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Abstract

Non-volatile write-back caches enable storage con-
trollers to provide quick write response times by hiding
the latency of the disks. Managing a write cache well is
critical to the performance of storage controllers. Over
two decades, various algorithms have been proposed, in-
cluding the most popular, LRW, CSCAN, and WOW.
While LRW leverages temporal locality in the work-
load, and CSCAN creates spatial locality in the destages,
WOW combines the benefits of both temporal and spa-
tial localities in a unified ordering for destages. How-
ever, there remains an equally important aspect of write
caching to be considered, namely, the rate of destages.
For the best performance, it is important to destage at a
steady rate while making sure that the write cache is not
under-utilized or over-committed. Most algorithms have
not seriously considered this problem, and as a conse-
quence, forgo a significant portion of the performance
gains that can be achieved.

We propose a simple and adaptive algorithm, STOW,
which not only exploits both spatial and temporal local-
ities in a new order of destages, but also facilitates and
controls the rate of destages effectively. Further, STOW
partitions the write cache into a sequential queue and a
random queue, and dynamically and continuously adapts
their relative sizes. Treating the two kinds of writes sepa-
rately provides for better destage rate control, resistance
to one-time sequential requests polluting the cache, and
a workload-responsive write caching policy.

STOW represents a leap ahead of all previously pro-
posed write cache management algorithms. As anecdotal
evidence, with a write cache of32K pages, serving a4+P
RAID-5 array, using an SPC-1 Like Benchmark, STOW
outperforms WOW by70%, CSCAN by96%, and LRW
by 39%, in terms of measured throughput. STOW con-
sistently provides much higher throughputs coupled with
lower response times across a wide range of cache sizes,
workloads, and experimental configurations.

1 Introduction

In spite of the recent slowdown in processor frequency
scaling due to power and density issues, the advent of
multi-core technology has enabled processors to con-
tinue their relentless increase in I/O rate to storage sys-
tems. In contrast, the electro-mechanical disks have not
been able to keep up with a comparable improvement in
access times. As this schism between disk and processor
speeds widens, caching is attracting significant interest.

Enterprise storage controllers use caching as a funda-
mental technique to hide I/O latency. This is done by us-
ing fast but relatively expensive random access memory
to hold data belonging to slow but relatively inexpensive
disks.

Over a period of four decades, a large number of read
cache management algorithms have been devised, in-
cluding Least Recently Used (LRU), Frequency-Based
Replacement (FBR) [19], Least Frequently Recently
Used (LFRU) [15], Low Inter-Reference Recency Set
(LIRS) [13], Multi-Queue (MQ) [24], Adaptive Replace-
ment Cache (ARC) [17], CLOCK with Adaptive Re-
placement (CAR) [2], Sequential Prefetching in Adap-
tive Replacement Cache (SARC) [8], etc. While, the
concept of a write cache has been around for over two
decades, we realize that it is a more complex and less
studied problem. We focus this paper on furthering
our understanding of write caches and improving signif-
icantly on the state of the art.

1.1 What Makes a Good Write Caching
Algorithm?

A write-back (or fast-write) cache relies on fast, non-
volatile storage to hide latency of disk writes. It can
contribute to performance in five ways. It can (i) har-
ness temporal locality, thereby reducing the number of
pages that have to be destaged to disks; (ii) leverage
spatial locality, by reordering the destages in the most



disk-friendly order, thereby reducing the average cost
of destages; (iii) absorb write bursts from applications
by maintaining a steady and reasonable amount of free
space, thereby guaranteeing a low response time for
writes; (iv) distribute the write load evenly over time to
minimize the impact to concurrent reads; and (v) serve
read hits that occur within the write cache.

There are two critical decisions regarding destaging
in write caching: thedestage orderand thedestage
rate. The destage order deals with leveraging temporal
and spatial localities, while the destage rate deals with
guaranteeing free space and destaging at a smooth rate.
Write caching has so far been treated mainly as an evic-
tion problem, with most algorithms focusing only on the
destage order. The most powerful write caching algo-
rithms will arise when we explore the class of algorithms
that simultaneously optimize for both the destage order
and the destage rate.

1.2 Our Contributions

Firstly, we present a detailed analysis of the problem of
managing the destage rate in a write cache. While this
has remained a relatively unexplored area of research,
we demonstrate that it is an extremely important aspect
of write caching with the potential of significant gains if
done right. Further, we show that to manage the destage
rate well, we actually need a new destaging order.

Secondly, we present a Spatially and Temporally Opti-
mized Write caching algorithm (STOW), that for the first
time, exploits not only temporal and spatial localities,
but also manages both the destage rate and destage or-
der effectively in a single powerful algorithm that hand-
somely beats popular algorithms like WOW, CSCAN,
and LRW, across a wide range of experimental scenar-
ios. Anecdotally, with a write cache of32K pages (and
high destage thresholds), serving a RAID-5 array, the
measured throughput for STOW at20 ms response time,
outperform WOW by70%, CSCAN by96%, and LRW
by 39%. STOW consistently and significantly outper-
forms all other algorithms across a wide range of cache
sizes, workload intensities, destage threshold choices,
and backend RAID configurations.

1.3 Outline of the paper

In Section 2, we briefly survey previous related research.
In Section 3, we explore why the destage rate is a crucial
aspect of any good write caching algorithm. In Section 4,
we present the new algorithm STOW. In Section 5, we
describe the experimental setup and workloads, and in
Section 6, we present our main quantitative results. Fi-
nally, in Section 7 we conclude with the main findings of
this paper.

