STOW: A Spatially and Temporally Optimized Write Caching Al gorithm

Binny S. Gill Michael Ko
IBM Almaden Research Center IBM Almaden Research Center
Biplob Debnath Wendy Belluomini
University of Minnesota IBM Almaden Research Center
Abstract 1 Introduction

Non-volatile write-back caches enable storage condin spite of the recent slowdown in processor frequency
trollers to provide quick write response times by hiding scaling due to power and density issues, the advent of
the latency of the disks. Managing a write cache well ismulti-core technology has enabled processors to con-
critical to the performance of storage controllers. Overtinue their relentless increase in I/O rate to storage sys-
two decades, various algorithms have been proposed, iftems. In contrast, the electro-mechanical disks have not
cluding the most popular, LRW, CSCAN, and WOW. been able to keep up with a comparable improvementin
While LRW leverages temporal locality in the work- access times. As this schism between disk and processor
load, and CSCAN creates spatial locality in the destagesspeeds widens, caching is attracting significant interest.
WOW combines the benefits of both temporal and spa- Enterprise storage controllers use caching as a funda-
tial localities in a unified ordering for destages. How- mental technique to hide 1/O latency. This is done by us-
ever, there remains an equally important aspect of writéng fast but relatively expensive random access memory
caching to be considered, namely, the rate of destageto hold data belonging to slow but relatively inexpensive
For the best performance, it is important to destage at aisks.
steady rate while making sure that the write cache is not Over a period of four decades, a large number of read
under-utilized or over-committed. Most algorithms havecache management algorithms have been devised, in-
not seriously considered this problem, and as a consezluding Least Recently Used (LRU), Frequency-Based
guence, forgo a significant portion of the performanceReplacement (FBR) [19], Least Frequently Recently
gains that can be achieved. Used (LFRU) [15], Low Inter-Reference Recency Set
We propose a simple and adaptive algorithm, STOW(LIRS) [13], Multi-Queue (MQ) [24], Adaptive Replace-
which not only exploits both spatial and temporal local-ment Cache (ARC) [17], CLOCK with Adaptive Re-
ities in a new order of destages, but also facilitates andlacement (CAR) [2], Sequential Prefetching in Adap-
controls the rate of destages effectively. Further, STOWive Replacement Cache (SARC) [8], etc. While, the
partitions the write cache into a sequential queue and &oncept of a write cache has been around for over two
random queue, and dynamically and continuously adaptdecades, we realize that it is a more complex and less
their relative sizes. Treating the two kinds of writes sepa-studied problem. We focus this paper on furthering
rately provides for better destage rate control, resigtancour understanding of write caches and improving signif-
to one-time sequential requests polluting the cache, an@gantly on the state of the art.
a workload-responsive write caching policy.

STOW represents a leap ahead of all previously proq1.1 What Makes a Good Write Caching
posed write cache management algorithms. As anecdotal Algorithm?

evidence, with a write cache 82K pages, serving &+P

RAID-5 array, using an SPC-1 Like Benchmark, STOW A write-back (or fast-write) cache relies on fast, non-
outperforms WOW by0%, CSCAN by96%, and LRW volatile storage to hide latency of disk writes. It can
by 39%, in terms of measured throughput. STOW con-contribute to performance in five ways. It can (i) har-
sistently provides much higher throughputs coupled withness temporal locality, thereby reducing the number of
lower response times across a wide range of cache sizegages that have to be destaged to disks; (ii) leverage
workloads, and experimental configurations. spatial locality, by reordering the destages in the most

disk-friendly order, thereby reducing the average cos? Related Work
of destages; (iii) absorb write bursts from applications
by maintaining a steady and reasonable amount of fredlthough an extensive amount of work has been done in
space, thereby guaranteeing a low response time fahe area of read caching, not all techniques are directly
writes; (iv) distribute the write load evenly over time to applicable to write caching. While read caching is es-
minimize the impact to concurrent reads; and (v) servesentially a two dimensional optimization problem (maxi-
read hits that occur within the write cache. mizing hit ratio and minimizing prefetch wastage), write
There are two critical decisions regarding destagingcaching is a five dimensional optimization problem (as
in write caching: thedestage orderand thedestage explained in Section 1.1).
rate. The destage order deals with leveraging temporal In a write-back cache, the response time for a write is
and spatial localities, while the destage rate deals witlsmall if there is space in the write cache to store the new
guaranteeing free space and destaging at a smooth ra@ata. The data in the write cache is destaged to disks
Write caching has so far been treated mainly as an evicperiodically, indirectly affecting any concurrent reags b
tion problem, with most algorithms focusing only on the increasing their average service response time. To reduce
destage order. The most powerful write caching algothe number of destages from the write cache to the disks,
rithms will arise when we explore the class of algorithmsit is important to leverage temporal locality and, just like
that simultaneously optimize for both the destage ordein read caches, maximize the hit (overwrite) ratio. The

and the destage rate. primary way to maximize temporal locality is to attempt
to evict the least recently written (LRW) pages from the
1.2 Our Contributions cache. An efficient approximation of this is available in

the CLOCK [5] algorithm which is widely used in op-

Firstly, we present a detailed analysis of the problem oferating systems and databases. These algorithms, how-
managing the destage rate in a write cache. While thigver, do not account for the spatial locality factor in write
has remained a relatively unexplored area of researcigache performance.
we demonstrate that it is an extremely important aspect Orthogonally, the order of destages can be chosen so
of write caching with the potential of significant gains if as to minimize the average cost of each destage. This
done right. Further, we show that to manage the destagis achieved by destaging data that are physically prox-
rate well, we actually need a new destaging order. imate on the disks. Such spatial locality maximization

Secondly, we present a Spatially and Temporally Opti-has been studied mostly in the context of disk scheduling
mized Write caching algorithm (STOW), that for the first algorithms, such as shortest seek time first (SSTF) [6],
time, exploits not only temporal and spatial localities, SCAN [6], cyclical SCAN (CSCAN) [20], LOOK [18],
but also manages both the destage rate and destage MSCAN [7], and FSCAN [4]. Some of these require
der effectively in a single powerful algorithm that hand- knowledge of the current state of the disk head [12, 21],
somely beats popular algorithms like WOW, CSCAN, which is either not available or too cumbersome to track
and LRW, across a wide range of experimental scenarin the larger context of storage controllers. Others, such
ios. Anecdotally, with a write cache 82K pages (and as CSCAN, order the destages by logical block address
high destage thresholds), serving a RAID-5 array, thgLBA) and do not rely on knowing the internal state of
measured throughput for STOW i ms response time, the disk.
outperform WOW by70%, CSCAN by96%, and LRW In the first attempt to combine spatial and temporal lo-
by 39%. STOW consistently and significantly outper- cality in write caching for storage systems [10], a com-
forms all other algorithms across a wide range of cachéination of LRW [1, 3, 11] and LST [10, 22] was used to
sizes, workload intensities, destage threshold choicesalance spatial and temporal locality. This work had the

and backend RAID configurations. drawback that it only dealt with one disk and it did not
adapt to the workload.
1.3 Outline of the paper In general, the order of destages is different for lever-

aging temporal locality versus spatial locality. One no-
In Section 2, we briefly survey previous related researchtable write caching algorithm, Wise Ordering for Writes
In Section 3, we explore why the destage rate is a crucigfWWOW) [9], removed this apparent contradiction, by
aspect of any good write caching algorithm. In Section 4, combining the strength of CLOCK [5] in exploiting tem-
we present the new algorithm STOW. In Section 5, weporal locality and Cyclical SCAN (CSCAN) [20] in ex-
describe the experimental setup and workloads, and iploiting spatial locality. As shown in Figure 1, WOW
Section 6, we present our main quantitative results. Figroups the pages in the cache in terms of write groups
nally, in Section 7 we conclude with the main findings of and sorts them in their LBA order. To remember if a
this paper. write group was recently used, a recency bit is main-

quential data. STOW also avoids large fluctuations in the
destage rate and cache occupancy.

