
Bridging the Gap between Software and Hardware Techniques
for I/O Virtualization

Jose Renato Santos‡ Yoshio Turner‡ G.(John) Janakiraman‡∗ Ian Pratt§

‡Hewlett Packard Laboratories, Palo Alto, CA
§University of Cambridge, Cambridge, UK

Abstract
The paravirtualized I/O driver domain model, used in
Xen, provides several advantages including device driver
isolation in a safe execution environment, support for
guest VM transparent services including live migration,
and hardware independence for guests. However, these
advantages currently come at the cost of high CPU over-
head which can lead to low throughput for high band-
width links such as 10 gigabit Ethernet. Direct I/O has
been proposed as the solution to this performance prob-
lem but at the cost of removing the benefits of the driver
domain model. In this paper we show how to signifi-
cantly narrow the performance gap by improving the per-
formance of the driver domain model. In particular, we
reduce execution costs for conventional NICs by 56% on
the receive path, and we achieve close to direct I/O per-
formance for network devices supporting multiple hard-
ware receive queues. These results make the Xen driver
domain model an attractive solution for I/O virtualization
for a wider range of scenarios.

1 Introduction

In virtual machine environments like VMware [12],
Xen [7], and KVM [23], a major source of performance
degradation is the cost of virtualizing I/O devices to al-
low multiple guest VMs to securely share a single de-
vice. While the techniques used for virtualizing CPU
and memory resources have very low overhead leading
to near native performance [29][7][4], it is challenging to
efficiently virtualize most current I/O devices. Each in-
teraction between a guest OS and an I/O device needs to
undergo costly interception and validation by the virtual-
ization layer for security isolation and for data multiplex-
ing and demultiplexing [28]. This problem is particularly
acute when virtualizing high-bandwidth network inter-
face devices because frequent software interactions with

∗Currently at Skytap.

the device are needed to handle the high rate of packet
arrivals.
Paravirtualization [30] has been proposed and used
(e.g., in Xen [7][13]) to significantly shrink the cost and
complexity of I/O device virtualization compared to us-
ing full device emulation. In this approach, the guest OS
executes a paravirtualized (PV) driver that operates on a
simplified abstract device model exported to the guest.
The real device driver that actually accesses the hard-
ware can reside in the hypervisor, or in a separate de-
vice driver domain which has privileged access to the de-
vice hardware. Using device driver domains is attractive
because they allow the use of legacy OS device drivers
for portability, and because they provide a safe execu-
tion environment isolated from the hypervisor and other
guest VMs [16][13]. Even with the use of PV drivers,
there remains very high CPU overhead (e.g., factor of
four) compared to running in non-virtualized environ-
ments [18][17], leading to throughput degradation for
high bandwidth links (e.g., 10 gigabits/second Ethernet).
While there has been significant recent progress mak-
ing the transmit path more efficient for paravirtualized
I/O [17], little has been done to streamline the receive
path, the focus of this paper.
To avoid the high performance overheads of software-
based I/O device virtualization, efforts in academia and
industry are working on adding, to varying degrees, hard-
ware support for virtualization into I/O devices and plat-
forms [10][24][32][22][3][6]. These approaches present
a tradeoff between efficiency and transparency of I/O de-
vice virtualization. In particular, using hardware support
for “direct I/O” [32][24][22], in which a device presents
multiple logical interfaces which can be securely ac-
cessed by guest VMs bypassing the virtualization layer,
results in the best possible performance, with CPU cost
close to native performance. However, direct I/O lacks
key advantages of a dedicated driver domain model: de-
vice driver isolation in a safe execution environment
avoiding guest domain corruption by buggy drivers, etc.,

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 29



and full support for guest VM transparent services in-
cluding live migration [27] [21] [11] and traffic monitor-
ing. Restoring these services would require either addi-
tional support in the devices or breaking the transparency
of the services to the guest VM. In addition, it is difficult
to exploit direct I/O in emerging virtual appliance models
of software distribution which rely on the ability to exe-
cute on arbitrary hardware platforms. To use direct I/O,
virtual appliances would have to include device drivers
for a large variety of devices increasing their complexity,
size, and maintainability.
In this paper, we significantly bridge the performance
gap between the driver domain model and direct I/O in
the Xen virtual machine environment, making the driver
domain model a competitive and attractive approach in a
wider range of scenarios. We first present a detailed anal-
ysis of the CPU costs of I/O operations for devices with-
out hardware support for virtualization. Based on this
analysis we present implementation and configuration
optimizations, and we propose changes to the software
architecture to reduce the remaining large costs identified
by the analysis: per-packet overheads for memory man-
agement and protection, and per-byte data copy over-
heads. Our experimental results show that the proposed
modifications reduce the CPU cost by 56% for a stream-
ing receive microbenchmark. In addition to improv-
ing the virtualization of conventional network devices,
we propose extensions to the Xen driver domain model
to take advantage of emerging network interface de-
vices that provide multiple hardware receive queues with
packet demultiplexing performed by the device based on
packet MAC address and VLAN ID [10]. The combi-
nation of multi-queue devices with our software archi-
tecture extensions provides a solution that retains all the
advantages of the driver domain model and preserves all
the benefits of virtualization including guest-transparent
migration and other services. Our results show that this
approach has low overhead, incurring CPU cost close to
that of direct I/O for a streaming receive microbench-
mark.
The rest of the paper is organized as follows. Section 2
reviews the Xen driver domain model. Section 3 presents
a detailed analysis and breakdown of the costs of I/O vir-
tualization. Section 4 presents our implementation and
architectural changes that significantly improve perfor-
mance for the driver domain model. Section 5 discusses
how configuration settings affect I/O virtualization per-
formance, and Section 6 presents our conclusions.

2 Xen Network I/O Architecture

Figure 1 shows the architecture of Xen paravirtualized
(PV) networking. Guest domains (i.e., running virtual
machines) host a paravirtualized device driver, netfront,

NIC

RX

IO channels

device 
driver

guest domaindriver domain

netfrontnetback

Hardware

Xen hypervisor

copy
GR

map

free skb

GR TX
bridge RX buffer

RX packet

TX buffer
Free buffer

packet

packet

NIC

RX

IO channels

device 
driver

guest domaindriver domain

netfrontnetback

Hardware

Xen hypervisor

copy
GRGR

map

free skb

GRGR TX
bridge RX buffer

RX packet

TX buffer
Free buffer
TX buffer
Free buffer

packet

packet

Figure 1: Xen PV driver architecture

which interacts with the device indirectly through a sepa-
rate device driver domain, which has privileged access to
the hardware. Driver domains directly access hardware
devices that they own; however, interrupts from these
devices are first handled by the hypervisor which then
notifies the corresponding driver domain through virtual
interrupts. Netfront communicates with a counterpart
backend driver called netback in the driver domain, using
shared memory I/O channels. The driver domain uses a
software bridge to route packets among the physical de-
vice and multiple guests though their netback interfaces.
Each I/O channel comprises of an event notification
mechanism and a bidirection ring of asynchronous re-
quests carrying I/O buffer descriptors from netfront to
netback and the corresponding responses. The event
notification mechanism enables netfront and netback to
trigger a virtual interrupt on the other domain to indicate
new requests or responses have been posted. To enable
driver domains to access I/O buffers in guest memory
Xen provides a page grant mechanism. A guest cre-
ates a grant reference providing access to a page and
forwards the reference as part of the I/O buffer descrip-
tor. By invoking a hypercall, the driver domain uses
the grant reference to access the guest page. For trans-
mit (TX) requests the driver domain uses a hypercall to
map the guest page into its address space before send-
ing the request through the bridge. When the physical
device driver frees the page a callback function is auto-
matically invoked to return a response to netfront which
then revokes the grant. For RX requests netfront posts
I/O buffer page grants to the RX I/O channel. When
netback receives a packet from the bridge it retrieves a
posted grant from the I/O channel and issues a grant copy
hypercall to copy the packet to the guest page. Finally,
netback sends a response to the guest via the RX channel
indicating a packet is available.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association30



Table 1: Classes grouping Linux functions
Class Description
driver network device driver and netfront
network general network functions
bridge network bridge
netfilter network filter
netback netback
mem memory management
interrupt interrupt, softirq, & Xen events
schedule process scheduling & idle loop
syscall system call
time time functions
dma dma interface
hypercall call into Xen
grant issuing & revoking grant

Table 2: Classes grouping Xen Function
Class Description
grant grant map unmap or copy operation
schedule domain scheduling
hypercall hypercall handling
time time functions
event Xen events
mem memory
interrupt interrupt
entry enter/exit Xen (hypercall, interrupt, fault),
traps fault handling (also system call intercept)

3 Xen Networking Performance Analysis

This section presents a detailed performance analysis of
Xen network I/O virtualization. Our analysis focuses on
the receive path, which has higher virtualization over-
head than the transmit path and has received less atten-
tion in the literature. We quantify the cost of process-
ing network packets in Xen and the distribution of cost
among the various components of the system software.
Our analysis compares the Xen driver domain model, the
Xen direct I/O model, and native Linux. The analysis
provides insight into the main sources of I/O virtualiza-
tion overhead and guides the design changes and opti-
mizations we present in Section 4.

