
Linux Kernel Developer Responses to Static Analysis Bug Reports

Philip J. Guo and Dawson Engler
Stanford University

Abstract
We present a study of how Linux kernel developers re-

spond to bug reports issued by a static analysis tool. We
found that developers prefer to triage reports in younger,
smaller, and more actively-maintained files (§2), first ad-
dress easy-to-fix bugs and defer difficult (but possibly
critical) bugs (§3), and triage bugs in batches rather than
individually (§4). Also, although automated tools cannot
find many types of bugs, they can be effective at direct-
ing developers’ attentions towards parts of the codebase
that contain up to 3X more user-reported bugs (§5).

Our insights into developer attitudes towards static
analysis tools allow us to make suggestions for improv-
ing their usability and effectiveness. We feel that it
could be effective to run static analysis tools continu-
ously while programming and before committing code,
to rank reports so that those most likely to be triaged
are shown to developers first, to show the easiest reports
to new developers, to perform deeper analysis on more
actively-maintained code, and to use reports as indirect
indicators of code quality and importance.

1 Methodology

We used two datasets for quantitative analysis: static
analysis bug reports and source code revision history.

We obtained static analysis results from the Coverity
Scan project [5], which uses a commercial tool called
Coverity Prevent to find bugs in open source C, C++, and
Java projects. Coverity reports its results in an online
bug database and tracks if and when developers triage,
verify, and fix those bugs. When a developer triages a
bug report, he/she tries to determine the veracity of the
report and then changes its status in the database from
un-triagedto true bug, false positive, or, if he/she gives
up without reaching a definitive conclusion, tounsure.

We obtained 2,125 bug reports produced by scans run
between February 2006 and December 2007. Each re-
port pinpoints a potential bug within a.c source file in

the Linux kernel codebase. Theinitial scan on Feb 24,
2006 created 981 reports, and the 76subsequent scans
run periodically between then and December 2007 cre-
ated 1,144 additional reports.

To get development histories for files affected by
Coverity Scan reports, we mined version control data
from the BitKeeper and GIT Linux kernel source code
management repositories, spanning February 2002 to
December 2007. We recorded when each file was added
to the codebase and detailed information about each
committed patch (patch size, date, author, files affected).

To corroborate our quantitative findings and to add
qualitative insights, we sent out an informal email ques-
tionnaire to the primary Linux kernel developers mailing
list. In that questionnaire [7], we stated each of our find-
ings (worded identically to how it appears in this paper)
and asked developers to present reasons why they agreed
or disagreed with it based upon their experiences and in-
tuitions. We received 4 responses and will quote their
authors as developers A, B, C, and D due to requests for
anonymity. We got the opinions of some veteran devel-
opers: Developer A has triaged the most Coverity Scan
reports out of all 26 developers who have triaged reports,
and developers A and B are both in the 99th percentile in
terms of numbers of patches written for the Linux kernel.

2 Which reports are likely to be triaged?

Result 1: Checker type is the most important factor
in determining whether a bug report will be triaged

Coverity Prevent checks for a dozen types of generic
C code bugs, such as buffer overflows and null pointer
dereferences (the Coverity Open Source Report [5] de-
scribes all types in detail).

Table 1 shows percents of triaged reports (triage rate),
which vary greatly across checker types. All developers
who responded to our questionnaire agreed that checker

Total % of triaged reports in
Checker type # reports % triaged relative FPinitial scan all subsequent scans
dynamic buffer overrun 6 100% 3 ⋆ ⋆

read of uninitialized values 64 86% 5 84% 88%
dead code 266 82% 6 71% 88%
static buffer overrun 288 79% 8 74% 82%
unsafe use before negative test 13 69% 9 ⋆ ⋆

type/allocation size mismatch 5 60% 1 ⋆ ⋆

unsafe use before null test 256 57% 2 65% 48%
resource leak 302 54% 4 52% 56%
null pointer dereference 505 51% 7 54% 46%
unsafe use of null return value 153 50% 12 72%† 37%†

use resource after free 225 49% 11 72%† 41%†

unsafe use of negative return value 42 38% 10 36% 43%
Total 2,125 61% 63% 59%

Table 1: Coverity Scan reports by checker type, sorted by triage rate (“% triaged”). The “relative FP” for each checker
is its false positive (FP) rate relative to all other checkers (1 meanslowestfalse positive rate, 12 meanshighest). The
⋆ symbol is for checkers with too few reports to make meaningful differences between initial and subsequent scans.