3 Taming the Destage Rate

Historically caching has always been treated as an evic-
tion problem. While it might be true for demand-paging
read caches, it is only partially true for write caches. The
rate of eviction or the destage rate has attracted little re-
search so far. In this section we explore why the destage
rate is a crucial aspect of any good write caching algo-
rithm.

3.1 The Goals

Figure 1: The data structure of the WOW algorithm . _ _
Any good write caching algorithm needs to manage the

destage rate to achieve the following three objectives: (i)
tained in each write group. When a page is written inMatch the destage rate (if possible) to the average incom-
a write group already present in the cache, the recencing rate to avoid hitting 100% full cache condition (lead-
bit of the write group is set td. Destages are done in the ing to synchronous writes); (ii) Avoid underutilizing the
sorted order of the write groups. However, if the recencywrite cache space; (iii) Destage smoothly to minimally
bit of a write group isl, the write group is bypassed after impact concurrent reads.
resetting the recency bit ta

While WOW solves thedestage ordeiproblem, the
destage rateroblem has attracted little research. Both3.2 Tutorial: How to Get it Wrong?
WOW and an earlier work on destage algorithms [23]))
use a linear thresholding scheme that grows the rate drather than simply present our approach, we explain
destages linearly as the number of modified pages in th@hy we reject other seemingly reasonable approaches,
cache grows. While this scheme is quite robust, destagé®me of which have been used in the past.
orders like WOW and CSCAN cannot achieve their full
potential due to a destructive interaction between the3 51
destage rate and the destage order policies. We are un-—"
aware of any research that studies the interaction betwea\iore often than not, a write cache in a storage controller
the two vital aspects of write caching: the destage ordegeryes a RAID array involving parity groups (e.g. RAID-
and the destage rate. 5, RAID-6). In such scenarios, it is important to group
together destages of separate pages within the same par-

Ignore Parity Groups

Soatial i CSCAN| LRW | WOW | STOW ity group to minimize the number of parity updates. The

patial Locality Yes No Yes Yes best case happens when all members of the parity group
Temporal Locality No Yes | Yes Yes . - .
Scan Resistance NoO NoO Litle | Yes are present in the cache. The parity group can option-
Stable Destage Rate| No Little | No Yes ally be extended to beyond one parity stripe or even to
Stable Occupancy | No Little | No Yes RAID-10 (see WOW [9]).

Table 1: Comparison of Various Write Cache Algorithms 3 5 > Destage Quickly

Table 1 shows how the set of algorithms discussedOne approach is to destage as soon as there are dirty
above compare. LRW considers only recency (tempopages and as fast as the system would allow. While this
ral locality), CSCAN considers only spatial locality, and would guarantee that the cache stays away from the full-
WOW considers both spatial and temporal locality. Ourcache condition most effectively even for strong work-
algorithm, STOW (Spatially and Temporally Optimized loads, it wipes out any temporal and spatial locality ben-
Writes), tracks spatial and temporal localities, and isefits for gentler workloads. The left panel in Figure 2
scan resistanbecause it shields useful random data fromshows that a quick destaging policy can lead to very low
being pushed out due to the influx of large amounts seeache occupancy.

90K
80K
70K |

90K
80K
70K |
60K |
50K |

Pages in Cache
Total Destages

Pages in Cache
Total Destages

\

X

LA
O\
\

50K |

Pages in cache -or- Total Destages
Pages in cache -or- Total Destages

40K | 40K | A d AN e, z
Q /

30K 30K qg’_ :%

20K 20K L-v/

10K | 10K |
— 0 100 200 300 400 500 600 —_ 0 100 200 300 400 500 600
Z 30 . - . . : Z 30 . - . . :
- Read Response Time —e&— - Read Response Time —e&—
2 20 \rite Response Time - % - 119 ms (avg) 2 20 \write Response Time - . 10.3ms (avg) |
[| o= ———— - — e ————————- o | = L N A A —p]
- 10 o 10 - =< ~- hg
8 e 8 e

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (sec) Time (sec)

Figure 2: Left panel: We destage in the order specified by tiidW\algorithm, and as fast as the disks allow. The
cache remains relatively empty and the observed read respivne is around 11.9 ms on average. Right panel: We
destage in the WOW order, however we destage only if the cech®re than0% full (out of 64K pages). We
observe a better average read response time, but the canlmaocy exhibits spikes when random data is destaged.
When sequential data is destaged, the disks are underedtéis shown by the flat steps in the total destages curve.

3.2.3 Fixed Threshold tional to how close the write cache is to a high threshold

,)) i . (say 80% occupancy). Beyond the high threshold it will
In the right panel of Figure 2, we examine a policy which qegiage at the full rate. This is the best scheme so far that
destages quickly only if the cache is more than 60% full. e are aware of, however, it cannot address the spike

This performs better on average but displays ominous, plem, as evidenced in Figure 3. In this paper we use
‘spikes” in cache occupancy which correspond to spikesy, 7/ 1, notation for the thresholds: e.§0,/80 implies

in the read response times. The non-uniform destagg,at the high threshold is 80% of the cache and the low
rate is bad for concurrent reads. Furthermore, a highefj,-eshold is ag0%.

fixed threshold is more likely to hit 100% cache occu-
pancy, while a lower fixed threshold underutilizes the .
write cache most of the time. 3.2.5 Adaptive Threshold

The Spikes Any write caching algorithm destages One might suggest that we should develop a scheme that
writes in a particular order. If the workload is such adaptively determines the correct high and low thresh-
that the algorithm destages sequential data for some timgids for the linear threshold scheme. However, the reader
followed by random data, such peaks are inevitable beyj|| observe that the spikes are very tall, and any such ef-

cause destaging random data is far more time consumingrt will result in a serious underutilization of the write
and during such intervals, the cache occupancy can spikgache space.

even for steady workloads. With WOW or CSCAN, such
spikes appear when the workload has a sequential and
random component that target different portions of the"-?;'3 Maybe Not WOW Then?