3.1 Experimental Setup
We run our experiments on two HP c-class blade servers
BL460c connected through a gigabit Cisco Catalyst
Blade Switch 3020. Each server has two 3GHz Intel
Xeon 5160 CPUs (two dual-core CPUs) with 4MB of L2
cache each, 8GB of memory, and two Broadcom NetX-
treme II BCM57085 gigabit Ethernet Network Interface
Cards (NICs). Although each server had two NICs, only
one was used in each experiment presented in this paper.

Table 3: Global function grouping
Class Description
xen0 Xen functions in domain 0 context
kernel0 kernel functions in domain 0
grantcopy data copy in grant code
xen Xen functions in guest context
kernel kernel funnctions in guest
usercopy copy from kernel to user buffer

To generate network traffic we used the netperf[1]
UDP STREAM microbenchmark. It would be difficult
to separate the CPU costs on the transmit and receive
paths using TCP, which generates ACK packets in the
opposite direction of data packets. Therefore, we used
unidirectional UDP instead of TCP traffic. Although all
results are based on UDP traffic, we expect TCP to have
similar behavior at the I/O virtualization level.
We used a recent Xen unstable1 distribution with par-

avirtualized Linux domains (i.e. a modified Linux ker-
nel that does not require CPU virtualization support) us-
ing linux-2.6.18-xen2. The system was configured with
one guest domain and one privileged domain 0 which
was also used as driver domain. For direct I/O evalua-
tion the application was executed directly in domain 0.
Both domain 0 and the guest domain were configured
with 512MB of memory and a single virtual CPU each.
The virtual CPUs of the guest and domain 0 were pinned
to different cores of different CPU sockets3.
We use OProfile [2][18] to determine the number of
CPU cycles used in each Linux and Xen function when
processing network packets. Given the large number of
kernel and hypervisor functions we group them into a
small number of classes based on their high level purpose
as described in Tables 1 and 2. In addition, when pre-
senting overall results we group the functions in global
classes as described in Table 3.
To provide safe direct I/O access to guests an
IOMMU [8] is required to prevent device DMA opera-
tions from accessing other guests’ memory. However,
we were not able to obtain a server with IOMMU sup-
port. Thus, our results for direct I/O are optimistic since
they do not include IOMMU overheads. Evaluations of
IOMMU overheads are provided in [9][31].

3.2 Overall Cost of I/O Virtualization
Figure 2 compares the CPU cycles consumed for pro-
cessing received UDP packets in Linux, and in Xen with
direct I/O access from the guest and with Xen paravirtu-
alized (PV) driver.
The graph shows results for three different sizes of
UDP messages4: 52, 1500 and 48000 bytes. A mes-
sage with 52 bytes corresponds to a typical TCP ACK,

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 31



0

5,000

10,000

15,000

20,000

25,000
cy

cl
es

/p
ac

ke
t app

usercopy
kernel
xen
grantcopy
kernel0

xen0

LinuxXen direct I/OXen PV driver

52 1500 48K 52 1500 48K 52 1500 48K

Message size (bytes)

0

5,000

10,000

15,000

20,000

25,000
cy

cl
es

/p
ac

ke
t app

usercopy
kernel
xen
grantcopy
kernel0

xen0

LinuxXen direct I/OXen PV driver

52 1500 48K52 1500 48K 52 1500 48K 52 1500 48K52 1500 48K

Message size (bytes)

Figure 2: CPU usage to receive UDP packets

0

1,000

2,000

3,000

4,000

5,000

6,000

cy
cl
es
/p
ac
ke
t other

hypercall
dma
time
syscall
schedule
interrupt
mem
network
driver

Message=1500 Message=48K 

Xen Linux Xen Linux

0

1,000

2,000

3,000

4,000

5,000

6,000

cy
cl
es
/p
ac
ke
t other

hypercall
dma
time
syscall
schedule
interrupt
mem
network
driver

Message=1500 Message=48K 

Xen Linux Xen Linux

Figure 3: Kernel CPU cost for direct I/O

while a message with 1500 bytes corresponds to the max-
imum ethernet packet size. Using messages with 48000
bytes also generates maximum size packets but reduces
the overhead of system calls at the kernel and applica-
tion interface by delivering data in larger chunks. The
experiments with maximum size packets in Figure 2 and
in the remainder results presented in this paper were able
to saturate the gigabit link. Experiments with 52-byte
packets were not able to saturate the network link as the
receive CPU becomes the bottleneck. To avoid having an
overloaded CPU with a high number of dropped packets,
we throttled the sender rate for small packets to have the
same packet rate as with the large packet sizes.
The results show that in the current Xen implementa-
tion, the PV driver model consumes significantly more
CPU cycles to process received packets than Linux. Di-
rect I/O has much better performance than the PV driver,
but it still has significant overhead when compared to
Linux, especially for small message sizes. In the rest
of this paper we analyze the sources of I/O virtualization
overheads in detail, and based on this analysis we pro-
pose several changes in the design and implementation
of network I/O virtualization in Xen.
We start by looking at the overheads when running
guests with direct I/O access. It is surprising that for
small message sizes Xen with direct I/O uses twice the
number of CPU cycles to process received packets com-

pared to non-virtualized Linux. This is a consequence
of memory protection limitations of the 64-bit x86 ar-
chitecture that are not present in the 32-bit X86 archi-
tecture. The 64-bit x86 architecture does not support
memory segmentation, which is used for protecting Xen
memory in the 32-bit architecture. To overcome this lim-
itation Xen uses different page tables for kernel and user
level memory and needs to intercept every system call to
switch between the two page tables. In our results, the
overhead of intercepting system calls is negligible when
using large message sizes (48000 bytes), since each sys-
tem call consumes data from many received packets (32
packets with 1500 bytes). For more details on system
call overheads the reader is referred to an extended ver-
sion of this paper[26]. System call interception is an ar-
tifact of current hardware limitations which will be elim-
inated over time as CPU hardware support for virtualiza-
tion [20][5] improves. Therefore, we ignore its effect in
the rest of this paper and discuss only results for large
message sizes (48000 bytes).

3.3 Analysis of Direct I/O Performance
Ignoring system call interception we observe that the ker-
nel CPU cost for Xen with direct I/O is similar to Linux,
as illustrated in the large message results in Figure 3.
Xen with direct I/O consumes approximately 900 more
CPU cycles per packet than native Linux (i.e. 31% over-
head) for the receive path.
Of these 900 cycles, 250 cycles are due to paravir-

tualization changes in the kernel code. In particular,
direct I/O in Xen has more CPU cycles compared to
Linux in DMA functions. This is due to the use of a
different implementation of the Linux DMA interface.
The DMA interface is a kernel service used by device
drivers to translate a virtual address to a bus address used
in device DMA operations. Native Linux uses the de-
fault (pci-nommu.c) implementation, which simply re-
turns the physical memory address associated with the
virtual address. Para-virtualized Linux uses the software
emulated I/O TLB code (swioltb.c), which implements
the Linux bounce buffer mechanism. This is needed in
Xen because guest I/O buffers spanning multiple pages
may not be contiguous in physical memory. The I/O
bounce buffer mechanism uses an intermediary contigu-
ous buffer and copies the data to/from its original mem-
ory location after/before the DMA operation, in case the
original buffer is not contiguous in physical memory.
However, the I/O buffers used for regular ethernet pack-
ets do not span across multiple pages and thus are not
copied into a bounce buffer. The different number of ob-
served CPU cycles is due to the different logic and extra
checks needed to verify if the buffer is contiguous, and
not due to an extra data copy.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association32



Of the total 900 cycles/packet overhead for direct I/O,
the hypervisor accounts for 650 cycles/packet as shown
in Figure 6. Most of these cycles are in timer related
functions, interrupt processing, and entering and exiting
(entry) the hypervisor due to interrupts and hypercalls.