type most strongly determines whether they triage a re-
port; the one who triaged the most reports emphasized,

“I always sort the reports by report type and
don’t care which files they are in.” (Dev A)

We corroborated these intuitions by building a predic-
tive model using all factors in this section and noting
that checker type was by far the strongest predictor of
whether a report would be triaged; we describe our
model’s details in a separate technical report [8].

One reason why reports from certain checker types
are triaged more frequently is that they find more se-
vere bugs. Considering the top 4 checkers in Table 1,
buffer overruns lead to security vulnerabilities, reads of
uninitialized values lead to non-deterministic failures,
and dead code bugs often indicate serious logic errors
arising from the developer’s misunderstanding of what
ought to be able to execute under which exact (some-
times multiply-nested) conditions.

In contrast, reports from certain checkers are triaged
less frequently because they are harder to diagnose:

“I have looked at a few coverity defects and
skipped over them because a) they looked too
hard to diagnose b) They looked like false posi-
tives but I didn’t have enough knowledge about
the code to be positive” (Dev C)

Specifically, the more code a developer must read
when investigating a bug report, the more likely he/she
will skip that report. Checkers for unsafe uses of
null/negative function return values had low triage rates,

perhaps because they require developers to look inter-
procedurally to assess whether the called function can
return a null or negative value during actual execution.

Also, developers are reluctant to triage reports from
checkers whose reports they have marked as false posi-
tives. There is an inverse correlation between false pos-
itive rate and triage rate: a Spearman’s rank correlation1

of −0.49. In particular, the 3 checkers with the highest
false positive rates also had the lowest triage rates.

To show that triage rates don’t vary much across scans,
we calculated separate rates for the initial scan and for all
76 subsequent scans taken together. The relative rank-
ings of checkers remained fairly consistent across the
two populations, with a Spearman’s rank correlation of
0.79. For this calculation, we excluded the 2 checkers
with the highest false positive rates († symbol) due to
their aberrant drop-offs, which Result 8 will discuss, and
checkers with too few reports (⋆ symbol).

Result 2: Bug reports in younger files are more likely
to be triaged

From 2002 to 2007, the Linux codebase grew linearly
by 173 new files each month (on average, 326 files were
added and 153 deleted each month). The linear regres-
sion line (not pictured here) fits almost perfectly, with
adjusted R-squared of 0.992 (1.0 is a perfect positive lin-
ear correlation). Files are typically quite active during
their first year of life, receiving up to twice as many
patches during that year than during their subsequent

1Spearman’s rank correlation testdetermines the direction and con-
sistency of correlation between two variables, returning avalue be-
tween−1 and 1. 1 means perfect positive (non-linear) correlation,
0 means no correlation, and−1 means perfect negative correlation.

% triaged vs. file age in years

Threshold for file age in years

P
er

ce
nt

 tr
ia

ge
d

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

0
20

40
60

80

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

2 years

Figure 1: Percent of reports triaged in all files older (+)
and younger (−) than selected thresholds. At 2 years,
there is a 31% relative difference in triage rates between
old and young files (54% vs. 71%).

years. Developers are more interested in bug reports for
these younger, more active files than for older files:

“My gut feeling says that [result] is probably
right. More often the people involved in creat-
ing those [younger] files will still be active ker-
nel developers, and still interested in the area
those files cover.” (Dev B)

If we split files into two groups by their age at the time
of each bug report using some reasonable cutoff between
“young” and “old” files (say, 2 years) and then count the
numbers of triaged and un-triaged reports affecting files
within each group, we find that 71% of bug reports af-
fecting young files are triaged, versus only 54% of re-
ports affecting old files. We used a chi-square test2 to
establish statistical significance: The probability a dif-
ference of this magnitude appearing by chance is nearly
zero (p = 3.8 × 10−13).