LBA space. This is commonly observed in both real-life \ynile the order of destages proposed in the WOW algo-

and benchmark workloads. rithm is disk-friendly, the same order makes the destage
rate problem a tough nut to crack. We propose to change

3.2.4 Linear Threshold the destage order to allow us to tame the destage rate.

In the WOW [9] paper, a linear threshold scheme is pro- 31 S te Rand ds tial Dat
posed which is better than the fixed threshold scheme ™’ eparate kandom and sequential ata

because it provides a gradual gradation of destage raté&he spikes in cache occupancy are caused by long alter-
which is more friendly to concurrent reads and also al-nating regimes of sequential and random destages. We
lows the thresholds to be safely closer to the 100%separate the sequential data and the random data into two
mark. For example, instead of destaging at full force af-WOW-like data-structures in the write cache. Whenever
ter reaching 60% occupancy, linear threshold would usehere is a need to destage, we destage from the larger of
a number of concurrent destage requests that is propothe two queues, as a first approximation. Later, we shall

35000 ; ; ; ; ; ; formance. The decisions for: which queue to destage

_ TR 110 from, when to destage, and at what rate, are carefully

30000 oy i /! L ‘li”i““ 1 90 managed to leverage spatial and temporal locality in the

25000 | M1) ¥ :i i i 18 _ workload, as well as to maintain steady cache occupancy
2 I ihi :1 il ii iil irh 17 £ levels and destage rates. Despite its simplicity, STOW
§ 20000 I !: !il :_l il i |' It !g 2 represents the most comprehensive and powerful algo-
2 AR E RN AR NS = rithm for write cache management.
g 15000 ifk § i!yi,;'! 40%2
o i ¢

10000 ~ 4.2 Data Structures

5000 Wow Eﬁjt;gj;‘g; T 4.2.1 Honoring Parity Groups
0 Se.qQ/Ran.Q (H/L:?0/40) —

A write hit (over-write) on a page generally implies that
the page and its neighbors are likely to be accessed again.
In the context of a storage controller connected to a
Figure 3: We examine cache occupancy for a work-RAID controller, we would like to postpone the destage
load with both sequential and random writes when usOf such pages hoping to absorb further writes, thereby
ing the linear thresholding scheme to determine destageeducing the destage load on the disks.

rate. WOW exhibits spikes which go down up to the In RAID, each participating disk contributes one strip
low threshold when sequential data is destaged, and rise¢.9. 64 KB) towards each RAID stripe. A RAID stripe
when random data is destaged. For higher thresholdgonsists of logically contiguous strips, one from each
WOW hits cache full condition more often. If we destage data disk. Destaging two distinct pages in the same
sequential and random data together (SeqQ/RanQ), wAID stripe together is easier than destaging them sepa-

elimintate the spikes, but the cache is almost always fullrately, because in the former case the parity strip needs to
be updated only once. We satipe hit has occurred

when a new page is written in a RAID stripe that already
see that the ideal partitioning of the cache requires adaphas a member in the write cache. In RAID 5, therefore,
ing to the workload. While the intermixing of destages a stripe hit saves two disk operations (the read and write
fromthe sequential and the random queues eliminates thgf the parity strip), while a hit on a page saves four.
spikes beautifully (the SeqQ/RanQ curve in Figure 3), it \while we divide the write cache in pages of 4KB each,
pollutes the spatial locality in the destage order by sendwe manage the data structures in termwife groups,
ing the disk heads potentially to two separate regions ofvhere a write group is defined as a collection of a fixed
the disk causing longer seek times. The SeqQ/RanQ varhumber (one or more) of logically consecutive RAID
ant suffers from the full-cache condition almost all the stripes. In this paper, we define the write group to be
time, nullifying any gains from eliminating the spikes. equal to a RAID stripe. We say a write group is present

in the cache if at least one of its member pages is physi-
3.3.2 Use Hysteresis in Destaging cally present in the cache. Managing the cache in terms

)) of such write groups allows us to better exploit both tem-

We need to be able to control the spikes in cache 0Cpqrq) |ocality by saving repeated destages and spatial lo-

cupancy without derailing the spatial locality of the cqity hy issuing writes in the same write group together,
destages. We discovered that if we destage no less thap s minimizing parity updates.

a fixed hysteresis amount from the larger queue, we re-
duce the negative impact of having two destage sources, . _
This brings us to the STOW algorithm which integrates“"z'2 Separating Sequential From Random

all our intuitions so far (and some more) into a powerful, Sequential data, by definition, has high spatial locality,

0 100 200 300 400 500 600 700
Time (sec)

practical and simple write caching algorithm. and appears in large clumps in the sorted LBA space for
algorithms such as WOW or CSCAN. In between clumps

4 STOW: The Algorithm of sequential data are random data. We discovered that
destaging random data, even when it is sorted, is far more

4.1 The STOW Principle time consuming than destaging sequential data. There-

fore, when the destage pointer is in an area full of ran-
The STOW algorithm uses two WOW-like sorted cir- dom data, the slower destage rate causes the cache oc-
cular queues for housing random and sequential dataupancy to go up. These spikes in the cache occupancy
separately. The relative sizes of the queues is continueould lead to full-cache conditions even for steady work-
ously adapted according to workload to maximize per-loads, severely impacting the cache performance. Fur-

ther, during a spike, a cache is especially vulnerable taAlgorithm 1 STOW: Cache Management Policy
reaching thel00% occupancy mark even with smaller Write pager in write groupg:

write burs_ts. This dl_scovery led us to partition the cache ;. j g € RanQ U SeqQ then //a write group hit
directory in STOW into two separate queues RanQ and ,. jf .. ¢ RanQ U SeqQ then //page miss
SeqQ for the “random” and the “sequential” components 5. allocatez from FreePageQueue

of a workload. It is easy to determine whether a write is . insertz in g

sequential by looking for the presence of earlier pagesins. and if

the cache [8] and keeping a counter. The first few pagesg. if 4 is sequential and is last pagegthen

of a sequential stream are treated as random. If a page is;. setrecency-bitof ¢ to 0
deemed to belong to a sequential stream it is populatedg. g|ge
in SeqQ); otherwise, the page is stored in RanQ. o setrecency-bitof g to 1

Separating sequential data from random data is a necyy. en(if
essary first step towards alleviating the problem causeq ;. g|se

by the spikes in the cache occupancy. However, this is;;. gjiocateg from FreeWriteGroupQueue
not sufficient by itself, as we will learn in Section 4.3.4 3. gjiocater from FreePageQueue

when we discuss destaging. 14 insertz into g
15: if x is sequentiathen
4.2.3 Two Sorted Circular Queues 16: insertg into sorted queue ifeqQ
S . : 17: if x is last page of then

The STOW cache management policy is depicted in Al- x page. b

i .18 setrecency-bitof g to 0
gorithm 1. In each queue, RanQ or SeqQ, the Wr|te|19. else
groups are arranged in an ascending order of Ioglca20 setrecency-bitof g to 1

block addresses (LBA), forming a circular queue, much 1: end if
like WOW, as shown in Figure 4. A destage pointer (akin 27

) . . . else
to a clpck arm) in each queue, points to the r_1ext Wr_lte23: insertg into sorted queue iRanQ
group in the queue to be considered for destaging to disk, .
. ; . . L 24 setrecency-bitof g to 0
Upon a page miss (a write that is not an over-write), if s end if
the write group does not exist in either queue, the wntczz& end if

group with the new page is inserted in the correct sorted
order in either RanQ or SeqQ depending on whether the
page is determined to be a random or a sequential pag
If the write group already exists, then the new page i
inserted in the existing write group.