3.4 Analysis of PV Driver Performance
Xen PV driver consumes significantly more CPU cycles
than direct I/O as shown in Figure 2. This is expected
since Xen PV driver runs an additional domain to host
the device driver. Extra CPU cycles are consumed both
by the driver domain kernel and by the hypervisor which
is now executed in the context of two domains compared
to one domain with direct I/O. Additional CPU cycles are
consumed to copy I/O data across domains using the Xen
grant mechanism. The end result is that the CPU cost
to process received network packets for Xen PV driver
is approximately 18,200 cycles per packet which corre-
sponds to 4.5 times the cost of native Linux. However,
as we show in this paper, implementation and design op-
timizations can significantly reduce this CPU cost.
Of the total 18,200 CPU cycles consumed, approxi-
mately 1700 cycles are for copying data from kernel to
user buffer (usercopy), 4300 for guest kernel functions
(kernel), 900 for Xen functions in guest context (xen),
3000 for copying data from driver domain to guest do-
main (grantcopy), 5400 for driver domain kernel func-
tions (kernel0), and 2900 for Xen functions in driver
domain context (xen0). In contrast native Linux con-
sumes approximately 4000 CPU cycles for each packets
where 1100 cycles are used to copy data from kernel to
user space and 2900 cycles are consumed in other kernel
functions. In the following subsections we examine each
component of the CPU cost for Xen PV driver to identify
the specific causes of high overhead.

3.4.1 Copy overhead

We note in Figure 2 that both data copies (usercopy and
grantcopy) in Xen PV driver consume a significantly
higher number of CPU cycles than the single data copy
in native Linux (usercopy). This is a consequence of us-
ing different memory address alignments for source and
destination buffers.
Intel procesor manuals [15] indicate that the proces-
sor is more efficient when copying data between mem-
ory locations that have the same 64-bit word alignment
and even more efficient when they have the same cache
line alignment. But packets received from the network
are non aligned in order to align IP headers following
the typical 14-byte Ethernet header. Netback copies the
non aligned packets to the beginning of the granted page
which by definition is aligned. In addition, since now

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

cy
cl

es
/p

ac
ke

t

non aligned 64 bit aligned cache aligned

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

cy
cl

es
/p

ac
ke

t

non aligned 64 bit aligned cache aligned

Figure 4: Alignment effect on data copy cost

0
500

1,000
1,500
2,000

2,500
3,000
3,500
4,000

4,500
5,000

cy
cl
es
/p
ac
ke
t

other
grant
hypercall
dma
time
syscall
schedule
interrupt
mem
network
driver

direct I/O PV driver PV driver
no fragment

0
500

1,000
1,500
2,000

2,500
3,000
3,500
4,000

4,500
5,000

cy
cl
es
/p
ac
ke
t

other
grant
hypercall
dma
time
syscall
schedule
interrupt
mem
network
driver

direct I/O PV driver PV driver
no fragment

Figure 5: Kernel CPU cost

the packet starts at a 64-bit word boundary in the guest,
the packet payload will start at a non word boundary in
the destination buffer, due to the Ethernet header. This
causes the second copy from the kernel to the user buffer
in the guest to also be misaligned.
The two unaligned data copies consume significantly
more CPU cycles than aligned copies. To evaluate this
overhead, we modified netback to copy the packet into
the guest buffer with an offset that makes the destina-
tion of the copy have the same alignment as the source.
This is possible because we use a Linux guest which per-
mits changing the socket buffer boundaries after it is allo-
cated. Figure 4 shows the CPU cost of the grant copy for
different copy alignments. The first bar shows the num-
ber of CPU cycles used to copy a 1500 byte packet when
the source and destination have different word align-
ments. The second bar shows the number of CPU cycles
when source and destination have the same 64-bit word
alignment but have different cache line alignment (128
bytes), while the third bar shows the number of CPU cy-
cles when source and destination have the same cache
line alignment. These results show that proper alignment
can reduce the cost of the copy by a factor of two.

3.4.2 Kernel overhead

Figure 5 compares the kernel cost for the Xen PV driver
model and for the direct I/O model. Xen PV driver uses

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 33



0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
cy
cl
es
/p
ac
ke
t

other
traps
entry
interrupt
mem
event
time
hypercall
schedule
grant_table

Direct I/O
(Xen)

PV driver
(Xen in guest)

PV driver
(Xen in domain 0)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
cy
cl
es
/p
ac
ke
t

other
traps
entry
interrupt
mem
event
time
hypercall
schedule
grant_table

Direct I/O
(Xen)

PV driver
(Xen in guest)

PV driver
(Xen in domain 0)

Figure 6: Hypervisor CPU cost

0

1,000

2,000

3,000

4,000

5,000

6,000

cy
cl
es
/p
ac
ke
t

other
hypercall
dma
time
syscall
schedule
interrupt
mem
netback
netfilter
bridge
network
driver

Linux kernel Domain 0 kernel Domain 0 kernel

(netfilter bridge disabled)

Xen PV driverLinux

0

1,000

2,000

3,000

4,000

5,000

6,000

cy
cl
es
/p
ac
ke
t

other
hypercall
dma
time
syscall
schedule
interrupt
mem
netback
netfilter
bridge
network
driver

Linux kernel Domain 0 kernel Domain 0 kernel

(netfilter bridge disabled)

Xen PV driverLinux

Figure 7: Driver domain CPU cost (kernel)

significantly more CPU cycles than direct I/O, especially
in device driver functions. While the device drivers are
different (i.e. physical device driver for direct I/O and
netfront for PV driver), we would expect that the physical
device driver in direct I/O would be more expensive as
it has to interact with a real device, while netfront in the
PV driver model only accesses the I/O channels hosted in
main memory. After careful investigation we determined
that the main source of increased CPU cycles in Xen PV
driver is the use of fragments in guest socket buffers.
Xen supports TCP Segmentation Offloading
(TSO)[17] and Large Receive Offloading (LRO)[14][19]
in its virtual interfaces enabling the use of large packets
spanning multiple pages for efficient packet processing.
For this reason netfront posts full page buffers which
are used as fragments in socket buffers, even for normal
size ethernet frames. Netfront copies the first 200 bytes
of the first fragment into the main linear socket buffer
area, since the network stack requires the packet headers
in this area. Any remaining bytes past the 200 bytes
are kept in the fragment. Use of fragments thereby
introduces copy overheads and socket buffer memory
allocation overheads.
To measure the cost of using fragments we modi-
fied netfront to avoid using fragments. This was ac-
complished by pre-allocating socket buffers and posting
those buffers directly into the I/O channel instead of post-
ing fragment pages. This modification assumes packets