2 Related Work

Although an extensive amount of work has been done in
the area of read caching, not all techniques are directly
applicable to write caching. While read caching is es-
sentially a two dimensional optimization problem (maxi-
mizing hit ratio and minimizing prefetch wastage), write
caching is a five dimensional optimization problem (as
explained in Section 1.1).

In a write-back cache, the response time for a write is
small if there is space in the write cache to store the new
data. The data in the write cache is destaged to disks
periodically, indirectly affecting any concurrent reads by
increasing their average service response time. To reduce
the number of destages from the write cache to the disks,
it is important to leverage temporal locality and, just like
in read caches, maximize the hit (overwrite) ratio. The
primary way to maximize temporal locality is to attempt
to evict the least recently written (LRW) pages from the
cache. An efficient approximation of this is available in
the CLOCK [5] algorithm which is widely used in op-
erating systems and databases. These algorithms, how-
ever, do not account for the spatial locality factor in write
cache performance.

Orthogonally, the order of destages can be chosen so
as to minimize the average cost of each destage. This
is achieved by destaging data that are physically prox-
imate on the disks. Such spatial locality maximization
has been studied mostly in the context of disk scheduling
algorithms, such as shortest seek time first (SSTF) [6],
SCAN [6], cyclical SCAN (CSCAN) [20], LOOK [18],
VSCAN [7], and FSCAN [4]. Some of these require
knowledge of the current state of the disk head [12, 21],
which is either not available or too cumbersome to track
in the larger context of storage controllers. Others, such
as CSCAN, order the destages by logical block address
(LBA) and do not rely on knowing the internal state of
the disk.

In the first attempt to combine spatial and temporal lo-
cality in write caching for storage systems [10], a com-
bination of LRW [1, 3, 11] and LST [10, 22] was used to
balance spatial and temporal locality. This work had the
drawback that it only dealt with one disk and it did not
adapt to the workload.

In general, the order of destages is different for lever-
aging temporal locality versus spatial locality. One no-
table write caching algorithm, Wise Ordering for Writes
(WOW) [9], removed this apparent contradiction, by
combining the strength of CLOCK [5] in exploiting tem-
poral locality and Cyclical SCAN (CSCAN) [20] in ex-
ploiting spatial locality. As shown in Figure 1, WOW
groups the pages in the cache in terms of write groups
and sorts them in their LBA order. To remember if a
write group was recently used, a recency bit is main-
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Figure 1: The data structure of the WOW algorithm

tained in each write group. When a page is written in
a write group already present in the cache, the recency
bit of the write group is set to1. Destages are done in the
sorted order of the write groups. However, if the recency
bit of a write group is1, the write group is bypassed after
resetting the recency bit to0.

While WOW solves thedestage orderproblem, the
destage rateproblem has attracted little research. Both
WOW and an earlier work on destage algorithms [23]
use a linear thresholding scheme that grows the rate of
destages linearly as the number of modified pages in the
cache grows. While this scheme is quite robust, destage
orders like WOW and CSCAN cannot achieve their full
potential due to a destructive interaction between the
destage rate and the destage order policies. We are un-
aware of any research that studies the interaction between
the two vital aspects of write caching: the destage order
and the destage rate.

CSCAN LRW WOW STOW
Spatial Locality Yes No Yes Yes
Temporal Locality No Yes Yes Yes
Scan Resistance No No Little Yes
Stable Destage Rate No Little No Yes
Stable Occupancy No Little No Yes

Table 1: Comparison of Various Write Cache Algorithms

Table 1 shows how the set of algorithms discussed
above compare. LRW considers only recency (tempo-
ral locality), CSCAN considers only spatial locality, and
WOW considers both spatial and temporal locality. Our
algorithm, STOW (Spatially and Temporally Optimized
Writes), tracks spatial and temporal localities, and is
scan resistantbecause it shields useful random data from
being pushed out due to the influx of large amounts se-

quential data. STOW also avoids large fluctuations in the
destage rate and cache occupancy.

3 Taming the Destage Rate

Historically caching has always been treated as an evic-
tion problem. While it might be true for demand-paging
read caches, it is only partially true for write caches. The
rate of eviction or the destage rate has attracted little re-
search so far. In this section we explore why the destage
rate is a crucial aspect of any good write caching algo-
rithm.

3.1 The Goals

Any good write caching algorithm needs to manage the
destage rate to achieve the following three objectives: (i)
Match the destage rate (if possible) to the average incom-
ing rate to avoid hitting 100% full cache condition (lead-
ing to synchronous writes); (ii) Avoid underutilizing the
write cache space; (iii) Destage smoothly to minimally
impact concurrent reads.

3.2 Tutorial: How to Get it Wrong?

Rather than simply present our approach, we explain
why we reject other seemingly reasonable approaches,
some of which have been used in the past.

3.2.1 Ignore Parity Groups

More often than not, a write cache in a storage controller
serves a RAID array involving parity groups (e.g. RAID-
5, RAID-6). In such scenarios, it is important to group
together destages of separate pages within the same par-
ity group to minimize the number of parity updates. The
best case happens when all members of the parity group
are present in the cache. The parity group can option-
ally be extended to beyond one parity stripe or even to
RAID-10 (see WOW [9]).

