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Abstract

Electric energy consumed in data centers is rapidly
growing. Power-aware IT, recently called ‘green IT’, is
widely recognized as a significant challenge. Disk stor-
age is a non-negligible energy consumer. Rather, in light
of recent data-intensive systems where a number of disk
drives are incorporated, the disk storage may be what
we must consider primarily. Yet, all of the disk drives
are not used for primary datasets, but rather larger por-
tion of them are utilized for storing a variety of copies
such as backups and snapshots. Saving the energy of
such storage resources that manage copies is a promis-
ing approach. The paper presents a power-aware disaster
recovery system, in which the reflection of transferred
updated information can be deferred through eager com-
paction technique. Great energy saving of storage sys-
tems is expected in the remote secondary site. Our ex-
periments using a commercial database system show that
80-85% energy of the secondary-site disk storage can be
saved with small penalties of possible service breakdown
time.

1 Introduction

Many attentions are paid on the energy consumption of
IT systems, which has been grown up by 25% every year
[9]. The recent analysis [2] reports that the annual elec-
tricity cost paid by the system owner will go up to twice
higher than the annual server expense in 2009. More and
more powerful cooling systems and power-supply equip-
ments are being installed into data centers for accommo-
dating the increase of energy consumption; accordingly,
the electric energy and the related equipments account
for 44% of TCO in a typical system [1]. In addition to
the cost issue, energy and heat management has become
a key of data center design and operation. The exploding
energy consumption might strictly constrain the design
space of modern IT systems [32]. Hence, energy saving
is a grand challenge for IT research and development.

Storage systems are non-negligible energy consumer
in IT systems. Storage systems present 27% of total en-
ergy consumption in a typical data center [23]. As the
digital data volume is explosively increasing [16], ex-
tremely many disk drives are being incorporated into an
enterprise system to improve the throughput. Thus, much
larger portion of the total energy may be consumed by the
storage system in high-performance data-intensive sys-
tems. Q. Zhu et al. in paper [34] points out an interesting
example, where disk drives account for 71% of the to-
tal energy consumption in a large-scale OLTP system.
Therefore, energy saving of the disk storage is rather es-
sential as well as server processors and network devices.

Interestingly, all the disk drives of recent enter-
prise disk storage are not necessarily used for primary
datasets. Rather, larger portion of the disk drives are uti-
lized for storing a variety of copies to improve the system
performance and availability. Suppose a simple IT sys-
tem, which holds a single snapshot in a local data center
and a backup copy in a remote data center. Two thirds of
all the disk drives equipped in the total system are used
for copies. Modern enterprise systems may use much
more disk drives for copies [18]. Saving the energy of
such storage resources should be a natural idea.

The paper proposes a power-aware disaster recovery
system. It has been widely recognized that the busi-
ness breakdown due to unpredictable disasters such as
terrors and hurricanes provides a nation and a society
with terrible damage [7,25]. Business continuity is be-
ing enforced by nation-level legal systems as well as by
enterprise-level internal disciplines [3,26,29]. The dis-
aster recovery system [8, 15, 17] is a practical solution
which places a remote secondary site and, in case of dis-
aster, continues the business on the secondary site. By
concentrating transferred update information through ea-
ger compaction technique, our proposed system can de-
rive longer idle time of the data volume in order to reduce
significantly the energy consumption of disk storage of
the secondary site with small penalties of service break-
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Figure 1: A disaster recovery system based on database
log forwarding.

down time. In the real disaster recovery system, many
resources of the secondary site may not be fully utilized
when the primary site is normally operating. Great en-
ergy saving is expected in practice. To the best of our
knowledge, similar researches have not been published.

This paper is organized as follows. Section 2 concisely
describes disaster recovery systems that are currently de-
ployed in many enterprise systems. Section 3 proposes
novel techniques for energy saving of disaster recovery
systems and Section 4 evaluates the proposal through the
experiments using a commercial database system. Sec-
tion 5 briefly summarizes related works and finally Sec-
tion 6 concludes the paper.