However, the choice of 2 years as a threshold is some-
what arbitrary and could have been made to maximize
the apparent disparity in triage rates, so we performed the
same calculations for a wide range of age thresholds and
plotted the triage rates for old and young files with each
threshold along the x-axis in Figure 1. For all choices of
thresholds within the range of our dataset (points along
the x-axis), older files (marked by+) had a lower triage
rate than younger files (marked by-). The differences
are all significant withp < 0.01 in a chi-square test.

2The chi-square test for equality of proportionscan determine
whether the proportion of occurrences of one binary variable (e.g.,will
a particular report be triaged?) depends on the value of another bi-
nary variable (e.g.,is file age less than 2 years?). This test produces
a p-valuethat expresses the probability a purported difference in pro-
portions could have arisen by chance; typically,p < 0.01 indicates
statistical significance.

% triaged vs. num. lines in file

(symbols in gray are NOT significant at p = 0.01)
Threshold for num. lines in file

P
er

ce
nt

 tr
ia

ge
d

100 400 700 1000 1300 1600 1900 2200 2500 2800 3100

0
10

20
30

40
50

60 +

−

+

−

+− +
−

+
−

+
−

+
−

+
−

+
−
+
−

+
−

+
−

+

−

+
−

+
−

+
−

+
−

+
−

+
−

+

−
+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

2000 lines

Figure 2: Percent of reports triaged in files larger (+) and
smaller (−) than a threshold number of lines. At 2000
lines, there is a 21% relative difference (53% vs. 64%).

Result 3: Bug reports in smaller files are more likely
to be triaged

Our dataset consists of 14,646.c source files added
between 2002 and 2007; out of these, 68% had less than
500 lines, 86% less than 1000 lines, and 95% less than
2000 lines. Figure 2 shows that, for most thresholds, re-
ports in smaller files (marked with-) are more likely to
be triaged than those in larger files (marked with+). The
disparity is not as large as that for age, though; thresholds
below 1000 lines result in differences that fail to achieve
statistical significance atp = 0.01 in a chi-square test
(denoted by grayed-out symbols in Figure 2).

One developer offered these possible causes:

“Possibly, perhaps due to the buried in warn-
ings syndrome. Perhaps also because smaller
files are easier to modify.” (Dev C)

Developers can be overwhelmed when viewing too many
reports at once, becoming “buried in warnings”. Smaller
files usually contain fewer reports, so developers might
be more willing to triage reports in those files.

Also, smaller files are easier to understand and modify
since they usually have fewer functions and implement
simpler and more self-contained features. When Phang
et al. performed a user study where subjects triaged bug
reports from a static analysis tool, they found that com-
plexity of program paths and inter-procedural control
flow made the triaging task more difficult [12].

Result 4: Triage rates vary across kernel sub-systems

Table 2 shows triage rates for files in different sub-
systems (split by top-level directory). As expected, core
kernel files had the highest triage rate (in addition to
files in thekernel/ directory, we also includedarch/
since it contains many architecture-specific core kernel

Sub-system: # reports % triaged med. days
core kernel 79 67% 1
drivers 1,329 64% 14
memory 16 63% 3
filesystems 309 59% 13.5
networking 341 47% 14

Table 2: Percent of reports triaged by sub-system, and
median number of days it took to triage each report.

files). Also, reports in core kernel and memory manage-
ment (mm/) code were triaged much faster than reports
in larger sub-systems that contain some more obscure
code (e.g., there are numerous rarely-deployed drivers,
filesystems, and network protocols). Surprisingly, driver
bugs had the second highest triage rate; many drivers
are rarely used and aren’t actively maintained, so we ex-
pected far fewer driver bugs to be triaged.

Independence of factors:A problem that arises when
presenting a series of single-variable correlations (like
we’ve done in this section for factors that correlate
with triage rates) is that these factors might be cross-
correlated, thereby diminishing the validity of the results.