ft-the recency bit of the write group was found to be
Sthen the pages present in the write group are destaged.
Thus, write groups with a recency bit of one get an extra

.The LBA ordering in both queues allows us to mini- life equal to the time it takes for the destage pointer to go
mize the cost of a destage which depends on how far thground the clock once

disk head would have to seek to complete an operation. Setting the recency bit in Ran@Vhen a new write
The write groups, on the other hand, allow us to exploit 0 'sgcreated in éanQ the recency bit is sebto
tio-t | locality in the workload, wherein a 3 o " | ! ! y or |
\?vrr]i};esgﬁ (l)(;een;p(;rﬁ] ai)\(;ve:iltg n:ouesv::or e(;?s :al\r/\virﬁﬁilgei{"ne 24 in Algorithm 1). On a subsequent page hit or a
pag group sugg write group hit, the recency bit is set tq(line 9), giving

write to another page within the same write group. Not : .
. all present members of the write group a longer life in the
only do we save on parity updates, but we also have the

. . .~ €ache, during which they can exploit any overwrites of
opportunity to coalesge consecutive pages together Intf)ne present pages or accumulate new neighboring pages
thmsﬁgeg[ﬂfrogzggogr' SeqQ is empty, because thin the same write group. This leads to enhanced hit ratio,

q Py, Fewer parity updates, and coalesced writes reducing the
workload lacks the random or the sequential componentt,

then STOW converges to WOW, and by the same token,()tglI ?;.metir of destagelft. ins h .
is better than CSCAN and LRU. etting the recency bit in Seq®/henever a page is

written to SeqQ, the recency bit in the corresponding
) write group is set td (lines 9 and 20). This is because
4.3 Operation we anticipate that subsequent pages will soon be writ-
43.1 What to Destage From a Queue? f[en to th_e vyrite group by the_ sequential strgam. Des?ag-
ing to disk is more efficient if the whole write group is
The destage pointer traverses the sorted circular queygresent since this avoids the extra read-modify-write of
looking for destage victims. Write groups with a recencythe parity group in a RAID-5 configuration and also co-
bit of 1 are skipped after resetting the recency bidto alesces consecutive pages into the same disk 10 if possi-

9 98

RanQ for Random Stream SeqQ for Sequential Stream

Figure 4: The data structure of the STOW algorithm

ble. However, if the page written is the last page of thedata in the cache in order to gather potential write hits.
write group then the recency bit is forceddqlines 7 When the cache occupancy is above the high threshold,
and 18). Since the last page of the write group has beewe destage data to disks at the full rate in order to avoid
written, we do not anticipate any further writes and canthe full-cache condition which is detrimental to response
free up the cache space the next time the destage pointtme. When the cache occupancy is between the low

visits this write group. and high threshold, the number of concurrent destage
requests is linearly proportional to how close we are to
4.3.2 What Rate to Destage at? the high threshold. Note, a higher number of concurrent

destage requests to the disks results in a higher through-
put for destages, but of course at the cost of making
the disks busier and the concurrent reads slower. The
— 100% Full maximum number of concurrent destage requests (queue
depth) is set to a reasonald@[9] in our experiments.

Destage Rate Cache Occupancy

4.3.3 Which Queue to Destage From?

Current Algorithm 3 shows how STOW calculates and adapts the
Occupancy desired size of Seq@esiredSeqQSize). Algorithm 2
destages from SeqQ if it is larger th@esiredSeqQ-
Size, else, it destages from RanQ (line 3). While strictly
Low Threshold following this simple policy eliminates any deleterious
spikes in the cache occupancy, it is not optimal because
it sends the disk heads to possibly two distinct locations
0% Full (the sorted order from RanQ and from SeqQ) simultane-
ously, resulting in an inter-mingling of two sorted orders,
Figure 5: Linear threshold scheme for determiningpolluting the spatial locality in the destages.
destage rate based on how close the cache occupancy isOnce we have decided to destage from a queue, we
to the high threshold. should stick with that decision for a reasonable amount
of time, so as to minimize the spatial locality pollution
In STOW, we use a linear threshold scheme (see Figeaused by the mixing of two sorted orders. To real-
ure 5, as described in WOWI[9]) to determine when andze this, we define a fixed number called tHgstere-
at what rate to destage. We set a low threshold and a higkisCount. Once a decision has been made to destage
threshold for the cache occupancy. When the cache odrom a particular queue, we continue destaging from
cupancy is below the low threshold, we leave the writethe same queue until, (i) we have destadggstere-

D ———
000000000

000000000

000000000

000006000

COOCO0O000 -— High Threshold
00000000

(0000000

(000000

(00000

0000

OCcO

oo

(@)

Algorithm 2 STOW: Destage Policy Algorithm 3 STOW: Queue Size Management Policy

1: while needToDestage() do 1: if pagex in write groupyg is writtenthen

2: if hysteresisCountDone() then 2. if g € Ran@ then//(RAID-10: usex € RanQ)
3: if |SeqQ| > DesiredSeqQSizethen 3 if g—>recency-bit== 0 then

4 setcurrentDestagePtrto SeqQDestagePtr 4 if (|Seq@| - DesiredSeqQSize<

5: else HysteresisCount then

6: setcurrentDestagePtrto RanQDestagePtr 5: DesiredSeqQSize=1

7 end if 6: end if

8 endif 7. end if

9: g = write group pointed to bgurrentDestagePtr 8 endif
10. while g—>recency-bit==1 do 9: end if
11: g—>recency-bit=0 10: if write groupg is destagethen
12: g = advanceDestagePtr(currentDestagePtr) 11: if g not contiguous with previous destathen
13: end while 12: if previous stretchcqueue deptlthen
14: destage all pages in 13: if |[Ran@|/ (|RanQ| + |SeqQ)]) >
15: move destaged pageskoeePageQueue RanRq / (RanRq + SegRthen
16 moveg to FreeWriteGroupQueue 14: DesiredSeqQSize=nx|RanQ|/|SeqQ)|
17: advanceDestagePtr(currentDestagePtr) 15: /In = num of disks in RAID5 or RAID10
18: end while 16: end if