3.2.2 Destage Quickly

One approach is to destage as soon as there are dirty
pages and as fast as the system would allow. While this
would guarantee that the cache stays away from the full-
cache condition most effectively even for strong work-
loads, it wipes out any temporal and spatial locality ben-
efits for gentler workloads. The left panel in Figure 2
shows that a quick destaging policy can lead to very low
cache occupancy.
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Figure 2: Left panel: We destage in the order specified by the WOW algorithm, and as fast as the disks allow. The
cache remains relatively empty and the observed read response time is around 11.9 ms on average. Right panel: We
destage in the WOW order, however we destage only if the cacheis more than60% full (out of 64K pages). We
observe a better average read response time, but the cache occupancy exhibits spikes when random data is destaged.
When sequential data is destaged, the disks are under-utilized as shown by the flat steps in the total destages curve.

3.2.3 Fixed Threshold

In the right panel of Figure 2, we examine a policy which
destages quickly only if the cache is more than 60% full.
This performs better on average but displays ominous
“spikes” in cache occupancy which correspond to spikes
in the read response times. The non-uniform destage
rate is bad for concurrent reads. Furthermore, a higher
fixed threshold is more likely to hit 100% cache occu-
pancy, while a lower fixed threshold underutilizes the
write cache most of the time.

The Spikes: Any write caching algorithm destages
writes in a particular order. If the workload is such
that the algorithm destages sequential data for some time
followed by random data, such peaks are inevitable be-
cause destaging random data is far more time consuming
and during such intervals, the cache occupancy can spike
even for steady workloads. With WOW or CSCAN, such
spikes appear when the workload has a sequential and a
random component that target different portions of the
LBA space. This is commonly observed in both real-life
and benchmark workloads.

3.2.4 Linear Threshold

In the WOW [9] paper, a linear threshold scheme is pro-
posed which is better than the fixed threshold scheme
because it provides a gradual gradation of destage rates
which is more friendly to concurrent reads and also al-
lows the thresholds to be safely closer to the 100%
mark. For example, instead of destaging at full force af-
ter reaching 60% occupancy, linear threshold would use
a number of concurrent destage requests that is propor-

tional to how close the write cache is to a high threshold
(say 80% occupancy). Beyond the high threshold it will
destage at the full rate. This is the best scheme so far that
we are aware of, however, it cannot address the spike
problem, as evidenced in Figure 3. In this paper we use
anH/L notation for the thresholds: e.g.90/80 implies
that the high threshold is at90% of the cache and the low
threshold is at80%.

3.2.5 Adaptive Threshold

One might suggest that we should develop a scheme that
adaptively determines the correct high and low thresh-
olds for the linear threshold scheme. However, the reader
will observe that the spikes are very tall, and any such ef-
fort will result in a serious underutilization of the write
cache space.

3.3 Maybe Not WOW Then?

While the order of destages proposed in the WOW algo-
rithm is disk-friendly, the same order makes the destage
rate problem a tough nut to crack. We propose to change
the destage order to allow us to tame the destage rate.

3.3.1 Separate Random and Sequential Data

The spikes in cache occupancy are caused by long alter-
nating regimes of sequential and random destages. We
separate the sequential data and the random data into two
WOW-like data-structures in the write cache. Whenever
there is a need to destage, we destage from the larger of
the two queues, as a first approximation. Later, we shall
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Figure 3: We examine cache occupancy for a work-
load with both sequential and random writes when us-
ing the linear thresholding scheme to determine destage
rate. WOW exhibits spikes which go down up to the
low threshold when sequential data is destaged, and rise
when random data is destaged. For higher thresholds,
WOW hits cache full condition more often. If we destage
sequential and random data together (SeqQ/RanQ), we
elimintate the spikes, but the cache is almost always full.

see that the ideal partitioning of the cache requires adapt-
ing to the workload. While the intermixing of destages
from the sequential and the random queues eliminates the
spikes beautifully (the SeqQ/RanQ curve in Figure 3), it
pollutes the spatial locality in the destage order by send-
ing the disk heads potentially to two separate regions on
the disk causing longer seek times. The SeqQ/RanQ vari-
ant suffers from the full-cache condition almost all the
time, nullifying any gains from eliminating the spikes.

3.3.2 Use Hysteresis in Destaging

We need to be able to control the spikes in cache oc-
cupancy without derailing the spatial locality of the
destages. We discovered that if we destage no less than
a fixed hysteresis amount from the larger queue, we re-
duce the negative impact of having two destage sources.
This brings us to the STOW algorithm which integrates
all our intuitions so far (and some more) into a powerful,
practical and simple write caching algorithm.

4 STOW: The Algorithm

4.1 The STOW Principle

The STOW algorithm uses two WOW-like sorted cir-
cular queues for housing random and sequential data
separately. The relative sizes of the queues is continu-
ously adapted according to workload to maximize per-

formance. The decisions for: which queue to destage
from, when to destage, and at what rate, are carefully
managed to leverage spatial and temporal locality in the
workload, as well as to maintain steady cache occupancy
levels and destage rates. Despite its simplicity, STOW
represents the most comprehensive and powerful algo-
rithm for write cache management.

4.2 Data Structures

4.2.1 Honoring Parity Groups

A write hit (over-write) on a page generally implies that
the page and its neighbors are likely to be accessed again.
In the context of a storage controller connected to a
RAID controller, we would like to postpone the destage
of such pages hoping to absorb further writes, thereby
reducing the destage load on the disks.

In RAID, each participating disk contributes one strip
(e.g. 64 KB) towards each RAID stripe. A RAID stripe
consists of logically contiguous strips, one from each
data disk. Destaging two distinct pages in the same
RAID stripe together is easier than destaging them sepa-
rately, because in the former case the parity strip needs to
be updated only once. We say astripe hit has occurred
when a new page is written in a RAID stripe that already
has a member in the write cache. In RAID 5, therefore,
a stripe hit saves two disk operations (the read and write
of the parity strip), while a hit on a page saves four.