To show that our factors haveindependent effects, we
built a logistic regression model3 to predict whether par-
ticular Coverity Scan reports will be triaged; we describe
our model’s details in a technical report [8]. We used the
four factors in this section — checker type, file age, file
size, and sub-system — in our model. We determined
that all factors had independent effects by incrementally
adding each one to an empty model and observing that
the model’s deviance (error) decreases by a statistically
significant amount for all added factors (a standard tech-
nique calledAnalysis of Deviance). Checker type was
the strongest factor because it decreased our model’s de-
viance by the greatest amount.

Redundant factors: Other factors also significantly cor-
related with triage rates, most notably the number of
patches and number of developers modifying the affected
file. However, both are highly dependent on file age: In-
tuitively, the longer a file has been alive, the more oppor-
tunities it has for receiving patches and for having more
developers. Since the kernel developers in our question-
naire responded most favorably to file age as a deter-
miner for whether reports are triaged and did not prefer
the other two related factors as much, we used file age in
our model and discarded the other two factors.

3A logistic regression modelaims to predict the value of a binary
variable (e.g.,will a particular report be triaged?) using a combination
of numerical (e.g.,file age) and categorical factors (e.g.,checker type).

Unsure 1 month 3 months 6 months 1 year
≥ 18% 23% 36% 54%
< 18% 17% 17% 17%

p-value 0.96 0.07 ∼ 0 ∼ 0

True Bug 1 month 3 months 6 months 1 year
≥ 27% 23% 18% 11%
< 35% 35% 34% 33%

p-value 0.05 0.008 0.02 0.06

Table 3: Percent oftriaged reports that were marked as
unsure(top) and astrue bug(bottom), split by time it
took to triage each report (with chi-squarep-values).

Discussion:Static analysis tools can produce thousands
of bug reports, but those reports are useless unless devel-
opers triage them. Tool makers can use factors like those
described in this section to build models to predict the
likelihood that particular future reports will be triaged.
The tools can then first show developers reports that are
most likely to be triaged. This type of ranking system is
currently deployed at Google [3, 13].

3 Which reports are triaged more quickly?

Result 5: The longer it takes to triage a bug report,
the lower chance of it being marked as a true bug

Table 3 shows that the longer it takes for a report to be
triaged, the more likely it will be marked asunsure(ve-
racity could not be determined) and less likely marked as
a true bug. For example, 54% of reports triaged over one
year after their release dates (the “≥” row) were marked
asunsure, versus only 17% of reports triaged within one
year (“<” row). Correspondingly, 11% of reports triaged
over one year after their release dates were marked as
true bug, versus 33% of those triaged within one year.

Discussion:Without a policy forcing certain bugs to be
triaged, developers tend to triage the simplest bugs first:

“True, people first go after the low hanging
fruits and complicated reports might stay un-
triaged.” (Dev A)

Once confirmed, these quickly-triaged reports are usu-
ally easy to silence by adding a few lines of code like an
extra null pointer check (the median size of a Coverity
bugfix patch is 3 lines, versus 11 lines for all patches).
However, these seemingly superficial bugs often indicate
deeper misunderstandings of program invariants or inter-
faces, so the affected code should be audited more care-
fully. In a mailing list discussion about Coverity bugs,

given: Pr(all reportstriaged)
unconditional 46%
≥ 1 reports triaged 65%
≥ 2 reports triaged 87%

given: Pr(all reportsun-triaged)
unconditional 30%
≥ 1 reports un-triaged 55%
≥ 2 reports un-triaged 79%

Table 4: Probabilities of all reports in a file-scan session
being triaged or un-triaged, for sessions with≥ 2 reports.

one developer shows concern that others are submitting
quick “fixes” rather than figuring out their root causes:

“Considering the very important flow of
patches you are sending these days, I have to
admit I am quite suspicious that you don’t re-
ally investigate all issues individually as you
should, but merely want to fix as many bugs
as possible in a short amount of time. This
is not, IMVHO [in my very humble opinion],
what needs to be done.”[6]

Given these natural tendencies, it might be effective to
enforce policies to make developers triage more com-
plicated but potentially critical reports and to carefully
investigate each one before submitting a patch, perhaps
even requiring sign-offs from multiple triagers.