17: end if
18: endif

sisCount pages from the queue; or (ii) either queue 19: end if
has since grown by more thadysteresisCount pages.
Note that destages from RanQ are slower and the second
condition avoids a large buildup in SeqQ in the mean-cache size (a page). We first approximate the number of
time. Once either condition is met, we reevaluate whichmisses that would be incurred if we reduce the size of
gueue to destage from. RanQ. Leth be the hit rate for first time hits in RanQ
Normally, we fixHysteresisCount to be equaltd28 (where the recency bit is previously zero). We consider
times the number of spindles in the RAID array. This en-only page hits for RAID-10 but any stripe hit for RAID-
sures that a reasonable number of destage operations dresince in RAID-5, stripe hits save parity updates (two
performed in one queue’s sorted order, before moving tdOs) and are more common than page hits. Assuming
the other queue’s sorted order. However, we observed uniform distribution of these hits, we can compute the
that fluctuations in the cache occupancy are proportionafensity of hits to bé/|RanQ)|. Since a cache does have
to theHysteresisCount. To maintain a smooth destage diminishing returns as its size grows, we add a factor of
rate these fluctuations need to be small relative to the dif6.5 (empirically determined). Each extra miss results in
ference between the high and low thresholds. Thereforéwo extra 10s to the disk, yielding a marginal utility of
we limit HysteresisCount to be no more tham/sth of ~ h/|Ran@)|.
the difference (in terms of pages) between the thresholds. Marginal utility for SeqQ We would like to estimate
the extra I0s incurred by making SeqQ smaller by unit
cache size. We first measure the rateat which there
are breaks in the logical write group addresses being

As we stated earlier, we use the size of SeqQ relativélestaged from SeqQ. Each contiguous group of pages
to DesiredSeqQSize for determining which queue to destaged is calledsaretch The smaller the size of SeqQ,
destage from, every time we have destabgdteresis- the higher is the rate. Sinces is inversely proportional
Count pages. Therefore, we need to wisely and contint0 the cache size, the marginal mcreasesmqual to
uously adapDesiredSeqQSize to be responsive to the s/[SeqQ| (sincesx|SeqQ|= const,dwqu‘ —TSeqa)-
workload so as to maximize the aggregate utility of theEach extra break in SeqQ results in one extra write to all
cache. The marginal utility, in terms of IOPS gained, of n disks. This yields a marigical utility of * s/|Seq|.
increasing the size of either RanQ or SeqQ, is not well We adapt the sizes of RanQ and SeqQ targeting a con-
understood. Therefore, we propose intuitive heuristicgition whereh/|Ran@| = n * s/|SeqQ)|, to minimize
that are very simple to calculate and result in good perthe 10s to the disk, maximizing the performance of the
formance. cache.

Marginal utility for RanQ We would like to estimate We implement the above in Algorithm 3 as follows:
the extra IOs incurred if we make RanQ smaller by unit Initialization: The initial value ofDesiredSeqQSize

4.3.4 Adapting the Queue Sizes

is the size of SeqQ when the write cache first reaches thb.2 ~ Storage Configuration
low threshold of destaging.

Decrement:DesiredSeqQSize is reduced by one if:
We have a hit (page hit for RAID-10 and write group
hit for RAID-5) in RanQ (line 2), where the recency
bit is zero (line 3), and th®esiredSeqQSize is not
alreadyHysteresisCount lower than the current SeqQ
size (line 4).

Increment;DesiredSeqQSize is incremented when-
ever there is break in the logical addresses of the writ
groups in SeqQ being destaged (line 11). The amoun
incremented is * | RanQ|/|Seq@|, wheren is the num-
ber of disks in the RAID array. There are two conditions
when we do notincremeesiredSeqQSize: (i) When
the break in the logical address occurred after a relativel

long stretch(more than what the queue depth allows to 0 573 million 512-byte sectors. For RAID-10, with the

be destaged together) (line 12); or (i) RanQ is already'storage capacity of two disks, Full Backend amounts to

below its rightful share of the cache based on the propor—286 million 512-byte sectors. We also defin@artial

X . . Backend configuration, where we use only 1/100th of
tion of random requests in the workload (fine 13). the available storage. Whileull Backendis character-

) ized by large disk seeks and low hit ratio, tRartial
5 Experimental Setup Backendgenerates only short seeks coupled with high

o]) hit ratios.
A schematic diagram of the experimental system is de-

picted in Figure 6. 5.3 The Cache

For simplicity, we use volatile DDR2 memory as our
write cache. In a real life storage controller, the write
cache is necessarily non-volatile (e.g. battery-backed).
L DIRTY PAGES In our setup, the write cache is managed outside the ker-
nel so that its size can be easily varied allowing us to
benchmark a wide range of write cache sizes.

We do not use a separate read cache in our exper-
iments for the following reason. Read misses disrupt
the sequentiality of destages determined by any write
caching algorithm. A read cache reduces the read misses
workLoaparrs gnd amplifies the gains of the better write caching al-

We study two popular RAID configurations, viz. RAID-

5 and RAID-10, using Linux Software RAID. We issue

direct 1/0O to the virtual RAID disk device, always by-

passing the kernel buffer. For RAID-5, we use 5 SAS

disks to create an array consisting of 4 data disks and 1

parity disk. We choose the strip size for each disk to be

64 KB, with the resulting stripe group size being 256 KB.
or RAID-10, we use 4 SAS disks to create an array in a

§ + 2 configuration. We use the same strip size of 64 KB

or each disk.

We use the entire available storage in one configura-

tion which we call the~ull Backend. For RAID-5, with

he storage capacity of four disks, Full Backend amounts

WRITE CACHE

DESTAGER

FREE PAGES

READS IF NOT IN

\>> WRITE CACHE

N 4

SOFTWARE RAID

_— gorithm. Therefore the most adverse environment for a
Coss D write caching algorithm is when there is no read cache.
ey ey ey ey e

This maximizes the number of read misses that the disks

have to service concurrent to the writes and provides the
Figure 6: Overall design of the experimental system most valuable comparison of write caching algorithms.
Nevertheless, we do service read hits from the write
cache for consistency.

5.1 The Basic Hardware Setup

We use an IBM xSeries 3650 machine equipped with5'4 SPC-1 Benchmark

two Intel Xeon 3 GHz processors, 4 GB DDR2 mem- SPC-1[16, 14] is the most respected performance bench-
ory at 667 MHz, and eight 2.5” 10K RPM SAS disks mark in the storage industry. The benchmark simulates
(IBM 40K1052, 4.5 ms avg. seek time) of 73.4 GB each.real world environments in a typical server class com-
A Linux kernel (version 2.6.23) runs on this machine to puter system by presenting a set of /0O operations that
host all our applications and standard workload generaare typical for business critical applications like OLTP
tors. We employ five SAS disks for our experiments, andsystems, database systems and mail server applications.
one for the operating system, our software, and worke use a prototype implementation of the SPC-1 bench-
loads. mark that we refer to as SPC-1 Like.

The SPC-1 workload roughly consists of 40% read rethreshold, where it uses only a small portion of the al-
quests and 60% write requests. For each request, thetewed destage queue depth to keep up with the incoming
is a 40% chance that the request is sequential and a 60%ate of the overall workload. The lackadaisical destage
chance that the request is random with some temporal lorate in the sequential region results in underutilizatibn o
cality. SPC-1 scales the footprint of the workload basedlisks which is ironic given that the disks cannot keep up
on the amount of storage space specified. Therefore favith the incoming rate when destages move to the sub-
a given cache size, the number of read and write hits wilkequent random regions.
be larger if the backend is smalldétdrtial Backendl, and
smaller if the amount of storage exposed to the benchg 1.2 Partial Backend

mark is larger Full Backend.