While we divide the write cache in pages of 4KB each,
we manage the data structures in terms ofwrite groups,
where a write group is defined as a collection of a fixed
number (one or more) of logically consecutive RAID
stripes. In this paper, we define the write group to be
equal to a RAID stripe. We say a write group is present
in the cache if at least one of its member pages is physi-
cally present in the cache. Managing the cache in terms
of such write groups allows us to better exploit both tem-
poral locality by saving repeated destages and spatial lo-
cality by issuing writes in the same write group together,
thus minimizing parity updates.

4.2.2 Separating Sequential From Random

Sequential data, by definition, has high spatial locality,
and appears in large clumps in the sorted LBA space for
algorithms such as WOW or CSCAN. In between clumps
of sequential data are random data. We discovered that
destaging random data, even when it is sorted, is far more
time consuming than destaging sequential data. There-
fore, when the destage pointer is in an area full of ran-
dom data, the slower destage rate causes the cache oc-
cupancy to go up. These spikes in the cache occupancy
could lead to full-cache conditions even for steady work-
loads, severely impacting the cache performance. Fur-



ther, during a spike, a cache is especially vulnerable to
reaching the100% occupancy mark even with smaller
write bursts. This discovery led us to partition the cache
directory in STOW into two separate queues RanQ and
SeqQ for the “random” and the “sequential” components
of a workload. It is easy to determine whether a write is
sequential by looking for the presence of earlier pages in
the cache [8] and keeping a counter. The first few pages
of a sequential stream are treated as random. If a page is
deemed to belong to a sequential stream it is populated
in SeqQ; otherwise, the page is stored in RanQ.

Separating sequential data from random data is a nec-
essary first step towards alleviating the problem caused
by the spikes in the cache occupancy. However, this is
not sufficient by itself, as we will learn in Section 4.3.4
when we discuss destaging.

4.2.3 Two Sorted Circular Queues

The STOW cache management policy is depicted in Al-
gorithm 1. In each queue, RanQ or SeqQ, the write
groups are arranged in an ascending order of logical
block addresses (LBA), forming a circular queue, much
like WOW, as shown in Figure 4. A destage pointer (akin
to a clock arm) in each queue, points to the next write
group in the queue to be considered for destaging to disk.
Upon a page miss (a write that is not an over-write), if
the write group does not exist in either queue, the write
group with the new page is inserted in the correct sorted
order in either RanQ or SeqQ depending on whether the
page is determined to be a random or a sequential page.
If the write group already exists, then the new page is
inserted in the existing write group.

The LBA ordering in both queues allows us to mini-
mize the cost of a destage which depends on how far the
disk head would have to seek to complete an operation.
The write groups, on the other hand, allow us to exploit
any spatio-temporal locality in the workload, wherein a
write on one page in a write group suggests an imminent
write to another page within the same write group. Not
only do we save on parity updates, but we also have the
opportunity to coalesce consecutive pages together into
the same write operation.

When either RanQ or SeqQ is empty, because the
workload lacks the random or the sequential component,
then STOW converges to WOW, and by the same token,
is better than CSCAN and LRU.

4.3 Operation

4.3.1 What to Destage From a Queue?

The destage pointer traverses the sorted circular queue
looking for destage victims. Write groups with a recency
bit of 1 are skipped after resetting the recency bit to0.

Algorithm 1 STOW: Cache Management Policy
Write pagex in write groupg:

1: if g ∈ RanQ ∪ SeqQ then //a write group hit
2: if x /∈ RanQ ∪ SeqQ then //page miss
3: allocatex from FreePageQueue
4: insertx in g
5: end if
6: if x is sequential and is last page ofg then
7: setrecency-bitof g to 0

8: else
9: setrecency-bitof g to 1

10: end if
11: else
12: allocateg from FreeWriteGroupQueue
13: allocatex from FreePageQueue
14: insertx into g
15: if x is sequentialthen
16: insertg into sorted queue inSeqQ
17: if x is last page ofg then
18: setrecency-bitof g to 0

19: else
20: setrecency-bitof g to 1

21: end if
22: else
23: insertg into sorted queue inRanQ
24: setrecency-bitof g to 0

25: end if
26: end if

If the recency bit of the write group was found to be0,
then the pages present in the write group are destaged.
Thus, write groups with a recency bit of one get an extra
life equal to the time it takes for the destage pointer to go
around the clock once.

Setting the recency bit in RanQ:When a new write
group is created in RanQ, the recency bit is set to0

(line 24 in Algorithm 1). On a subsequent page hit or a
write group hit, the recency bit is set to1 (line 9), giving
all present members of the write group a longer life in the
cache, during which they can exploit any overwrites of
the present pages or accumulate new neighboring pages
in the same write group. This leads to enhanced hit ratio,
fewer parity updates, and coalesced writes reducing the
total number of destages.

Setting the recency bit in SeqQ:Whenever a page is
written to SeqQ, the recency bit in the corresponding
write group is set to1 (lines 9 and 20). This is because
we anticipate that subsequent pages will soon be writ-
ten to the write group by the sequential stream. Destag-
ing to disk is more efficient if the whole write group is
present since this avoids the extra read-modify-write of
the parity group in a RAID-5 configuration and also co-
alesces consecutive pages into the same disk IO if possi-
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Figure 4: The data structure of the STOW algorithm

ble. However, if the page written is the last page of the
write group then the recency bit is forced to0 (lines 7
and 18). Since the last page of the write group has been
written, we do not anticipate any further writes and can
free up the cache space the next time the destage pointer
visits this write group.