2 Disaster recovery system

A disaster recovery system comprises two or more sites.
Business is usually operated in the primary site and, once
a disaster damages the primary site, the business is con-
tinued in the remote secondary site. For enabling such
disaster recovery, up-to-date data of the primary site must
be always copied into the secondary site. Many solutions
have been proposed in papers and deployed into real sys-
tems, but the basic idea is similar in that they are com-
posed of the following two steps: (1) transferring only
updated information of the primary site to the secondary
site and (2) reflecting it to the storage in the secondary
site. Here the updated information means queries or
transactions for the conventional logical database repli-
cation, changed blocks for the storage-level physical
block forwarding [8, 17], and database log entries for the
log forwarding [15,27].

The recovery capability of such a disaster recovery
system can be defined by two metrics: recovery point ob-
jective (RPO) and recovery time objective (RTO). RPO
denotes possibility of data loss, i.e. how latest data can
be recovered in case of disaster. RTO means inter-site
takeover overhead, i.e. how soon the business can start
again in the secondary site in case of disaster. It is prefer-
able that RPO and RTO would be small. This paper fo-
cuses on enterprise-level systems such as brokerage and
e-commerce, which accept only small service breakdown
time and do never allow any data loss even in case of dis-
aster. Thus, we assume here that inter-site data transfer

Volume of
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Standby Standby
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Figure 2: Deferred log application.

is done in the synchronous fashion; specifically, RPO is
always zero. Needless to say, our contribution can be
directly applied to more relaxed asynchronous modes.

3 Power-aware disaster recovery system

To save the energy consumption of disaster recovery sys-
tems, we focus on the disk storage in the secondary site,
in which most of the storage resources are used only for
storing backup copies.

Let us describe a scenario based on database log for-
warding, which is recently deployed in high-end disaster
recovery systems. Figure 1 illustrates a disaster recovery
system based on database log forwarding, where physi-
cal database log is shipped from the primary site to the
secondary site and the forwarded log is applied in the
secondary site.

3.1 Deferred log application

Our idea is to defer the application of transferred
database log to derive longer idle time of the data vol-
ume in the secondary site. Figure 2 illustrates a batch
application scheme for realizing such deferred log appli-
cation. In the secondary site, the transferred log is stored
in the log volume and is not immediately applied to the
data volume. While the database log is not being applied,
the data volume is idle, so that the energy consumption
of the data volume can be saved by spinning down the
volume. Longer standby time gives greater energy sav-
ing, but provides larger amount of unapplied log stored
in the log volume. In case of disaster, the secondary site
must apply all the unapplied log before starting the busi-
ness again. Therefore, deferability of log application is
mainly determined by RTO requirements.

Let us discuss the relationship between RTO require-
ments and deferability. Let Rge, and R, be the log
generation rate in the primary site and the maximum log
application rate in the secondary site respectively. We
assume that the recovery time of the secondary site is
proportional to the amount of unapplied log'. The fol-

!Fast log application is a key to quick recovery [19]. Other marginal
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Table 1: Typical OLTP systems

Rank | Vendor System tpmC Database # of disks # of disks
(data volume) | (log volume)
1 IBM System p5 595 4,033,378 IBM DB2 9 6400 360
2 IBM eServer p5 595 3,210,540 IBM DB2 UDB 8.2 6400 140
3 IBM eServer p5 595 1,601,784 Oracle Database 10g 3200 96
4 Fujitsu | PRIMEQUEST 540 16p/32¢ | 1,238,579 Oracle Database 10g 1920 224
5 HP Integrity Superdome 64p/64c | 1,231,433 | Microsoft SQL Server 2005 1680 56

Quoted from Top Ten TPC-C by Performance Version 5 Results disclosed at http://www.tpc.org/ as of December 11, 2006.

lowing formulae give the optimal batch configuration: a
batch interval T,,4 and a necessary log application time
in the interval T,,,;, the combination of which can gain
maximum energy conservation. For the page limitation,
we have to omit the mathematical proof.