If a report isn’t triaged quickly, then it might either
never be triaged or be marked asunsure:

“Many maintainers have an inbox-is-todo-list
mentality when it comes to bugfixes. If they re-
ceive a scan report and don’t act on it quickly
then it’s likely it’s left the inbox and left the
maintainer’s thoughts forever.” (Dev D)

This problem of fading memories could be alleviated if
reports were immediately brought to the attentions of
relevant developers (e.g., those who created or recently
modified the file). To do so, developers could run bug-
finding tools continuously while coding (e.g., PREfast at
Microsoft [11]) rather than making monolithic nightly or
weekly scans over the entire codebase. Ayewah et al.
suggest triaging static analysis warnings as part of the
code review process [3]. Also, a bug database could pe-
riodically remind developers who are responsible for a
file to look at its un-triaged bug reports.

Num. triaged reports

N
um

. u
n−

tr
ia

ge
d

re
po

rt
s

4

29 1

5

1

1

27

1

13

7

1

2

1

1

4

3

149

1

2

1

3

2

6

1

731

1

1

425

2

4

1

108

1

1

63

0 2 4 6 8

0
2

4
6

8
10

Figure 3: L-shaped clustering of triaged reports: Each
dot is labeled with the number of file-scan sessions that
have the given numbers of triaged and un-triaged reports.

4 Within-file clustering of triaged reports

Result 6: If one report in a file is triaged, then it’s
likely that all other reports in that file will be triaged

Triaged reports are clustered in space: During a partic-
ular scan, if a developer triages one report in a file, then
he/she will likely triage all other reports in that file. We
call one of these sessions of triaging bugs within one file
during a particular scan afile-scan session.

Figure 3 visualizes this clustering: Each dot represents
a collection of file-scan sessions that have a given num-
ber of triaged vs. un-triaged reports. Its salient feature
is the L-shaped distribution — there are many sessions
along the vertical axis representing 0 triaged reports and
along the horizontal axis representing 0 un-triaged re-
ports. This pattern shows that either all reports in a ses-
sion are triaged or left un-triaged. (Kremenek et al. used
a similar diagram to visualize clustering of true bugs vs.
false positives [10].)

Table 4 quantifies the amount of clustering: The prob-
ability that all reports in a session are triaged (or un-
triaged) rise markedly when at least 1 or 2 reports are
triaged (or un-triaged). The largest dots in Figure 3 are
located at(1, 0) and (0, 1), representing sessions with
only 1 report per file. We excluded these singleton ses-
sions from the calculations in Table 4, since clustering is
only meaningful for sessions with multiple reports.

What happened to reports in prev. scan:Pr(triage)
0 reports triaged 50%
≥ 1 reports triaged 59%
≥ 1 marked true bug 67%
≥ 1 marked true bug and fixed 80%
≥ 1 marked false positive 56%
unconditional probability 54%

Table 5: Probabilities of reports being triaged in a file
during any particular scan, given what happened to re-
ports in that file in the scan immediately preceding it.
We used the 280 files that have reports from≥ 2 scans.

Result 7: Triaging, verifying, and fixing reports in-
crease the probability of triaging future reports

Clustering also extends across time: If a report is
triaged, then future reports in that same file are more
likely to be triaged. Table 5 shows the probabilities of
reports in a scan being triaged, given what happened to
reports in the scan immediately preceding it. Only 50%
of reports were triaged when no reports in the same file
were triaged in the previous scan. If at least 1 previ-
ous report was triaged, then the conditional probability
rises to 59%, and it increases further if those reports were
marked as true bugs (67%) and were fixed (80%).

Each act of triaging a bug report shows that some de-
veloper cares about bugs in that file, and verifying and
fixing bugs are even stronger indicators. In contrast, if
developers are given the opportunity to triage a report
but do not do so, then either it’s too hard to diagnose or
nobody cares about bugs in that file.

Result 8: False positives decrease the probability of
triaging future reports

If developers mark reports in a particular scan as false
positives, then they are less likely to triage future reports
in the same file, versus had they marked them as true
bugs (56% vs. 67% triaged):

“False positives tend to lower the maintainer’s
trust of the tool and are more likely then to let
future reports from the same tool slip.” (Dev D)

Looking back at Table 1, the 2 checkers with the highest
false positive rates also had the largest decreases in triage
rates between the initial and subsequent scans (marked
with the† symbol). Developers triaged most initial scan
reports from those checkers (72%), but after encounter-
ing too many false positives, they triaged substantially
fewer reports in subsequent scans.