SPC-1 assumes three disjoint application storage unit$! Figure 7(b), we observe that the fluctuations in WOW
(ASU). ASU-1 is assigned 45% of the available back-enc?'® compressed together. This is because the higher hit
storage and represents “Data Store”. ASU-2 is assignefftio causes the destage pointer in WOW to advance
45% and represents “User Store”. The remaining 1094nuch more quickly. CSCAN, on the other hand, does
is assigned to ASU-3 and represents “Log/Sequentiaiot Skip over recently hit pages, and produces less fre-
Write”. In all configurations, we lay out ASU-3 at the duent fluctuations but stays in the full-cache condition

outer rim of the disks followed by ASU-1 and ASU-2, Most of the time.
STOW wisely alternates between the two types of

destages, ensuring that the disks are continuously uti-
6 Results lized at a relatively constant rate. This eliminates large

fluctuations in the occupancy curve for STOW in both
We compare the performance of LRW, CSCAN, WOW the full and partial backend cases.

and STOW under a wide range of cache size, workload,
and backend configurations. We use linear thresholdin% .

. . .2 Throughput and Response Time
to determine the rate of destages for all algorithms.
Presenting meaningful results We use the best way
to present results for write caching improvements: the
throughput-response time curve. We present gains in
6.1.1 Full Backend terms of bandwidth improvements at the same (reason-

able) response time. Another approach is to present gains

In Figure 7(a), we observe that the occupancy graphy, erms of response times at the same throughput. E.g.,
for WOW as well as CSCAN fluctuates wildly between 4: 900 10PS in Figure 8(a), we could report at least a

the low threshold and thieOO% occupancy level. For gy improvement in response time over the contenders.
the same scenario, LRW's cache occupancy remains il it is accurate, we believe, it is not as informative

100% occupancy, which implies that most of the time pecqyse it can be cherry-picked to aggrandize even mod-
it does not have space for new writes. Only STOW ex-qq¢ gains in such “hockey-stick” plots.

hibits measured changes in the overall cache occupancy, gackward bending We also observe theackward
consistently_staying away from_the full-cache conditi(.)n.bendmg phenomenon in some curves which happens
Note.that with linear thresholding, the destage rate is §,henever a storage controller is overdriven [9]. In
function of the cache occupancy, and consequently, larggjs regime, congestion caused by the increasing queue
fluctuations are detrimental to performance. lengths, lock contention, and CPU consumption, bogs

The sequential writes in the SPC-1 benchmark argyown a storage controller such that the disks no longer
huddled in a small fraction of the address space. As thezmain the bottleneck.

destage pointer in WOW or CSCAN moves past this se-
guential region and into the subsequent random regio
the occupancy graph spikes upwards because the cac
cannot keep up with the incoming rate while destagingin the top panel of Figure 8, we compare the average re-
in the random region. This disparity can be so large thasponse time (aggregate read and write) as a function of
even the maximum destage concurrency may not be suthe throughput achieved when the target throughput is
ficient to keep up with the incoming rate, leading to thegradually increased in the SPC1-Like workload genera-
dreaded full-cache condition (Figure 7(a)). tor. Overall, STOW outperforms all algorithms signif-
Also note the flat bottoms at the low threshold on theicantly across all load levels. Observe that WOW and
occupancy graphs for WOW and CSCAN in Figure 7(a).CSCAN improve as the threshold range becomes wider
Since destaging sequential data is quick and easy, thgince a wider range allow them to contain the fluctu-
cache occupancy quickly drops down close to the lowations better, hitting the full-cache condition for lesser

6.1 Stable Occupancy and Destage Rate

é2.1 Full Backend

35000

35000

N l'.l-lil'ﬁ'-q'l ey I'“l pav . : 100% 100%

30000 F ~ | V1] i Lifi] A0 HT T 30000 |
- R . 1 BiE
2 ! [TS | lih LT
25000 | E 25000 E
)) HT
S S
€ 20000 | & 20000
£ £
3 3
& 15000 | & 15000 E
s s LT
10000 } E 10000
wow wow
5000 STOW —— | 5000 STOW —— |
CSCAN —:— CSCAN —:—
LRW snms LRW snnn
ol 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time (sec) Time (sec)
(a) Full Backend: target050 IOPS, threshold0/80 (b) Partial Backend: targ&500 IOPS, threshold0/40

Figure 7: Cache occupancy as a function of time B2K page cache serving RAID-5 (RAID-10 is similar). STOW
neither exhibits large fluctuations in cache occupancyreaches cache full conditions for the same workload.

amount of time. Since there are no large fluctuations irbeats WOW by3% (actually it is much better at lower
STOW's cache occupancy, STOW delivers a consistentesponse times), CSCAN hy20%, and LRW by42%.
performance with any threshold, beating the best config-
uration for either WOW or CSCAN. 6.2.3 WOW's thresholding dilemma

In particular, at aroun@0ms response time, with a
threshold 0f90/80, in terms of SPC-1 Like IOPS in

RAID-5, STOW outperforms WOW by0%, CSCAN H,LF:‘gg,BS%Ckeggmo Hffrgg}s%a‘:ksgfm
by 96%, and LRW by39%. With a threshold of0/40, STOwW 518 558 128 553
STOW beats WOW b)Y8%, CSCAN by26%, and LRW WOW 22.69 5.78 1.38 2.26
by 39%. Similarly, in RAID-10 with a90/80 threshold, CSCAN 27.19 6.03 41.32 24.08
STOW outperforms WOW by0%, CSCAN by53%, LRW 6.14 6.58 1.50 2.23

and LRW by27%, while, with a threshold of’0/40,

STOW beats WOW by0%, and CSCAN and LRW by Table 2: Response times (in milliseconds) at lower
27%. These gains are not trivial in the world of hard throughputs (better numbers in bold). For full backend,
drives which sees only a meager improvementrag®of the response times correspond to a targetiof IOPS
per year. Although we include data points at responsérom Figure 8(a), and for partial backend to a target of
times greater thaB0ms, they are not of much practical 2000 IOPS from Figure 8(c). WOW's best threshold
significance as applications would become very slow achoice, unlike STOW, depends on the backend setup.
those speeds. Even the SPC-1 Benchmark disallows sub-

missions with greater tha3dms response times. The response time in a lightly loaded system is also
an important metric [14]. We present the actual numbers

corresponding to RAID-5 in Figure 8 in Table 2.