4.3.2 What Rate to Destage at?
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Figure 5: Linear threshold scheme for determining
destage rate based on how close the cache occupancy is
to the high threshold.

In STOW, we use a linear threshold scheme (see Fig-
ure 5, as described in WOW[9]) to determine when and
at what rate to destage. We set a low threshold and a high
threshold for the cache occupancy. When the cache oc-
cupancy is below the low threshold, we leave the write

data in the cache in order to gather potential write hits.
When the cache occupancy is above the high threshold,
we destage data to disks at the full rate in order to avoid
the full-cache condition which is detrimental to response
time. When the cache occupancy is between the low
and high threshold, the number of concurrent destage
requests is linearly proportional to how close we are to
the high threshold. Note, a higher number of concurrent
destage requests to the disks results in a higher through-
put for destages, but of course at the cost of making
the disks busier and the concurrent reads slower. The
maximum number of concurrent destage requests (queue
depth) is set to a reasonable20 [9] in our experiments.

4.3.3 Which Queue to Destage From?

Algorithm 3 shows how STOW calculates and adapts the
desired size of SeqQ (DesiredSeqQSize). Algorithm 2
destages from SeqQ if it is larger thanDesiredSeqQ-
Size, else, it destages from RanQ (line 3). While strictly
following this simple policy eliminates any deleterious
spikes in the cache occupancy, it is not optimal because
it sends the disk heads to possibly two distinct locations
(the sorted order from RanQ and from SeqQ) simultane-
ously, resulting in an inter-mingling of two sorted orders,
polluting the spatial locality in the destages.

Once we have decided to destage from a queue, we
should stick with that decision for a reasonable amount
of time, so as to minimize the spatial locality pollution
caused by the mixing of two sorted orders. To real-
ize this, we define a fixed number called theHystere-
sisCount. Once a decision has been made to destage
from a particular queue, we continue destaging from
the same queue until, (i) we have destagedHystere-



Algorithm 2 STOW: Destage Policy
1: while needToDestage() do
2: if hysteresisCountDone() then
3: if |SeqQ| > DesiredSeqQSize then
4: setcurrentDestagePtrto SeqQDestagePtr
5: else
6: setcurrentDestagePtrto RanQDestagePtr
7: end if
8: end if
9: g = write group pointed to bycurrentDestagePtr

10: while g−>recency-bit== 1 do
11: g−>recency-bit= 0

12: g = advanceDestagePtr(currentDestagePtr)
13: end while
14: destage all pages ing
15: move destaged pages toFreePageQueue
16: moveg to FreeWriteGroupQueue
17: advanceDestagePtr(currentDestagePtr)
18: end while

sisCount pages from the queue; or (ii) either queue
has since grown by more thanHysteresisCount pages.
Note that destages from RanQ are slower and the second
condition avoids a large buildup in SeqQ in the mean-
time. Once either condition is met, we reevaluate which
queue to destage from.

Normally, we fixHysteresisCount to be equal to128

times the number of spindles in the RAID array. This en-
sures that a reasonable number of destage operations are
performed in one queue’s sorted order, before moving to
the other queue’s sorted order. However, we observed
that fluctuations in the cache occupancy are proportional
to theHysteresisCount. To maintain a smooth destage
rate these fluctuations need to be small relative to the dif-
ference between the high and low thresholds. Therefore,
we limit HysteresisCount to be no more than1/8th of
the difference (in terms of pages) between the thresholds.

4.3.4 Adapting the Queue Sizes

As we stated earlier, we use the size of SeqQ relative
to DesiredSeqQSize for determining which queue to
destage from, every time we have destagedHysteresis-
Count pages. Therefore, we need to wisely and contin-
uously adaptDesiredSeqQSize to be responsive to the
workload so as to maximize the aggregate utility of the
cache. The marginal utility, in terms of IOPS gained, of
increasing the size of either RanQ or SeqQ, is not well
understood. Therefore, we propose intuitive heuristics
that are very simple to calculate and result in good per-
formance.

Marginal utility for RanQ: We would like to estimate
the extra IOs incurred if we make RanQ smaller by unit

Algorithm 3 STOW: Queue Size Management Policy
1: if pagex in write groupg is writtenthen
2: if g ∈ RanQ then //(RAID-10: usex ∈ RanQ)
3: if g−>recency-bit== 0 then
4: if (|SeqQ| - DesiredSeqQSize) <

HysteresisCount then
5: DesiredSeqQSize-= 1
6: end if
7: end if
8: end if
9: end if

10: if write groupg is destagedthen
11: if g not contiguous with previous destagethen
12: if previous stretch<queue depththen
13: if |RanQ| / (|RanQ| + |SeqQ|) >

RanRq / (RanRq + SeqRq)then
14: DesiredSeqQSize+= n∗|RanQ|/|SeqQ|
15: //n = num of disks in RAID5 or RAID10
16: end if
17: end if
18: end if
19: end if

cache size (a page). We first approximate the number of
misses that would be incurred if we reduce the size of
RanQ. Leth be the hit rate for first time hits in RanQ
(where the recency bit is previously zero). We consider
only page hits for RAID-10 but any stripe hit for RAID-
5, since in RAID-5, stripe hits save parity updates (two
IOs) and are more common than page hits. Assuming
a uniform distribution of these hits, we can compute the
density of hits to beh/|RanQ|. Since a cache does have
diminishing returns as its size grows, we add a factor of
0.5 (empirically determined). Each extra miss results in
two extra IOs to the disk, yielding a marginal utility of
h/|RanQ|.