However, the triage rate when previous reports were
marked as false positives is still greater than when previ-
ous reports went un-triaged (56% vs. 50%), since the act

of triaging shows that somebody cares about that file.

Discussion: To encourage adoption of static analysis
tools, it might be useful to assign the easiest reports
(those with the highest triage rates) to developers who
are new to the tool, to encourage them to keep triaging:

“The kernel is such a big project then [sic]
triaging bug reports can be quite intimidating
[...] Once a developer has got some confidence
up in a subsystem they are more likely to step
up to the plate and triage again.” (Dev D)

Also, clustering of report triaging shows that devel-
opers have sustained interest in certain files and don’t
simply triage reports without regard to the files they are
in. Frequently-triaged files likely contain more important
code. In fact, triage frequency might be a better indicator
of code importancethan number of recent patches, since
we’ve observed that many unmaintained files still receive
trivial patches when module-wide interfaces are updated.

Once we flag which files are more important to de-
velopers, we can customize bug-finding tools to perform
deeper and more precise analysis on those files, which
can potentially reduce false positives.

5 Static analysis bug reports as indicators
of user-reported bugs

We define auser-reported bugas one that was not re-
ported by Coverity or Sparse [1], the two sources that
comprise the vast majority of static analysis bug reports
for Linux. As a proxy, we record patches that fix user-
reported bugs (rather than occurrences of such bugs)
since users only report symptoms and cannot pinpoint
specific files as causes; in contrast, bugfix patches and
static analysis reports always target specific files.

Result 9: Files and modules with more bugs found by
static analysis also contain more user-reported bugs

The Spearman’s rank correlation between the number
of Coverity Scan reports in each file and the number of
patches that fix user-reported bugs is 0.27, which is sta-
tistically significant but somewhat weak. It’s difficult to
get high Spearman correlations since most files had less
than 3 reports. To get a cleaner signal, Microsoft re-
searchers used static analysis reports to predict bug den-
sity in modulesrather than in files [11]. We also calcu-
lated correlations for bugs aggregated over entire direc-
tories (1,203 total), which serve as ad-hoc kernel mod-
ules, and our correlation grew substantially to 0.56. The
Microsoft study found a similar module-level correlation
of 0.58 between static analysis bugs and pre-release bugs
found by QA in the Windows Server 2003 codebase [11].

Time elapsed since initial scan on Feb 24, 2006
Files in initial scan with: # files 1 month 3 months 6 months 1 year ∞ entire lifetime

Percent of files containing fixes for user-reported bugs
no Coverity reports 7,504 4% 9% 17% 35% 45% 69%
≥ 1 reports 633 13% 24% 39% 55% 66% 92%
≥ 1 triaged reports 444 14% 25% 41% 58% 68% 92%
≥ 2 reports 197 17% 28% 45% 65% 75% 96%

Mean number of fixes for user-reported bugs per file
no Coverity reports 7,504 0.06 0.12 0.27 0.61 0.98 2.8
≥ 1 reports 633 0.17 0.38 0.72 1.35 2.17 7.4
≥ 1 triaged reports 444 0.18 0.40 0.75 1.44 2.32 7.8
≥ 2 reports 197 0.28 0.63 1.06 1.86 2.79 9.4

Table 6: Numbers of initial scan Coverity reports versus numbers of future fixes for user-reported bugs, calculated for
all 8,137.c files alive during the initial scan. Values don’t change considerably for≥ 3 reports.

Surprisingly, reports that developers have marked
as false positives still somewhat correlate with user-
reported bugs, with a file-level correlation of 0.15 and
directory-level correlation of 0.42. One possible expla-
nation is that static analysis tools are more likely to pro-
duce false positives when analyzing more semantically-
complex and convoluted code, which is more likely to
contain latent functional correctness bugs that users will
later report. For example, a veteran developer triaged a
static buffer overrun report in an InfiniBand networking
driver, marked it as a true bug, and then a day later re-
marked it as a false positive, noting in the bug database:

“It’s horrible, but after looking deeper, in-
cluding looking at the callers, I’m now con-
vinced it’s correct (this code only gets called
in 64bit kernels where longs are double the size
of ints).” (Dev A)

Files like this one with code that even baffles a veteran
developer probably also contain subtle correctness bugs.