Note that in all cases, STOW beats the competition
For the partial backend scenario, depicted in the loweeasily. However, WOW is unique in that it requires dif-
panel in Figure 8, we use only the outer 1/100th of eactferent thresholds to perform its best for different back-
disk in the RAID array, creating a high hit ratio sce- end scenarios. While, choosing a conservatig' 40)
nario with short-stroking on the disks. In this setup, threshold allows WOW to beat CSCAN and LRW, WOW
the fluctuations in the occupancy for WOW are closeris forced to sustain a response timedf6 ms in the par-
together (Figure 7(b)), resulting in a more rapid alter-tial backend case, even though it could have delivered
nation between sequential and random destages. This38 ms response time with a higher threshold which
helps WOW somewhat, however, in terms of SPC-1 Likeallows for higher hit ratio. Since the workload is not
IOPS at20ms, STOW still beats WOW by2%, CSCAN known a priori, the right choice of threshold levels re-
by 160%, and LRW by24% in a RAID-5 setup. In mains elusive for WOW. So, in real life, STOW would
the RAID-10 setup, where writes become less importantut the response time not by ju®t (1.28 ms vs1.38 ms)
(because of no read-modify-write penalties), STOW stillwhen compared to WOW, but rather b%% (1.28 ms vs

6.2.2 Partial Backend

180 r r r r 140 r r r
STOW (H/L:90/80) —©— STOW (H/L:90/80) —©—
160 | STOW (H/L:70/40) - &% - ¢ E 10| STOW(HL70M40) - & -
WOW (H/L:90/80) ---%-++ ¢ WOW (H/L:90/80) ==X+
& 140F wow (H/L:70/40) H 1 & WOW (H/L:70/40) H
£ CSCAN (H/L:90/80) A £ 100 [CSCAN (H/L:90/80) B
g 1201 cscaN (HIL:70/40) 2 CSCAN (H/L:70/40) R4
F o0l LRW (H/L:90/80) - -©- S £ g}t LRW (H/L:90/80) - -©- Y
® LRW (H/L:70/40) =++=ree 1 X % LRW (H/L:70/40) -+ i
g : ; g 3 X
=3 80 IQ X =3 60 | :
o} g N O)
€ eof R %] « ¢ /) X
=] v ; =] L P i
= 40 b P &.] 2 “ . X ,FO
B L X L.z
20 mmnneeX ‘. 20zl B e =R
................. g) . I = = rrmlFe
o LB E T el — o — 0 o Lom=T= T , , ,
200 300 400 500 600 700 800 900 1000 200 400 600 800 1000 1200 1400
IOPS IOPS
(a) Full Backend: RAID 5 (b) Full Backend: RAID 10
200 r r r 200 r r
STOW (H/L:90/80) —©— STOW (H/L:90/80) —©—
180 STOW (H/L:70/40) - = - 180 0’ STOW (H/L:70/40) - = -
160 | WOW (H/L:90/80) ==-%¢:+ | 160 | 5 WOW (H/L:90/80) ==-%¢:+ |
& WOW (H/L:70/40) & 4 WOW (H/L:70/40)
E 10} CSCAN (H/L:90/80) E 140} B CSCAN (H/L:90/80)
g CSCAN (H/L:70/40) g T CSCAN (H/L:70/40)
£ 120 LRW (H/L:90/80) - -~ Z 120 \ LRW (H/L:90/80) - -&-
g 100 | _ LRW (H/L:70/40) --:=-- | g 100 b b, LBW (HIL:70/40) -+-=-- |
15 2 S &]
2 80t \ 2 80t
@ & @
> 60} %X > 60}
> . - >
< 40 N < 40
LSRN
20 | N\)) 20 |
YR
0 & Qe o —-g 0 A
500 1000 1500 2000 2500 3000 3500 4000 2000 3000 4000 5000 6000 7000 8000
IOPS I0PS
(c) Partial Backend: RAID 5 (d) Partial Backend: RAID 10

Figure 8: We increase the target throughput for the SPC#&-Binchmark and present the achieved throughput as a
function of the aggregate (read and write) response timéddn the90,/80 and70/40 destage thresholds in a 32K
page cache. Each data point is the average of measurementsmoinutes afte’s mintues of warmup time. While
WOW beats LRW and CSCAN, STOW outperforms WOW consistently.

2.26 ms). An adaptive threshold determination schemeLRW by 46% in terms of SPC-1 Like IOPS.
might help WOW somewhat, but in no instance would it In the partial backend case, both WOW and LRW are
be able to compete with STOW, which at the fix#d80 better than CSCAN because they can leverage temporal
threshold consistently outperforms its competition. locality more effectively. Further, the performance does
not depend on the choice of the threshold in this case
because what is gained by keeping lower thresholds is
lost in the extra misses incurred in this high hit ratio sce-
ario. In terms of SPC-1 Like IOPS, STOW beats WOW
y about7%, LRW by 22%, and CSCAN by abot%.

6.3 Varying Threshold Level

In Figure 9, we examine how changing the threshold
alone while keeping the workload constant changes th
performance of a write cache. For WOW and CSCAN,
in the full backend case, we can clearly see that ag 4 Varying Cache Size

the thresholds become lower, the performance improves.

While the lower thresholds help keep the occupancy flucAny good adaptive caching algorithm should be able to
tuations away from 00% occupancy more effectively, it perform well for all cache sizes. In Figure 10(a), we ob-
cannotcompletely eradicate the phenomenon and, conseerve that for the full backend scenario, across all cache
qguently, both WOW and CSCAN fare worse than STOW.sizes, STOW outperforms WOW hy7-30%, CSCAN
STOW beats WOW and CSCAN 9% on average, and by 19-40%, and LRW by35-48%. The gains are more

110

1000 T T T T T
STOW —e— A VR STOW_—©
b— - WOW—a— 100F """ 2o WOW =
950 o
CSCAN —eo— CSCAN —eo—
900 F LRW - =% - | s 90fF LRW = % -]
£
o 80Ff
850 | e £
—————— [=
1l ——r [} 0~ .
[2 800 | —— %] ~.
] — 15 ..,
—— a 60 ——
75087 ¢ T
€ sopr 0 TEsae— -
gl -9
700 } ol
650 % - - ---- HKommmmmme D 3 30| S .
)_/U’ \€
600 1 1 1 1 20 1 1 1 1
5 10 15 20 25 30 5 10 15 20 25 30
Difference between High and Low Thresholds (in %) Difference between High and Low Thresholds (in %)
(a) Full Backend: Target af200 IOPS
3600 T 140 T
STOW —6— STOW —6—
3400 | wow 1 WOow
120~ —. . == —— B
3200 } CSCAN —e—_ ————— CSCAN—=-=e—¢
LRW = =% - D LRW = ¢ -
3000 | E 100
[}
2800 % - --- Hemmmmmmmmmmmm e R LR x £ o |
n @
[aR L [%2]
5 2600 §
2400 2 60
o4
2200 2-, a0 |
2000 1 K--mmm- o L X--mmmmmmmmmmmm
20 | E
1800 f _._. .———m . 3
1600 + + . . 0
5 10 15 20 25 30 5 10 15 20 25 30
Difference between High and Low Thresholds (in %) Difference between High and Low Thresholds (in %)

(b) Partial Backend: Target 8500 IOPS

Figure 9: We vary the spread between the high and low thrdshehile keeping target workload fixed (32K page
cache, RAID-5). The left panel shows the measured througgmuithe right panel the corresponding averge response
times. RAID-10 has similar results.

significant for larger caches because of two reasons: (i) aould be seen consistently even for lower cache sizes.
larger cache causes the cache occupancy spikes in WOW a cache size 082K pages, in terms of SPC-1 Like
and CSCAN to be further apart and much larger in am41OPS, STOW outperforms WOW b%1%, CSCAN by
plitude, making it easier to hit the full-cache condition 104%, and LRW by43%. The performance at higher
(the performance of CSCAN actually dips as the cachecache sizes is similar for all algorithms because the work-
size increases t©31072 pages!); (ii) a larger cache in ing set fits in the cache, eliminating the disk bottleneck.
LRW, WOW, and CSCAN proportionally devotes more
cache space to sequential data even though there might
be nothing to gain. STOW adapts the sizes of SeqQ an