Marginal utility for SeqQ: We would like to estimate
the extra IOs incurred by making SeqQ smaller by unit
cache size. We first measure the rate,s, at which there
are breaks in the logical write group addresses being
destaged from SeqQ. Each contiguous group of pages
destaged is called astretch. The smaller the size of SeqQ,
the higher is the rates. Sinces is inversely proportional
to the cache size, the marginal increase ins equal to
s/|SeqQ| (sinces∗|SeqQ| = const, ds

d|SeqQ| = − s
|SeqQ| ).

Each extra break in SeqQ results in one extra write to all
n disks. This yields a marigical utility ofn ∗ s/|Seq|.

We adapt the sizes of RanQ and SeqQ targeting a con-
dition whereh/|RanQ| = n ∗ s/|SeqQ|, to minimize
the IOs to the disk, maximizing the performance of the
cache.

We implement the above in Algorithm 3 as follows:
Initialization: The initial value ofDesiredSeqQSize



is the size of SeqQ when the write cache first reaches the
low threshold of destaging.

Decrement:DesiredSeqQSize is reduced by one if:
We have a hit (page hit for RAID-10 and write group
hit for RAID-5) in RanQ (line 2), where the recency
bit is zero (line 3), and theDesiredSeqQSize is not
alreadyHysteresisCount lower than the current SeqQ
size (line 4).

Increment:DesiredSeqQSize is incremented when-
ever there is break in the logical addresses of the write
groups in SeqQ being destaged (line 11). The amount
incremented isn∗ |RanQ|/|SeqQ|, wheren is the num-
ber of disks in the RAID array. There are two conditions
when we do not incrementDesiredSeqQSize: (i) When
the break in the logical address occurred after a relatively
long stretch(more than what the queue depth allows to
be destaged together) (line 12); or (ii) RanQ is already
below its rightful share of the cache based on the propor-
tion of random requests in the workload (line 13).

5 Experimental Setup

A schematic diagram of the experimental system is de-
picted in Figure 6.
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Figure 6: Overall design of the experimental system

5.1 The Basic Hardware Setup

We use an IBM xSeries 3650 machine equipped with
two Intel Xeon 3 GHz processors, 4 GB DDR2 mem-
ory at 667 MHz, and eight 2.5” 10K RPM SAS disks
(IBM 40K1052, 4.5 ms avg. seek time) of 73.4 GB each.
A Linux kernel (version 2.6.23) runs on this machine to
host all our applications and standard workload genera-
tors. We employ five SAS disks for our experiments, and
one for the operating system, our software, and work-
loads.

5.2 Storage Configuration

We study two popular RAID configurations, viz. RAID-
5 and RAID-10, using Linux Software RAID. We issue
direct I/O to the virtual RAID disk device, always by-
passing the kernel buffer. For RAID-5, we use 5 SAS
disks to create an array consisting of 4 data disks and 1
parity disk. We choose the strip size for each disk to be
64 KB, with the resulting stripe group size being 256 KB.
For RAID-10, we use 4 SAS disks to create an array in a
2 + 2 configuration. We use the same strip size of 64 KB
for each disk.

We use the entire available storage in one configura-
tion which we call theFull Backend. For RAID-5, with
the storage capacity of four disks, Full Backend amounts
to 573 million 512-byte sectors. For RAID-10, with the
storage capacity of two disks, Full Backend amounts to
286 million 512-byte sectors. We also define aPartial
Backend configuration, where we use only 1/100th of
the available storage. WhileFull Backendis character-
ized by large disk seeks and low hit ratio, thePartial
Backendgenerates only short seeks coupled with high
hit ratios.

5.3 The Cache

For simplicity, we use volatile DDR2 memory as our
write cache. In a real life storage controller, the write
cache is necessarily non-volatile (e.g. battery-backed).
In our setup, the write cache is managed outside the ker-
nel so that its size can be easily varied allowing us to
benchmark a wide range of write cache sizes.

We do not use a separate read cache in our exper-
iments for the following reason. Read misses disrupt
the sequentiality of destages determined by any write
caching algorithm. A read cache reduces the read misses
and amplifies the gains of the better write caching al-
gorithm. Therefore the most adverse environment for a
write caching algorithm is when there is no read cache.
This maximizes the number of read misses that the disks
have to service concurrent to the writes and provides the
most valuable comparison of write caching algorithms.

Nevertheless, we do service read hits from the write
cache for consistency.

5.4 SPC-1 Benchmark

SPC-1 [16, 14] is the most respected performance bench-
mark in the storage industry. The benchmark simulates
real world environments in a typical server class com-
puter system by presenting a set of I/O operations that
are typical for business critical applications like OLTP
systems, database systems and mail server applications.
We use a prototype implementation of the SPC-1 bench-
mark that we refer to as SPC-1 Like.



The SPC-1 workload roughly consists of 40% read re-
quests and 60% write requests. For each request, there
is a 40% chance that the request is sequential and a 60%
chance that the request is random with some temporal lo-
cality. SPC-1 scales the footprint of the workload based
on the amount of storage space specified. Therefore for
a given cache size, the number of read and write hits will
be larger if the backend is smaller (Partial Backend), and
smaller if the amount of storage exposed to the bench-
mark is larger (Full Backend).

SPC-1 assumes three disjoint application storage units
(ASU). ASU-1 is assigned 45% of the available back-end
storage and represents “Data Store”. ASU-2 is assigned
45% and represents “User Store”. The remaining 10%
is assigned to ASU-3 and represents “Log/Sequential
Write”. In all configurations, we lay out ASU-3 at the
outer rim of the disks followed by ASU-1 and ASU-2.