Result 10: Bugs found by static analysis can predict
future user-reported bugs in the same file

Not only are numbers of Coverity and user-reported
bugs correlated, but the presence of Coverity bugs can
foreshadow a file having user-reported bugs in the future.

We considered all 8,137.c files alive during the ini-
tial scan on Feb 24, 2006, to simplify calculations and
to prevent biases due to files being added over time. We
partitioned files into subsets based on how many reports
from that initial scan affected each file. For example, the
“≥ 1 reports” rows of Table 6 are for all files with at
least 1 report. For each file, we counted the number of
bugfix patches for user-reported bugs in the subsequent
1 month, 3 months, 6 months, 1 year, and the rest of
the file’s life (the “∞” column). We also counted bugfix

patches over each file’sentire lifetime, which takes into
account patches that occurred before the initial scan.

As a sanity check, the numbers increase across each
row of Table 6 because the more time elapses, the more
likely it is for files to receive bugfix patches.

Scanning down each column, we can compare values
across files with varying numbers of Coverity reports.
More reports boosts the chances of future (fixes for) user-
reported bugs, as shown by the numbers increasingdown
each column. Note that having at least one triaged re-
port is a slightly better predictor than simply having one
report, because triaging shows that someone is actively
monitoring that file. For instance, the “1 month” column
shows that 13% of files with initial scan reports had fixes
for user-reported bugs in the next month, versus only 4%
of files with no reports (over 3X greater). The mean num-
ber of user-reported bugs per file — 0.17 vs. 0.06 — was
also 3X greater. This 3X increase is consistent across all
time scales.

Discussion:Static analysis tools excel at finding generic
errors (e.g., like those in Table 1) but cannot usually find
higher-level functional correctness bugs like those that
users report (e.g.,driver X doesn’t do the right thing
when fed this input). However, results like ours and re-
lated work on a commercial codebase at Microsoft [11]
show that static analysis tools can be useful for pointing
developers towards regions within the codebase that are
more error-prone, which is cost-effective because these
tools can be run automatically and continuously.

In fact, some kernel developers advocate using static
analysis tools in exactly this manner: directing develop-
ers’ attentions towards potentially buggy code:

“Coverity and similar tools are a true oppor-
tunity for us to find out and study suspect parts
of our code. Please do not misuse these tools!
The goal is NOT to make the tools happy next

time you run them, but to actually fix the prob-
lems, once and for all. If you focus too much on
fixing the problems quickly rather than fixing
them cleanly, then we forever lose the oppor-
tunity to clean our code, because the problems
will then be hidden.”[6]

This use case could partially explain the low incidence
of fixes (only 8% of triaged reports were confirmed as
bugs and fixed). Developers might want to purposely
leave in errors as markers for “suspect parts” of the code-
base until that code can be properly audited and fixed.

6 Related Work

To our knowledge, Google researchers did the closest re-
lated work in terms of studying developer responses to
static analysis bug reports. Ayewah et al. described ex-
periences with deploying FindBugs at Google [3], where
two dedicated test engineers triaged all bug reports. In
contrast, our study focuses on open source code where
26 kernel developers triaged reports. Ruthruff et al. built
a logistic regression model to predict which FindBugs
reports at Google were likely to be triaged or marked as
false positives [13], using factors similar to those we de-
scribe in Section 2 and in our technical report [8].

Nagappan and Ball found a correlation between bugs
reported by the PREfix/PREfast static analysis tools and
pre-release defects found by testers within modules in
Microsoft Windows Server 2003 [11]. We performed a
similar analysis in Section 5 and found similar correla-
tions, albeit using a different analysis tool and codebase.

In terms of static analysis bug reports for the Linux
kernel, Chou et al. quantified distributions and lifetimes
of kernel bugs found by a precursor of Coverity Pre-
vent [4]. Kremenek et al. proposed a technique for in-
corporating developer feedback to filter and rank reports
so as not to overwhelm triagers, and performed an eval-
uation on bug reports issued for kernel code [10].