will not use multiple pages and thus will not require frag-
ments, since the posted buffers are regular socket buffers
and not full page fragments. Since our NIC does not sup-
port LRO [14] and it is not configured with jumbo pack-
ets, all packets received from the external network use
single-page buffers in our experiments. Of course this
modification cannot be used for guest to guest commu-
nication since a guest can always send large fragmented
packets. The third bar in Figure 5 shows the performance
results using the modified netfront. The result shows
that using socket buffers with fragments is responsible
for most of the additional kernel cycles for the PV driver
case when compared to direct I/O.
Without the overhead of fragments the kernel CPU
cost for PV driver is very close to that of direct I/O,
except for small variations in the distribution of cycles
among the different kernel functions. In particular, net-
front in Xen PV driver now has lower cost than the phys-
ical device driver in direct I/O, as expected. Also since
netfront does not access a physical device it does not
need to use the software I/O TLB implementation of the
DMA interface used by direct I/O. On the other hand
PV drivers have the cost of issuing and revoking grants,
which are not used with direct I/O.
Most of this grant cost is due to the use of expensive
atomic compare and swap instructions to revoke grant
privileges in the guest grant table. This is necessary be-
cause Xen uses different bits of the same grant table field
to store the status of the grant (grant in use or not by the
driver domain) updated by Xen, and the grant access per-
mission (enable or revoke grant access) updated by the
issuing domain. The guest must revoke and check that
the grant is no longer in use by the driver domain using
an atomic operation, to ensure that a driver domain does
not race with grant revoking and keep an undesired ref-
erence to the page after the grant is revoked. The use of
atomic compare and swap instructions to revoke a grant
adds a significant number of CPU cycles in the guest ker-
nel cost. If however these two different grant bits are
stored in different words, we can ensure atomicity using
less expensive operations such as memory barriers. The
result with implementation optimizations presented later
in Section 4 include this and other grant optimizations
discussed in the following Section 3.4.3.

3.4.3 Hypervisor overhead

I/O processing consumes CPU cycles executing hyper-
visor functions in addition to guest kernel code. Figure
6 shows the CPU cost in Xen hypervisor functions for
receiving network packets with PV driver. The graph
shows the CPU cost when executing Xen functions in the
context of the guest and in the context of the driver do-
main (i.e. domain 0), and compares them with the CPU

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association34



cost for direct I/O.
The graph shows that most of the CPU cost for the
hypervisor is due to code executing in the context of the
driver domain, and the larger cost components are due to
grant operations and schedule functions. The hypervisor
CPU cost in guest context for PV drivers is similar to the
hypervisor cost for direct I/O except for a higher cost in
schedule functions.
The higher cost in scheduling functions for PV driver
is due to increased cache misses when accessing Xen
data structures for domain scheduling purposes. With PV
driver, the guest and the driver domain run on different
CPUs, causing domain data structures used by schedul-
ing functions to bounce between the two CPUs.
We identified the most expensive operations for exe-
cuting grant code by selectively removing code from the
grant functions. Basically they are the following: 1) ac-
quiring and releasing spin locks, 2) pinning pages, and 3)
use of expensive atomic swap operations to update grant
status as previously described.
All of these operations can be optimized. The number
of spinlock operations can be significantly reduced by
combining the operations of multiple grants in a single
critical section. The use of atomic swap operations can
be avoided by separating grant fields in different words
as described in section 3.4.2. Note that this optimization
reduces overhead in Xen and in the guest, since both of
them have to access the same grant field atomically.
The cost of pinning pages can also be optimized when
using grants for data copy. During a grant copy opera-
tion, the hypervisor creates temporary mappings into hy-
pervisor address space for both source and destination
of the copy. The hypervisor also pins (i.e. increment a
reference counter) both pages to prevent the pages from
being freed while the grant is active. However, usually
one of the pages is already pinned and mapped in the ad-
dress space of the current domain which issued the grant
operation hypercall. Thus we can avoid mapping and
pinning the domain local page and just pin the foreign
page referred by the grant. It turns out that pinning pages
for writing in Xen is significantly more expensive than
pinning pages for read, as it requires to increment an ad-
ditional reference counter using an expensive atomic in-
struction. Therefore, this optimization has higher perfor-
mance impact when the grant is used to copy data from
a granted page to a local page (as we propose below in
Section 4.1) instead of the other way around.

3.4.4 Driver domain overhead

Figure 7 shows CPU cycles consumed by the driver do-
main kernel (2nd bar graph; domain 0) and compares it
with the kernel cost in native Linux (1st bar graph). The
results show that the kernel cost in the driver domain is

almost twice the cost of the Linux kernel. This is some-
what surprising, since in the driver domain the packet is
only processed by the lower level of the network stack
(ethernet), although it is handled by two device drivers:
native device driver and netback. We observe that a large
number of the CPU cycles in driver domain kernel are
due to bridge and netfilter functions. Note that although
the kernel has netfilter support enabled, no netfilter rule
or filter is used in our experiments. The cost shown in the
graph is the cost of netfilter hooks in the bridge code that
are always executed to test if a filter needs to be applied.
The third bar graph in the figure shows the performance
of a driver domain when the kernel is compiled with the
bridge netfilter disabled. The results show that most of
the bridge cost and all netfilter cost can be eliminated if
the kernel is configured appropriately when netfilter rules
are not needed.

4 Xen Network Design Changes

In the previous section we identified several sources of
overhead for Xen PV network drivers. In this section
we propose architectural changes to the Xen PV driver
model that significantly improve performance. These
changes modify the behavior of netfront and netback,
and the I/O channel protocol.
Some inefficiencies identified in Section 3 can be re-
duced through implementation optimizations that do not
constitute architectural or protocol changes. Although
some of the implementation optimizations are easier to
implement in the new architecture, we evaluated their
performance impact in the current architecture in order
to separate their performance benefits from that of the ar-
chitectural changes. The implementation optimizations
include: disabling the netfilter bridge, using aligned data
copies, avoiding socket buffer fragments and the various
grant optimizations discussed in Sections 3.4.2 and 3.4.3.
The second bar in Figure 8 shows the cumulative per-
formance impact of all these implementation optimiza-
tions and is used as a reference point for the performance
improvements of the architectural changes presented in
this section. In summary, the implementation optimiza-
tions reduce the CPU cost of Xen PV driver by approx-
imately 4950 CPU cycles per packet. Of these, 1550
cycles are due to disabling bridge netfilter, 1850 cycles
due to using cache aligned data copies, 900 cycles due to
avoiding socket buffer fragments and 650 cycles due to
grant optimizations.

4.1 Move Data Copy to Guest
As described in Section 3 a primary source of overhead
for Xen PV driver is the additional data copy between
driver domain and guest. In native Linux there is only

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 35



one data copy, as the received packet is placed directly
into a kernel socket buffer by the NIC and later copied
from there to the application buffer. In Xen PV driver
model there are two data copies, as the received packet is
first placed in kernel memory of the driver domain by the
NIC, and then it is copied to kernel memory of the guest
before it can be delivered to the application.
This extra cost could be avoided if we could trans-
fer the ownership of the page containing the received
packet from the driver domain to the guest, instead of
copying the data. In fact this was the original approach
used in previous versions of Xen [13]. The first versions
of Xen PV network driver used a page flipping mech-
anism which swapped the page containing the received
packet with a free guest page, avoiding the data copy.
The original page flip mechanism was replaced by the
data copy mechanism in later versions of Xen for per-
formance reasons. The cost of mapping and unmapping
pages in both guest and driver domain was equivalent to
the copy cost for large 1500 byte packets, which means
that page flipping was less efficient than copy for small
packet sizes [25]. In addition, the page flip mechanism
increases memory fragmentation and prevents the use of
super-page mappings with Xen. Menon et al. [17] have
shown that super-pages provide superior performance in
Xen, making page flipping unattractive.
One problem with the current data copy mechanism is
that the two data copies per packet are usually performed
by different CPUs leading to poor data cache behavior.
On an SMP machine, it is expected that an I/O inten-
sive guest and the driver domain will be executing on
different CPUs, especially if there is high I/O demand.
The overhead introduced by the extra data copy can be
reduced if both copies are performed by the same CPU
and benefit from cache locality. The CPU will bring the
packet to its cache during the first data copy. If the data
is still present in the CPU cache during the second copy,
this copy will be significantly faster using fewer CPU cy-
cles. Of course there is no guarantee that the data will not
be evicted from the cache before the second copy, which
can be delayed arbitrarily depending on the application
and overall system workload behavior. At high I/O rates,
however, it is expected that the data will be delivered to
the application as soon as it is received and will benefit
from L2 cache locality.
We modified the architecture of Xen PV driver and
moved the grant copy operation from the driver domain
to the guest domain, improving cache locality for the sec-
ond data copy. In the new design, when a packet is re-
ceived netback issues a grant for the packet page to the
guest and notifies the guest of the packet arrival through
the I/O channel. When netfront receives the I/O channel
notification, it issues a grant copy operation to copy the
packet from a driver domain page to a local socket buffer,

and then delivers the packet to the kernel network stack.