6 Results

We compare the performance of LRW, CSCAN, WOW
and STOW under a wide range of cache size, workload,
and backend configurations. We use linear thresholding
to determine the rate of destages for all algorithms.

6.1 Stable Occupancy and Destage Rate

6.1.1 Full Backend

In Figure 7(a), we observe that the occupancy graph
for WOW as well as CSCAN fluctuates wildly between
the low threshold and the100% occupancy level. For
the same scenario, LRW’s cache occupancy remains at
100% occupancy, which implies that most of the time
it does not have space for new writes. Only STOW ex-
hibits measured changes in the overall cache occupancy,
consistently staying away from the full-cache condition.
Note that with linear thresholding, the destage rate is a
function of the cache occupancy, and consequently, large
fluctuations are detrimental to performance.

The sequential writes in the SPC-1 benchmark are
huddled in a small fraction of the address space. As the
destage pointer in WOW or CSCAN moves past this se-
quential region and into the subsequent random region,
the occupancy graph spikes upwards because the cache
cannot keep up with the incoming rate while destaging
in the random region. This disparity can be so large that
even the maximum destage concurrency may not be suf-
ficient to keep up with the incoming rate, leading to the
dreaded full-cache condition (Figure 7(a)).

Also note the flat bottoms at the low threshold on the
occupancy graphs for WOW and CSCAN in Figure 7(a).
Since destaging sequential data is quick and easy, the
cache occupancy quickly drops down close to the low

threshold, where it uses only a small portion of the al-
lowed destage queue depth to keep up with the incoming
rate of the overall workload. The lackadaisical destage
rate in the sequential region results in underutilization of
disks which is ironic given that the disks cannot keep up
with the incoming rate when destages move to the sub-
sequent random regions.

6.1.2 Partial Backend

In Figure 7(b), we observe that the fluctuations in WOW
are compressed together. This is because the higher hit
ratio causes the destage pointer in WOW to advance
much more quickly. CSCAN, on the other hand, does
not skip over recently hit pages, and produces less fre-
quent fluctuations but stays in the full-cache condition
most of the time.

STOW wisely alternates between the two types of
destages, ensuring that the disks are continuously uti-
lized at a relatively constant rate. This eliminates large
fluctuations in the occupancy curve for STOW in both
the full and partial backend cases.

6.2 Throughput and Response Time

Presenting meaningful results: We use the best way
to present results for write caching improvements: the
throughput-response time curve. We present gains in
terms of bandwidth improvements at the same (reason-
able) response time. Another approach is to present gains
in terms of response times at the same throughput. E.g.,
at 900 IOPS in Figure 8(a), we could report at least a
10x improvement in response time over the contenders.
While it is accurate, we believe, it is not as informative
because it can be cherry-picked to aggrandize even mod-
est gains in such “hockey-stick” plots.

Backward bending: We also observe thebackward
bendingphenomenon in some curves which happens
whenever a storage controller is overdriven [9]. In
this regime, congestion caused by the increasing queue
lengths, lock contention, and CPU consumption, bogs
down a storage controller such that the disks no longer
remain the bottleneck.

6.2.1 Full Backend

In the top panel of Figure 8, we compare the average re-
sponse time (aggregate read and write) as a function of
the throughput achieved when the target throughput is
gradually increased in the SPC1-Like workload genera-
tor. Overall, STOW outperforms all algorithms signif-
icantly across all load levels. Observe that WOW and
CSCAN improve as the threshold range becomes wider
since a wider range allow them to contain the fluctu-
ations better, hitting the full-cache condition for lesser
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Figure 7: Cache occupancy as a function of time in a32K page cache serving RAID-5 (RAID-10 is similar). STOW
neither exhibits large fluctuations in cache occupancy, norreaches cache full conditions for the same workload.

amount of time. Since there are no large fluctuations in
STOW’s cache occupancy, STOW delivers a consistent
performance with any threshold, beating the best config-
uration for either WOW or CSCAN.

In particular, at around20ms response time, with a
threshold of90/80, in terms of SPC-1 Like IOPS in
RAID-5, STOW outperforms WOW by70%, CSCAN
by 96%, and LRW by39%. With a threshold of70/40,
STOW beats WOW by18%, CSCAN by26%, and LRW
by 39%. Similarly, in RAID-10 with a90/80 threshold,
STOW outperforms WOW by40%, CSCAN by53%,
and LRW by27%, while, with a threshold of70/40,
STOW beats WOW by20%, and CSCAN and LRW by
27%. These gains are not trivial in the world of hard
drives which sees only a meager improvement rate of8%
per year. Although we include data points at response
times greater than30ms, they are not of much practical
significance as applications would become very slow at
those speeds. Even the SPC-1 Benchmark disallows sub-
missions with greater than30ms response times.

6.2.2 Partial Backend

For the partial backend scenario, depicted in the lower
panel in Figure 8, we use only the outer 1/100th of each
disk in the RAID array, creating a high hit ratio sce-
nario with short-stroking on the disks. In this setup,
the fluctuations in the occupancy for WOW are closer
together (Figure 7(b)), resulting in a more rapid alter-
nation between sequential and random destages. This
helps WOW somewhat, however, in terms of SPC-1 Like
IOPS at20ms, STOW still beats WOW by12%, CSCAN
by 160%, and LRW by24% in a RAID-5 setup. In
the RAID-10 setup, where writes become less important
(because of no read-modify-write penalties), STOW still

beats WOW by3% (actually it is much better at lower
response times), CSCAN by120%, and LRW by42%.