Other work related to bug report triaging include pri-
oritization and ranking of reports [9], optimizing assign-
ments of triagers to specific reports [2], and graphical
user interfaces for facilitating the triaging process [12].

7 Limitations

We evaluated developer responses to static analysis bug
reports in an open source setting where there were no
organizational policies for triaging or fixing these bugs.
Findings might differ in a corporate setting where static
analysis is integrated into the workflow. With any empir-
ical study, we must be cautious about over-generalizing
based solely upon data analysis; trying to infer human in-
tentions from code-related artifacts is a difficult problem.

Thus, we tried to support our claims using anecdotes
gathered from kernel developers. Also, similar findings
from other researchers working with different tools and
codebases make our results more generalizable.

Acknowledgments

We thank David Maxwell for providing the Coverity
dataset, Greg Little and Derek Rayside for help with
questionnaire design, kernel developers who responded
to our questionnaire, Joel Brandt, Cristian Cadar, Imran
Haque, David Maxwell, Derek Rayside, and our shep-
herd George Candea for comments on this paper and
its earlier drafts. This research was supported by NSF
TRUST grant CCF-0424422 and the NDSEG fellowship.

References

[1] Sparse – A Semantic Parser for C,http://www.kernel.
org/pub/software/devel/sparse/.

[2] A NVIK , J., HIEW, L., AND MURPHY, G. C. Who should fix
this bug? InICSE ’06: Proceedings of the 28th international
conference on Software engineering(May 2006), pp. 361–370.

[3] AYEWAH , N., HOVEMEYER, D., MORGENTHALER, J. D.,
PENIX , J., AND PUGH, W. Using static analysis to find bugs.
IEEE Softw. 25, 5 (2008), 22–29.

[4] CHOU, A., YANG, J., CHELF, B., HALLEM , S.,AND ENGLER,
D. An empirical study of operating systems errors. InSOSP ’01:
Proceedings of the symposium on Operating Systems Principles
(2001), pp. 73–88.

[5] COVERITY. Coverity Scan Open Source Report 2008,http:
//scan.coverity.com/report/.

[6] DELVARE, J. Email: Re: Do not misuse Coverity please —
http://lkml.org/lkml/2005/3/27/131. Linux Ker-
nel Mailing List (Mar. 2005).

[7] GUO, P. J. Email: research questionnaire about kernel develop-
ment —http://lkml.org/lkml/2008/8/7/98. Linux
Kernel Mailing List(Aug. 2008).

[8] GUO, P. J. Using logistic regression to predict developer re-
sponses to Coverity Scan bug reports. Tech. Rep. CSTR 2008-04,
Stanford Computer Systems Lab, Stanford, CA, July 2008.

[9] K IM , S.,AND ERNST, M. D. Which warnings should I fix first?
In ESEC-FSE ’07: Proceedings of symposium on the foundations
of software engineering(2007), ACM, pp. 45–54.

[10] KREMENEK, T., ASHCRAFT, K., YANG, J., AND ENGLER, D.
Correlation exploitation in error ranking.SIGSOFT Softw. Eng.
Notes 29, 6 (2004), 83–93.

[11] NAGAPPAN, N., AND BALL , T. Static analysis tools as early
indicators of pre-release defect density. InICSE ’05: Proceed-
ings of the 27th international conference on Software engineering
(2005), ACM, pp. 580–586.

[12] PHANG, K. Y., FOSTER, J. S., HICKS, M., AND SAZAWAL , V.
Path projection for user-centered static analysis tools. In PASTE
’08: Proceedings of the 8th ACM workshop on Program analysis
for software tools and engineering(2008).

[13] RUTHRUFF, J. R., PENIX , J., MORGENTHALER, J. D., EL-
BAUM , S., AND ROTHERMEL, G. Predicting accurate and ac-
tionable static analysis warnings: an experimental approach. In
ICSE ’08: Proceedings of the 30th international conferenceon
Software engineering(2008), ACM, pp. 341–350.