Moving the grant copy to the guest has benefits be-
yond speeding up the second data copy. It avoids pollut-
ing the cache of the driver domain CPU with data that
will not be used, and thus should improve cache behav-
ior in the driver domain as well. It also provides better
CPU usage accounting. The CPU cycles used to copy
the packet will now be accounted to the guest instead of
to the driver domain, increasing fairness when account-
ing for CPU usage in Xen scheduling. Another benefit is
improved scalability for multiple guests. For high speed
networks (e.g. 10GigE), the driver domain can become
the bottleneck and reduce I/O throughput. Offloading
some of the CPU cycles to multiple guests’ CPUs avoids
the driver domain from becoming a bottleneck improving
I/O scalability. Finally, some implementation optimiza-
tions described earlier are easier to implement when the
copy is done by the guest. For example, it is easier to
avoid the extra socket buffer fragment discussed in Sec-
tion 3.4.2. Moving the copy to the guest allows the guest
to allocate the buffer after the packet is received from
netback at netfront. Having knowledge of the received
packet allows netfront to allocate the appropriate buffers
with the right sizes and alignments. Netfront can allocate
one socket buffer for the first page of each packet and
additional fragment pages only if the packet spans mul-
tiple pages. For the same reason, it is also easier to make
aligned data copies, as the right socket buffer alignment
can be selected at buffer allocation time.

The third bar in Figure 8 shows the performance ben-
efit of moving the grant copy from the driver domain to
the guest. The cost of the data copy is reduced because
of better use of the L2 cache. In addition, the number
of cycles consumed by Xen in guest context (xen) in-
creases while it decreases for Xen in driver domain con-
text (xen0). This is because the cycles used by the grant
operation are shifted from the driver domain to the guest.
We observe that the cost decrease in xen0 is higher than
the cost increase in xen leading to an overall reduction
in the CPU cost of Xen. This is because the grant opti-
mizations described in Section 3.4.3 are more effective
when the grant operations are performed by the guest, as
previously discussed.

In summary, moving the copy from the driver domain
to the guest reduces the CPU cost for Xen PV driver by
approximately 2250 cycles per packet. Of these, 1400
cycles are due to better cache locality for guest copies
(usercopy, grantcopy, and also kernel for faster accesses
to packet headers in protocol processing), 600 cycles are
due to grant optimizations being more effective (xen +
xen0) and 250 cycles are due to less cache pollution in
driver domain (kernel0).

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association36



0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000
cy

cl
es

/p
ac

ke
t app

usercopy
kernel
xen
grantcopy
kernel0

xen0

current
Xen

software
optimizations

guest
copy

multi-queue multi-queue+
grant reuse

Linux

100%

198%

246%
276%

322%

455%

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000
cy

cl
es

/p
ac

ke
t app

usercopy
kernel
xen
grantcopy
kernel0

xen0

current
Xen

software
optimizations

guest
copy

multi-queue multi-queue+
grant reuse

Linux

100%

198%

246%
276%

322%

455%

Figure 8: Xen PV driver Optimizations

4.2 Extending Grant Mechanism
Moving the grant copy to the guest requires a couple of
extensions to the Xen grant mechanism. We have not yet
implemented these extensions but we discuss them here.
To support copy in the receiving guest, the driver do-
main has to issue a grant to the memory page contain-
ing the received packet. This works fine for packets re-
ceived on the physical device since they are placed in
driver domain memory. In contrast, the memory buffers
with packets received from other guests are not owned
by the driver domain and cannot be granted to the receiv-
ing guest using the current Xen grant mechanism. Thus,
this mechanism needs to be extended to provide grant
transitivity allowing a domain that was granted access to
another domain’s page, to transfer this right to a third
domain.
We must also ensure memory isolation and prevent
guests from accessing packets destined to other guests.
The main problem is that the same I/O buffer can
be reused to receive new packets destined to different
guests. When a small sized packet is received on a
buffer previously used to receive a large packet for an-
other domain, the buffer may still contain data from the
old packet. Scrubbing the I/O pages after or before ev-
ery I/O to remove old data would have a high overhead
wiping out the benefits of moving the copy to the guest.
Instead we can just extend the Xen grant copy mecha-
nism with offset and size fields to constrain the receiving
guest to access only the region of the granted page con-
taining the received packet data.

4.3 Support for Multi-queue Devices
Although moving the data copy to the guest reduces the
CPU cost, eliminating the extra copy altogether should
provide even better performance. The extra copy can be
avoided if the NIC can place received packets directly
into the guest kernel buffer. This is only possible if the
NIC can identify the destination guest for each packet
and select a buffer from the respective guest’s memory

NIC

RX

IO channels

device 

driver

guest domaindriver domain

netfrontnetback

Hardware

Xen hypervisor

TX

Post RX

RX packet

RX bufferGR

vmq_alloc_page()

vmq_netif_rx()

TX buffer
Free buffer

� � ���

� ���vmq_alloc_skb()

buffer pools

GR

free skb

packet

packet

NIC

RXRX

IO channels

device 

driver

guest domaindriver domain

netfrontnetback

Hardware

Xen hypervisor

TX

Post RXPost RX

RX packet

RX bufferGRGR

vmq_alloc_page()

vmq_netif_rx()

TX buffer
Free buffer
TX buffer
Free buffer

� � ���

� ���vmq_alloc_skb()

buffer pools

GRGR

free skb

packet

packet

Figure 9: Multi-queue device support

to place the packet. As discussed in Section 1, NICs
are now becoming available that have multiple receive
(RX) queues that can be used to directly place received
packets in guest memory [10]. These NICs can demulti-
plex incoming traffic into the multiple RX queues based
on the packet destination MAC address and VLAN IDs.
Each individual RX queue can be dedicated to a particu-
lar guest and programmed with the guest MAC address.
If the buffer descriptors posted at each RX queue point
to kernel buffers of the respective guest, the device can
place incoming packets directly into guest buffers, avoid-
ing the extra data copy.
Figure 9 illustrates how the Xen PV network driver
model can be modified to support multi-queue devices.
Netfront posts grants to I/O buffers for use by the multi-
queue device drivers using the I/O channel. For multi-
queue devices the driver domain must validate if the page
belongs to the (untrusted) guest and needs to pin the page
for the I/O duration to prevent the page being reassigned
to the hypervisor or other guests. The grant map and
unmap operations accomplish these tasks in addition to
mapping the page in the driver domain. Mapping the
page is needed for guest to guest traffic which traverses
the driver domain network stack (bridge). Experimental
results not presented here due to space limitations show
that the additional cost of mapping the page is small com-
pared to the overall cost of the grant operation.
Netfront allocates two different types of I/O buffers
which are posted to the I/O channel: regular socket
buffers with the right alignments required by the net-
work stack, and full pages for use as fragments in non
linear socket buffers. Posting fragment pages is optional
and just needed if the device can receive large packets
spanning multiple pages, either because it is configured
with jumbo frames or because it supports Large Receive
Offload (LRO). Netback uses these grants to map the