6.2.3 WOW’s thresholding dilemma

Full Backend Partial Backend
H/L: 90/80 70/40 H/L: 90/80 70/40

STOW 5.18 5.58 1.28 2.23
WOW 22.69 5.78 1.38 2.26
CSCAN 27.19 6.03 41.32 24.08
LRW 6.14 6.58 1.50 2.23

Table 2: Response times (in milliseconds) at lower
throughputs (better numbers in bold). For full backend,
the response times correspond to a target of750 IOPS
from Figure 8(a), and for partial backend to a target of
2000 IOPS from Figure 8(c). WOW’s best threshold
choice, unlike STOW, depends on the backend setup.

The response time in a lightly loaded system is also
an important metric [14]. We present the actual numbers
corresponding to RAID-5 in Figure 8 in Table 2.

Note that in all cases, STOW beats the competition
easily. However, WOW is unique in that it requires dif-
ferent thresholds to perform its best for different back-
end scenarios. While, choosing a conservative (70/40)
threshold allows WOW to beat CSCAN and LRW, WOW
is forced to sustain a response time of2.26 ms in the par-
tial backend case, even though it could have delivered
1.38 ms response time with a higher threshold which
allows for higher hit ratio. Since the workload is not
known a priori, the right choice of threshold levels re-
mains elusive for WOW. So, in real life, STOW would
cut the response time not by just7% (1.28 ms vs1.38 ms)
when compared to WOW, but rather by43% (1.28 ms vs
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Figure 8: We increase the target throughput for the SPC1-Like Benchmark and present the achieved throughput as a
function of the aggregate (read and write) response time forboth the90/80 and70/40 destage thresholds in a 32K
page cache. Each data point is the average of measurements over 5 minutes after5 mintues of warmup time. While
WOW beats LRW and CSCAN, STOW outperforms WOW consistently.

2.26 ms). An adaptive threshold determination scheme
might help WOW somewhat, but in no instance would it
be able to compete with STOW, which at the fixed90/80

threshold consistently outperforms its competition.

6.3 Varying Threshold Level

In Figure 9, we examine how changing the thresholds
alone while keeping the workload constant changes the
performance of a write cache. For WOW and CSCAN,
in the full backend case, we can clearly see that as
the thresholds become lower, the performance improves.
While the lower thresholds help keep the occupancy fluc-
tuations away from100% occupancy more effectively, it
cannot completely eradicate the phenomenon and, conse-
quently, both WOW and CSCAN fare worse than STOW.
STOW beats WOW and CSCAN by19% on average, and

LRW by 46% in terms of SPC-1 Like IOPS.
In the partial backend case, both WOW and LRW are

better than CSCAN because they can leverage temporal
locality more effectively. Further, the performance does
not depend on the choice of the threshold in this case
because what is gained by keeping lower thresholds is
lost in the extra misses incurred in this high hit ratio sce-
nario. In terms of SPC-1 Like IOPS, STOW beats WOW
by about7%, LRW by22%, and CSCAN by about96%.

6.4 Varying Cache Size

Any good adaptive caching algorithm should be able to
perform well for all cache sizes. In Figure 10(a), we ob-
serve that for the full backend scenario, across all cache
sizes, STOW outperforms WOW by17-30%, CSCAN
by 19-40%, and LRW by35-48%. The gains are more
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Figure 9: We vary the spread between the high and low thresholds while keeping target workload fixed (32K page
cache, RAID-5). The left panel shows the measured throughput and the right panel the corresponding averge response
times. RAID-10 has similar results.

significant for larger caches because of two reasons: (i) a
larger cache causes the cache occupancy spikes in WOW
and CSCAN to be further apart and much larger in am-
plitude, making it easier to hit the full-cache condition
(the performance of CSCAN actually dips as the cache
size increases to131072 pages!); (ii) a larger cache in
LRW, WOW, and CSCAN proportionally devotes more
cache space to sequential data even though there might
be nothing to gain. STOW adapts the sizes of SeqQ and
RanQ, which limits the size of SeqQ in larger caches, and
creates better spatial locality in the larger RanQ.

The partial backend scenario, presented in Fig-
ure 10(b), also indicates that STOW is the best algo-
rithm overall. With smaller cache sizes, the lower hit
ratio overdrives the cache for all algorithms resulting in
very high response times, which are not of much prac-
tical interest. If we had scaled the workload according
to what the cache could support, the benefit of STOW

would be seen consistently even for lower cache sizes.
At a cache size of32K pages, in terms of SPC-1 Like
IOPS, STOW outperforms WOW by21%, CSCAN by
104%, and LRW by43%. The performance at higher
cache sizes is similar for all algorithms because the work-
ing set fits in the cache, eliminating the disk bottleneck.

7 Conclusions

STOW represents a significant improvement over the
state of the art in write caching algorithms. While write
caching algorithms have mainly focused on the order
of destages, we have shown that it is critical to wisely
control the rate of destages as well. STOW outper-
forms WOW by a wider margin than WOW outperforms
CSCAN and LRW. The observation that the order of
destages needs to change to accommodate a better con-
trol on the rate of destages is a key one. We hope that we
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Figure 10: Measured throughput as we vary cache size in a RAID-5 setup (RAID-10 is similar) with90/80 thresholds.

have furthered the appreciation of the multi-dimensional
nature of the write caching problem, which will spark
new efforts towards advancements in this critical field.
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