RanQ, which limits the size of SeqQ in larger caches, andSTOW ianifi . h
creates better spatial locality in the larger RanQ. represents a significant improvement over the

state of the art in write caching algorithms. While write
The partial backend scenario, presented in Fig-caching algorithms have mainly focused on the order
ure 10(b), also indicates that STOW is the best algo-of destages, we have shown that it is critical to wisely
rithm overall. With smaller cache sizes, the lower hit control the rate of destages as well. STOW outper-
ratio overdrives the cache for all algorithms resulting informs WOW by a wider margin than WOW outperforms
very high response times, which are not of much praccCSCAN and LRW. The observation that the order of
tical interest. If we had scaled the workload accordingdestages needs to change to accommodate a better con-
to what the cache could support, the benefit of STOWrol on the rate of destages is a key one. We hope that we

Conclusions

1000

950

900

850

800

I0PS
I0PS

750

700

650

8192

600
4096

16384 32768
Cache Size (4K pages)

(a) Full Backend: Target of 1050 IOPS

65536 131072

4000 : : X
STOW —6— /
WOwW .
3500 [CSCAN —o— . 7
LRW - % - K 7/
ll ~/
3000 | , / E
S ,,/
2500 | X . 1
7
7
2000 | //]
s
1500 | : E
=~ -
== . %
o s s s s
4096 8192 16384 32768 65536 131072

Cache Size (4K pages)
(b) Partial Backend: Target of 4000 IOPS

Figure 10: Measured throughput as we vary cache size in a FeAd&tup (RAID-10 is similar) wit90 /80 thresholds.

have furthered the appreciation of the multi-dimensionaf12]
nature of the write caching problem, which will spark
new efforts towards advancements in this critical field.

References

[1] BAKER, M., Asawmi, S., DEPRIT, E., QUSTERHOUT, J.,AND
SELTZER, M. Non-volatile memory for fast, reliable file systems.
SIGPLAN Not. 279 (1992), 10-22.

BANSAL, S.,AND MODHA, D. S. CAR: Clock with Adaptive
Replacement. IProc. Third USENIX Conf. on File and Storage
Technologies (FAST 042004), pp. 187—-200.

Biswas, P., RAMAKRISHNAN, K. K., TOWSLEY, D. F., AND
KRISHNA, C. M. Performance analysis of distributed file sys-
tems with non-volatile caches. IRroc. 2nd Int'l Symp. High

(14]
(2] (15]

(3]

Perf. Distributed Computing1993), pp. 252—262. [16]
[4] CoFFMAN, E. G., KLIMKO, L. A., AND RYAN, B. Analysis of
scanning policies for reducing disk seek tim&AM J. Comput. (17]

1, 3 (1972), 269-279.

CORBATO, F. J. A paging experiment with the Multics system.
Tech. rep., Massachusetts Inst. of Tech. Cambridge Piidiact,
1968.

[19

DENNING, P. J. Effects of scheduling on file memory operations.
In Proc. AFIPS Spring Joint Comput. Coii£967), pp. 9-21.

GEIST, R., AND DANIEL, S. A continuum of disk scheduling
algorithms.ACM Trans. Comput. Syst, (1987), 77-92.

GILL, B. S.,AND MODHA, D. S. SARC: Sequential prefetching
in Adaptive Replacement Cache. Pnoc. USENIX 2005 Annual
Technical Conf. (USENIXR005), pp. 293-308.

GILL, B. S.,AND MODHA, D. S. WOW: Wise Ordering for
Writes - combining spatial and temporal locality in nonatdé

caches. IrProc. Fourth USENIX Conf. on File and Storage Tech- [22]
nologies (FAST 05()2005), pp. 129-142.

HAINING, T. R. Non-volatile cache management for improving
write response time with rotating magnetic medi@hD thesis,
University of California, Santa Cruz, 2000.

Hsu, W. W., SMITH, A. J., AND YOUNG, H. C. /O refer-
ence behavior of production database workloads and the TP
benchmarks—an analysis at the logical levelACM Trans.
Database Syst. 28 (2001), 96-143.

(5] [18]

6] !

(7]
(20]
(8]

(21]
El

[10] [23]

(11] 424

JACOBSON, D., AND WILKES, J. Disk scheduling algorithms
based on rotational position. Tech. Rep. HPL-CSP-91-71d¥L
Labs, February 1991.

JIANG, S., AND ZHANG, X. LIRS: An efficient Low Inter-
reference Recency Set replacement policy to improve buffer
cache performance. Proc. ACM SIGMETRICS Int'| Conf. Mea-
surement and modeling of computer syst€2@92), pp. 31-42.
JOHNSON, S., MCNUTT, B., AND REICH, R. The making of
a standard benchmark for open system storaje&Comput. Re-
source Managemen101 (2001), 26-32.

LEE, D., CHOI, J., KimM, J.-H., NOH, S. H., MIN, S. L., GHO,
Y., AND KiM, C. S. On the existence of a spectrum of policies
that subsumes the least recently used (LRU) and least indgue
used (LFU) policies. IrProc. ACM SIGMETRICS Int'l Conf.
Measurement and modeling of computer systgr939), pp. 134—
143.

MCcNuUTT, B., AND JOHNSON, S. A standard test of I/O cache.
In Proc. Int'l CMG Conferencg2001), pp. 327-332.

MEGIDDO, N., AND MODHA, D. S. ARC: A self-tuning, low
overhead replacement cache.RAroc. Second USENIX Conf. on
File and Storage Technologies (FAST @2003), pp. 115-130.
MERTEN, A. G. Some quantitative techniques for file organiza-
tion. PhD thesis, Univ. of Wisconsin, June 1970.

RoOBINSON, J. T.,AND DEVARAKONDA, M. V. Data cache man-
agement using frequency-based replacemerrdec. ACM SIG-
METRICS Int'| Conf. Measurement and modeling of computer
systemg1990), pp. 134-142.

SEAMAN, P. H., LIND, R. A.,AND WILSON, T. L. On telepro-
cessing system design Part IV: An analysis of auxiliary agjer
activity. IBM Systems Journal,3 (1966), 158-170.

SELTZER, M., CHEN, P.,AND OUSTERHOUT, J. Disk schedul-
ing revisited. InProc. USENIX Winter 1990 Tech. Cot990),
pp. 313-324.

VARMA, A., AND JACOBSON, Q. Destage algorithms for disk ar-
rays with nonvolatile cache$EEE Trans. Comput. 42 (1998),
228-235.

VARMA, A., AND JACOBSON, Q. Destage algorithms for disk
arrays with nonvolatile cacheslEEE Trans. Computers 42
(1998), 228-235.

ZHoU, Y., CHEN, Z., AND LI, K. Second-level buffer cache
management. IEEE Trans. Parallel and Distrib. Syst. 1%
(2004), 505-519.