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 37



guest pages into driver domain address space buffers and
keeps them in two different pools for each guest: one
pool for each type of page. These buffers are provided
to the physical device driver on demand when the driver
needs to post RX descriptors to the RX queue associ-
ated with the guest. This requires that the device driver
use new kernel functions to request I/O buffers from the
guest memory. This can be accomplished by providing
two new I/O buffer allocation functions in the driver do-
main kernel, vmq alloc skb() and vmq alloc page().
These are equivalent to the traditional Linux functions
netdev alloc skb() and alloc page() except that they
take an additional parameter specifying the RX queue
for which the buffer is being allocated. These func-
tions return a buffer from the respective pool of guest
I/O buffers. When a packet is received the NIC con-
sumes one (or more in case of LRO or jumbo frame) of
the posted RX buffers and places the data directly into
the corresponding guest memory. The device driver is
notified by the NIC that a packet arrived and then for-
wards the packet directly to netback. Since the NIC al-
ready demultiplexes packets, there is no need to use the
bridge in the driver domain. The device driver can in-
stead send the packet directly to netback using a new
kernel function vmq netif rx(). This function is equiv-
alent to the traditional Linux netif rx() typically used
by network drivers to deliver received messages, except
that the new function takes an additional parameter that
specifies which RX queue received the packet.
Note that these new kernel functions are not specific to
Xen but enable use of multi-queue devices with any vir-
tualization technology based on the Linux kernel, such as
for example KVM[23]. These new functions only need
to be used in new device drivers for modern devices that
have multi-queue support. These new functions extend
the current interface between Linux and network devices
enabling the use of multi-queue devices for virtualiza-
tion. This means that the same device driver for a multi-
queue device can be used with Xen, KVM or any other
Linux based virtualization technology.
We observe that the optimization that moves the copy
to the guest is still useful even when using multi-queue
devices. One reason is that the number of guests may
exceed the number of RX queues causing some guests to
share the same RX queue. In this case guests that share
the same queue should still use the grant copy mecha-
nism to copy packets from the driver domain memory to
the guest. Also, grant copy is still needed to deliver lo-
cal guest to guest traffic. When a guest sends a packet
to another local guest the data needs to be copied from
one guest memory to another, instead of being sent to
the physical device. In these cases moving the copy to
the guest still provides performance benefits. To support
receiving packets from both the multi-queue device and

other guests, netfront receives both types of packets on
the RX I/O channel shown in Figure 9. Packets from
other guests arrive with copy grants that are used by net-
front, whereas packets from the device use pre-posted
buffers.

We have implemented a PV driver prototype with
multi-queue support to evaluate its perfomance impact.
However, we did not have a NIC with multi-queue sup-
port available in our prototype. We used instead a tra-
ditional single queue NIC to estimate the benefits of a
multi-queue device. We basically modified the device
driver to dedicate the single RX queue of the NIC to the
guest. We also modified netback to forward guest buffers
posted by netfront to the physical device driver, such that
the single queue device could accurately emulate the be-
havior of a multi-queue device.

The fourth bar in Figure 8 shows the performance im-
pact of using multi-queue devices. As expected the cost
of grant copy is eliminated as now the packet is placed
directly in guest kernel memory. Also the number of
CPU cycles in xen for guest context is reduced since
there is no grant copy operation being performed. On
the other hand the driver domain has to use two grant
operations per packet to map and unmap the guest page
as opposed to one operation for the grant copy, increas-
ing the number of cycles in xen0 and reducing the ben-
efits of removing the copy cost. However, the number
of CPU cycles consumed in driver domain kernel is also
reduced when using multi-queue devices. This is due to
two reasons. First, packets are forwarded directly from
the device driver to the guest avoiding the forwarding
costs in the bridge. Second, since netback is now in-
volved in both allocating and deallocating socket buffer
structures for the driver domain, it can avoid the costs of
their allocation and deallocation. Instead, netback recy-
cles the same set of socket buffer structures in multiple
I/O operations. It only has to change their memory map-
pings for every new I/O, using the grant mechanism to
make the socket buffers point to the right physical pages
containing the guest I/O buffers. Surprisingly, the sim-
plifications in driver domain have a higher impact on the
CPU cost than the elimination of the extra data copy.

In summary, direct placement of data in guest mem-
ory reduces PV driver cost by 700 CPU cycles per
packet, and simplified socket buffer allocation and sim-
pler packet routing in driver domain reduces the cost by
additional 1150 cycles per packet. On the other hand
the higher cost of grant mapping over the grant copy, in-
creases the cost by 650 cycles per packet providing a net
cost reduction of 1200 CPU cycles per packet. However,
the benefit of multi-queue devices can actually be larger
when we avoid the costs associated with grants as dis-
cussed in the next section.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association38



NIC

RX

IO channels

device 

driver

guest domaindriver domain

netfrontnetback

Hardware

Xen hypervisor

TX

Post RX

RX packet

RX bufferGR

GR

grant cache

GR

GRGR

Control invalidate
grant

vmq_alloc_skb() or
vmq_alloc_page()

vmq_netif_rx()

TX buffer
Free buffer

packet

packet

NIC

RXRX

IO channels

device 

driver

guest domaindriver domain

netfrontnetback

Hardware

Xen hypervisor

TXTX

Post RXPost RX

RX packet

RX bufferGRGR

GRGR

grant cache

GRGR

GRGRGRGR

ControlControl invalidate
grant

vmq_alloc_skb() or
vmq_alloc_page()

vmq_netif_rx()

TX buffer
Free buffer
TX buffer
Free buffer

packet

packet

Figure 10: Caching and reusing grants

4.4 Caching and Reusing Grants
As shown in Section 3.4.3, a large fraction of Xen CPU
cycles consumed during I/O operations are due to grant
operation functions. In this section we describe a grant
reuse mechanism that can eliminate most of this cost.
The number of grant operations performed in the
driver domain can be reduced if we relax the memory
isolation property slightly and allow the driver domain
to keep guest I/O buffers mapped in its address space
even after the I/O is completed. If the guest recycles I/O
memory and reuses previously used I/O pages for new
I/O operations, the cost of mapping the guest pages us-
ing the grant mechanism is amortized over multiple I/O
operations. Fortunately, most operating systems tend to
recycle I/O buffers. For example, the Linux slab alloca-
tor used to allocate socket buffers keeps previously used
buffers in a cache which is then used to allocate new
I/O buffers. In practice, keeping I/O buffer mappings
for longer times does not compromise the fault isolation
properties of driver domains, as the driver domain still
can only access the same set of I/O pages and no pages
containing any other guest data or code.
In order to reuse grants, Xen PV driver needs to be
modified as illustrated in Figure 10. Netback keeps a
cache of currently mapped grants for every guest. On ev-
ery RX buffer posted by the guest (when using a multi-
queue device) and on every TX request, netback checks if
the granted page is already mapped in its address space,
mapping it only if necessary. When the I/O completes,
the mapping is not removed allowing it to be reused in fu-
ture I/O operations. It is important, though, to enable the
guest to explicitly request that a cached grant mapping
be invalidated. This may be necessary, for example if the
guest repurposes the page and uses it somewhere else in
the guest or if it returns the page back to the hypervisor.
In that case, it is desirable to revoke the grant and unmap

the granted page from the driver domain address space,
in order to preserve memory isolation between driver do-
main and guest5. A new I/O control channel between
netfront and netback is used for this purpose. Netfront
sends grant invalidation requests and netback sends con-
firmation responses after the granted page is unmapped.
In summary, this mechanism preserves the isolation be-
tween driver domain and guest memory (only I/O buffer
pages are shared) and avoids the overhead of mapping
and unmapping pages on every I/O operation.
Since the amount of memory consumed for each grant
cached in netback is relatively small when compared
with the page size, the maximum number of cached
grants should be limited only by kernel address space
available in the driver domain. The address space re-
served for the kernel is significantly larger than the size
of a typical active set of I/O buffers. For example, 1GB
of the Linux address space is reserved for the kernel; al-
though some of this space is used by other kernel func-
tions, a large fraction of this space can be used for dy-
namic mapping of guest I/O buffer pages. The size of the
active set of I/O buffers is highly dependent on the work-
load, but typically it should not exceed a few megabytes.
In practice, the driver domain should be able to map most
of the active I/O buffer pages in its address space for a
large number of guests. Thus we expect that the grant
reuse mechanism will provide close to a 100% hit rate
in the netback grant cache, except for unlikely scenarios
with more than hundreds of guests. Thus, the overhead of
grant mapping can be reduced to almost zero in practical
scenarios, when the guest buffer allocation mechanism
promotes buffer reuse.
We have not yet implemented the complete grant reuse
mechanism described above. Instead, for evaluation
purposes we implemented a simplified mechanism that
avoids the use of grants at all. We modified the I/O
channel to use physical page addresses directly instead of
grants to specify RX buffers. Netfront specifies the ma-
chine physical addresses of I/O buffers in the I/O chan-
nel requests, and the driver domain uses these addresses
directly when programming the DMA operations. Note
that this is not a safe mechanism since there is no val-
idation that the physical page used for I/O belongs to
the corresponding guest and no guarantee that the page
is pinned. Thus, this mechanism is used here just for
performance evaluation purposes. The mechanism com-
pletely avoids the use of grants and estimates the ben-
efit of the grant reuse mechanism when the hit rate on
cached grants is 100%. Although this is an optimistic
estimation it is expected to accurately predict actual per-
formance, since we expect to achieve close to a 100% hit
rate on cached grants by using appropriate buffer alloca-
tion mechanisms. However, validation of this estimation
is planned as future work.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 39



