Flash File System,”
http://www.yaffs.net/, 2002.

[8] L. Benini, A. Bogliolo, and G. D. Micheli, “A Survey of
Design Techniques for System-level Dynamic Power Man-
agement,”IEEE Transactions on VLSI Systems, vol. 8, no.
3, 2000.

[9] E. Chan, K. Govil, and H. Wasserman, “Comparing Algo-
rithms for Dynamic Speed-setting of a Low-power CPU,”
In Proceedings of the Conference on Mobile Computing
and Networking (MOBICOM ’95), November 1995.

[10] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” In
Proceedings of the Conference on Management of Data
(SIGMOD ’93), May 1993.

[11] H. Kim and S. Lee, “An Effective Flash Memory Man-
ager for Reliable Flash Memory Space Management,”IE-
ICE Transactions on Information and System, vol. E85-D,
no. 6, 2002.

[12] L. Chang and T. Kuo, “Efficient Management for Large-
Scale Flash-Memory Storage Systems with Resource Con-
servation,”ACM Transactions on Storage, vol. 1, no. 4,
2005.

[13] SanDisk, “Longterm Data Endurance (LDE) for Client
SSD,” http://www.sandisk.com/Assets/File/pdf/oem/LDE
White Paper.pdf, 2008.

[14] Memory Technology Device (MTD),http://www.linux-
mtd.infradead.org/doc/general.html.

[15] Nokia Corp., “Qtopia Phone Edition 4.1.2,”
http://www.qtsoftware.com/products/.

[16] H. Verkasalo and H. Hämmäinen, “Handset-Based Mon-
itoring of Mobile Subscribers,” InProceedings of the
Helsinki Mobility Roundtable, June 2006.

[17] L.P. Chang, “Hybrid Solid-State Disks: Combining Het-
erogeneous NAND Flash in Large SSDs,” InProceedings
of the Conference on Asia and South Pacific Design Au-
tomation (ASP-DAC ’08), January 2008.

[18] S. Park, J. Park, J. Jeong, J. Kim, and S. Kim, “A Mixed
Flash Translation Layer Structure for SLC-MLC Com-
bined Flash Memory System,” InProceedings of the Work-
shop on Storage and I/O Virtualization, Performance, En-
ergy, Evaluation and Dependability (SPEED ’08), Febru-
ary 2008.

[19] R. Panabaker, “Hybrid Hard Disk and ReadyDrive Tech-
nology: Improving Performance and Power for Windows
Vista Mobile PCs,” InProceedings of the Microsoft Win-
HEC, May 2006.

[20] Y. Kim, S. Lee, K. Zhang, and J. Kim, “I/O Performance
Optimization Technique for Hybrid Hard Disk-based Mo-
bile Consumer Devices,”IEEE Transactions on Consumer
Electronics, vol. 53, no. 4, 2007.