The fifth bar in Figure 8 shows the performance bene-
fit of caching and reusing grants in the driver domain. As
expected most of the benefit comes from reduced number
of cycles in xen0 used for grant operations. In summary,
grant reuse reduces the cost of PV driver by 1950 CPU
cycles per packet, which combined with all other opti-
mizations reduces the cost by 10300 CPU cycles. Al-
though the optimizations described so far provide signif-
icant cost reduction, Xen I/O virtualization still has twice
the cost of native I/O in Linux. However, it is possible to
reduce this cost even further by properly setting system
configuration parameters as described in the next section.

5 Tuning I/O Virtualization Configuration

5.1 Decoupling Driver Domain from Do-
main 0

Although the current architecture of the Xen PV driver
model is flexible and allows the use of dedicated driver
domains used exclusively for doing I/O, in practice most
Xen installations are configured with domain 0 acting
as the driver domain for all physical devices. The rea-
son is that there is still no mechanism available in Xen
that leverages the fault isolation properties of dedicated
driver domains. For example there is currently no avail-
able tool that automatically detects driver domain faults
and restarts them. Since hosting all drivers in domain 0
is simpler to configure this is typically the chosen con-
figuration.
However, hosting all device drivers in domain 0 pre-
vents tuning some configuration options that optimize
I/O performance. Since domain 0 is a general purpose
OS it needs to support all standard Linux utilities and
Xen administration tools, thus requiring a full fledged
kernel with support for all features of a general purpose
operating system. This limits the flexibility in configur-
ing the driver domain with optimized I/O configuration
options. For example, disabling the bridge netfilter op-
tion of the kernel significantly improves performance as
shown in Section 3.4.4. However, network tools such as
iptables available in standard Linux distributions do not
work properly if this kernel configuration option is dis-
abled. This has prevented standard Linux vendors such
as RedHat and Novell to enable this kernel option in their
standard distribution, thus preventing this I/O optimiza-
tion in practice. Separating the driver domain from do-
main 0 allows us to properly configure the driver domain
with configurations that are optimized for I/O.

5.2 Reducing Interrupt Rate
The architectural changes discussed in Section 4 address
two important sources of overhead in I/O virtualization:

0

2,000

4,000

6,000

8,000

10,000

12,000

cy
cl

es
/p

ac
ke

t

 app
 usercopy
 kernel
 xen
 grantcopy
 kernel0
xen0

guest copy multi-queue +
grant reuse

direct I/O Linux

6 16 32 64 6 16 32 64 6 16 32 64 6 16 32 64
batch size (packets/interrupt)

100%
111%

125%

197%

0

2,000

4,000

6,000

8,000

10,000

12,000

cy
cl

es
/p

ac
ke

t

 app
 usercopy
 kernel
 xen
 grantcopy
 kernel0
xen0

guest copy multi-queue +
grant reuse

direct I/O Linux

6 16 32 646 16 32 64 6 16 32 646 16 32 64 6 16 32 646 16 32 64 6 16 32 646 16 32 64
batch size (packets/interrupt)

100%100%
111%111%

125%125%

197%197%

Figure 11: Interrupt throttling

extra data copies and the Xen grant mechanism. These
are the most important overheads that are directly propor-
tional to the amount of received traffic. Data copy over-
heads are proportional to the number of received bytes
while grant overheads are proportional to the number of
received packets.
Most of the remaining overheads are proportional to
the number of times the driver domain and the guest are
scheduled (this is different from the number of packets
since both domains can process multiple packets in a sin-
gle run). These additional overheads include processing
physical interrupts, virtual interrupts, event delivery, do-
main scheduling, hypercalls, etc. Even though some of
these overheads are also present in Linux, they have a
higher impact when I/O is virtualized due to the addi-
tional levels of software such as the hypervisor and the
driver domain. For example, a device interrupt for a re-
ceived packet causes CPU cycles to be consumed both in
the hypervisor interrupt handler and in the driver domain
handler. Additional CPU cycles are consumed when han-
dling the virtual interrupt in the guest after the packet is
delivered through the I/O channel. Increasing the number
of packets that are processed each time the guest or the
driver domain is scheduled should reduce the remaining
performance overheads.
On the receive path the driver domain is typically
scheduled to process I/O when an interrupt is generated
by the physical device. Most network devices available
today can delay the generation of interrupts until multi-
ple packets are received and thus reduce the interrupt rate
at high throughputs. The interrupt rate for received pack-
ets can be controlled by special device driver parameters
usually known as interrupt coalescing parameters. Inter-
rupt coalescing parameters specify not only the number
of packets per interrupt, but also a maximum delay af-
ter the last received packet. An interrupt is generated
when either the specified number of packets is received
or when the maximum specified delay is reached. This
mechanism allows us to limit the interrupt rate at high
I/O rates while preserving low latency at low I/O rates.
Configuring device coalescing parameters enables us

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association40



to change the number of packets processed in each run
of the driver domain and thus amortize the overheads
over a larger number of packets. All packets received
in a single interrupt by the device driver are queued in
netback queues before being processed. This causes net-
back to process packets in batches of the same size as the
device driver. Since netback only notifies netfront after
all packets in the batch are processed and added to the
I/O channel, the device coalescing parameters also limit
the virtual interrupt rate in the guest domains, and thus
amortize the I/O overheads in the guest as well.
Figure 11 shows the effect of interrupt coalescing on
the CPU cost of I/O virtualization. The graph shows
CPU cost for four cases: 1) Optimized PV driver using
a traditional network device (guest copy), 2) Optimized
PV driver using a multi-queue device (multi-queue +
grant reuse), 3) Direct I/O, 4) native Linux. The figure
shows the CPU cost for different interrupt rates for each
of the four cases. The Linux default interrupt coalescing
parameters for our Broadcom NIC is 6 pkt/int (packets
per interrupt) with a maximum latency of 18 µs. While
we varied the batch size from 6 to 64 pkt/int we kept the
default maximum interrupt latency of 18 µs in all results
presented in Figure 11, preserving the packet latency at
low throughputs.
The graph shows that the CPU cost for the PV driver
is significantly reduced when the number of packets pro-
cessed per interrupt is increased, while the effect is less
pronounced for both Linux and Direct I/O. This result
confirms that most of the remaining I/O virtualization
overheads are proportional to the interrupt rate. In Linux,
the default value of 6 pkt/int performs almost as well as
a large batch of 64 pkt/int. This suggests that the de-
fault interrupt coalescing parameters for network device
drivers that work well for native Linux, are not the best
configuration for Xen PV driver.
Experimental results not shown here due to space lim-
itations show that interrupt coalescing achieves approxi-
mately the same CPU cost reduction for the original Xen
PV driver configuration as it does for our optimized PV
driver without hardware multi-queue support, i.e., ap-
proximately 4600 cycles per packet for batches of size
64. This indicates that interrupt coalescing and the other
optimizations presented in this paper are complementary.
In summary, the results show that software-only op-
timizations reduce I/O virtualization overheads for the
Xen driver domain model from 355% to 97% of the
Linux cost for high throughput streaming traffic. More-
over, the use of hardware support for I/O virtualization
enables us to achieve close to native performance: multi-
queue devices can reduce the overhead to only 25% of
the Linux cost while direct I/O has 11% overhead. The
main difference is due to the cost of executing netfront
and netback when using Xen PV driver. For real applica-

tions, the effective cost difference between direct I/O and
the driver domain model should much be lower, since
applications will use CPU cycles for additional work be-
sides I/O processing. The low cost of the driver domain
model combined with multi-queue support suggest that
it is an attractive solution for I/O virtualization.

6 Conclusion

The driver domain model used in Xen has several desired
properties. It isolates the address space of device drivers
from guest and hypervisor code preventing buggy device
drivers from causing system crashes. Also, driver do-
mains can support guest VM transparent services such as
live migration and network traffic monitoring and control
(e.g. firewalls).
However, the driver domain model needs to overcome
the address space isolation in order to provide I/O ser-
vices to guest domains. Device drivers need special
mechanisms to gain access to I/O data in other guest do-
mains and to move the I/O data bytes to and from those
domains. In Xen this is accomplished through the grant
mechanism. In this paper we propose several architec-
tural changes that reduce the performance overhead as-
sociated with driver domains models. First we propose
two mechanisms that reduce the cost of moving the I/O
data bytes between guest and driver domains: 1) we in-
crease the cache locality of the data copy by moving the
copy operation to the receiving guest CPU and 2) we
avoid the data copy between domains by using hardware
support of modern NICs to place data directly into guest
memory. Second we mimimize the cost of granting the
driver domain access to guest domain pages by slightly
relaxing the memory isolation property to allow a set of
I/O buffers to be shared between domains across multi-
ple I/O operations. Although these architectural changes
were done in the context of Xen they are applicable to
the driver domain model in general.
Our work demonstrates that it is possible to achieve
near direct I/O and native performance while preserving
the advantages of a driver domain model for I/O virtu-
alization. We advocate that the advantages of the driver
domain model outweigh the small performance advan-
tage of direct I/O in most practical scenarios.
In addition, this paper identified several low-level opti-
mizations for the current Xen implementation which had
surprisingly large impact on overall performance.

References
[1] Netperf. www.netperf.org.
[2] Oprofile. oprofile.sourceforge.net.
[3] ABRAMSON, D., JACKSON, J., MUTHRASANALLUR, S.,
NEIGER, G., REGNIER, G., SANKARAN, R., SCHOINAS, I.,

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 41



UHLIG, R., VEMBU, B., AND WIEGERT, J. Intel® virtual-
ization technology for directed I/O. Intel® Technology Journal
10, 3 (August 2006). www.intel.com/technology/itj/
2006/v10i3/.

[4] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. In ASPLOS (2006),
J. P. Shen and M. Martonosi, Eds., ACM, pp. 2–13.

[5] ADVANCED MICRO DEVICES. AMD64 architecture pro-
grammer’s manual volume 2: System programming.
www.amd.com/us-en/assets/content type/
white papers and tech docs/24593.pdf, Sept
2007.

[6] ADVANCED MICRO DEVICES, INC. IOMMU architectural
specification. www.amd.com/us-en/assets/content
type/white papers and tech docs/34434.pdf, Feb
2007. PID 34434 Rev 1.20.

[7] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HAR-
RIS, T. L., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP (2003),
M. L. Scott and L. L. Peterson, Eds., ACM, pp. 164–177.

[8] BEN-YEHUDA, M., MASON, J., KRIEGER, O., XENIDIS,
J., VAN DOORN, L., MALLICK, A., NAKAJIMA, J., AND
WAHLIG, E. Utilizing IOMMUs for virtualization in Linux and
Xen. In Ottawa Linux Symposium (2006).

[9] BEN-YEHUDA, M., XENIDIS, J., OSTROWSKI, M., RISTER,
K., BRUEMMER, A., AND VAN DOORN, L. The price of safety:
evaluating IOMMU performance. In Ottawa Linux Symposium
(2007).

[10] CHINNI, S., AND HIREMANE, R. Virtual machine device
queues. softwaredispatch.intel.com/?id=1894.
Supported in Intel® 82575 gigE and 82598 10GigE controllers.

[11] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration
of virtual machines. In NSDI (2005), USENIX.

[12] DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualiza-
tion system including a virtual machine monitor for a computer
with a segmented architecture. VMware US Patent 6397242, Oct
1998.

[13] FRASER, K., HAND, S., NEUGEBAUER, R., PRATT, I.,
WARFIELD, A., ANDWILLIAMS, M. Safe hardware access with
the Xen virtual machine monitor. In 1st Workshop on Operating
System and Architectural Support for the on demand IT InfraS-
tructure (OASIS) (October 2004).

[14] GROSSMAN, L. Large Receive Offload implementation in Nete-
rion 10GbE Ethernet driver. In Ottawa Linux Symposium (2005).

[15] INTEL® CORPORATION. Intel® 64 and IA-32 Architectures Op-
timization Reference Manual. www.intel.com/products/
processor/manuals/index.htm.

[16] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ, S. Un-
modified device driver reuse and improved system dependability
via virtual machines. In OSDI (2004), pp. 17–30.

[17] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimiz-
ing network virtualization in Xen. In USENIX Annual Technical
Conference (June 2006).

[18] MENON, A., SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G.,
AND ZWAENEPOEL, W. Diagnosing performance overheads in
the Xen virtual machine environment. In First ACM/USENIX
Conference on Virtual Execution Environments (VEE’05) (June

2005).
[19] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP receive

performance. In USENIX Annual Technical Conference (June
2008).

[20] NEIGER, G., SANTONI, A., LEUNG, F., RODGERS, D., AND
UHLIG, R. Intel® virtualization technology: hardware support
for efficient processor virtualization. Intel® Technology Journal
10, 3 (August 2006). www.intel.com/technology/itj/
2006/v10i3/.

[21] NELSON, M., LIM, B.-H., AND HUTCHINS, G. Fast transparent
migration for virtual machines. In USENIX Annual Technical
Conference (April 2005).

[22] PCI SIG. I/O virtualization. www.pcisig.com/
specifications/iov/.

[23] QUMRANET. KVM: Kernel-based virtualization driver. www.
qumranet.com/wp/kvm wp.pdf.

[24] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In HPDC (2007).

[25] SANTOS, J. R., JANAKIRAMAN, G., AND TURNER, Y. Network
optimizations for PV guests. In 3rd Xen Summit (Sept 2006).

[26] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G., AND PRATT,
I. Bridging the gap between software and hardware techniques
for i/o virtualization. In HP Labs Tech Report, HPL-2008-39
(2008).

[27] SAPUNTZAKIS, C., CHANDRA, R., PFAFF, B., CHOW, J.,
LAM, M., AND ROSENBLUM, M. Optimizing the migration of
virtual computers. In 5th Symposium on Operating Systems De-
sign nad Implementation (December 2002).

[28] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtu-
alizing I/O devices on VMware Workstation’s hosted virtual ma-
chine monitor. In USENIX Annual Technical Conference, Gen-
eral Track (2001), Y. Park, Ed., USENIX, pp. 1–14.

[29] WALDSPURGER, C. A. Memory resource management in
VMware ESX Server. In OSDI (2002).

[30] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
performance in the Denali isolation kernel. In OSDI (2002).

[31] WILLMANN, P., COX, A. L., AND RIXNER, S. Protection strate-
gies for direct access to virtualized I/O devices. In USENIX An-
nual Technical Conference (June 2008).

[32] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent direct net-
work access for virtual machine monitors. In High Performance
Computer Architecture (HPCA) (February 2007).

Notes
1xen-unstable.hg changeset 15521:1f348e70a5af, July 10, 2007
2linux-2.6.18-xen.hg changeset 103:a70de77dd8d3, July 10, 2007
3Using two cores in the same CPU would have improved perfor-

mance due to the shared L2 cache. We chose the worst case configura-
tion since we cannot enforce that all guests will share the same socket
with the driver domain.
4The message size includes IP and UDP headers but does not in-

clude 14 bytes of Ethernet header per packet.
5Even if the guest does not request that the grant be revoked Xen

will not allocate the page to another guest while the grant is active,
mantaining safe memory protection between guests.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association42