R? .
Twnd o TrT0
(Rapl - Rgen) : Rgen
Rapi
T, ) LN
Pl Romt — Ryon RTO

Here Trro denotes a RTO requirement, i.e. given al-
lowance of service breakdown time. Implicitly, Rqp >
Rgen and TRTO > Tup + Tdown’ where Tup and Tdown
denote time penalties of spinning up and down respec-
tively. The secondary site can concentrate log applica-
tion based on the above batch configuration and proac-
tively spin up and down the data volume in order to save
energy consumption of the disk storage.

3.2 Eager log compaction

apl

R
Rgen
this section, we introduce eager compaction technique to
improve the log application throughput significantly.

In a disaster recovery system based on log forwarding,
the transferred log entries are applied to the data volume
in a way similar to database redo operation. In the nor-
mal redo operations, log entries are applied strictly in log
sequence number (LSN) order. On the contrary, our pro-
posed eager techniques can compact the log sequence in
a window buffer and apply the compacted sequence to
the data volume. The compaction process comprises log
folding and log sorting. Log folding is a technique to re-
duce the number of log entries to be applied. The log
entries which manipulate the identical record are coa-
lesced in the window buffer. For example, assuming that
three log entries, insert (datal), update (datal
— data2) and update (data2 — data3), are
given in the sequence, these three entries, manipulat-
ing the same record, can be logically folded into a sin-
gle entry, insert (data3). On the other hand, log
sorting reorders log entries in the window buffer to im-

Obviously, larger

leads to greater energy saving. In

recovery overheads are out of the scope of this paper.

prove disk access sequentiality. In many cases, an en-
try of database log has a physical reference to the target
record. Log sorting leverages such physical information.
Both the methods together can improve the log applica-
tion throughput. Accordingly, larger energy saving can
be expected.

3.3 Discussion

Here we would like to briefly discuss our contribution
to the total energy consumed by the secondary-site stor-
age. Table 1 shows top-five systems quoted from “Top
Ten TPC-C by Performance Version 5 Results”. Four
systems used only 2.2-5.6% of all the disk drives for
database log, and the other system used only 11.6% for
log. That is, in the secondary site, only very few disk
drives must be always spinning actively and the other
disk drives can be spun down by the combination of de-
ferred log application and eager log compaction. The
contribution of our idea is still significant on the whole
storage system in the secondary site.

Although this section discusses the problem mainly
based on the database log forwarding, the proposed
method can be easily extended to other remote replica-
tion methods such as logical database replication and
physical block forwarding. Specifically, eager com-
paction technique can be directly applied to physical
block forwarding. Forwarded blocks can be folded and
sorted similarly based on physical block address. On
the other hand, slight modification is necessary for log-
ical database replication, since queries and transactions
described in SQLs are not aware of physical addresses.
Queries and transactions should be scheduled with assis-
tance of batch query scheduling techniques [21,24]. So
far, such compaction techniques of updated information
were intended for reducing inter-site traffic [17]. In con-
trast, our attempt is focused on deriving long idle period
for energy saving.

4 Evaluation

This section presents validating experiments using TPC-
C benchmark, showing that disk power consumption of
the secondary site can be saved with slight degradation
of the quality of business continuity. Online transactions
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Table 2: Basic parameters of disk drive models.

Model IBM HGST
Ultrastar 36215 | Deskstar T7K250
Capacity 18.4 GB 250 GB
Rotational speed 15000 rpm 7200 rpm
Avg. seek time 3.4 ms 8.5 ms
Transfer rate 55 MB/s 61 MB/s
Active power 39.0 W 9.7W
Idle power 223 W 524 W
Standby power 4.15W U)4.04 W
L)2.72W
(N)0.93 W
Spin-down 150s U)0.7s,351]
penalties 62.25] (L)17.0s,19.0J
(time and energy) (N)0.7s,351]
Spin-up 26.0s U)0.7s,357
penalties 904.81 (L) 17.05,19.07
(time and energy) (N)0.7s,351]

(U): unloaded mode, (L): low-rpm mode, (N): non-spinning mode

are typical workloads that are seen in enterprise-level dis-
aster recovery systems.

We prepared a hybrid simulation environment for
measuring the potential energy saving due to the pro-
posed system. In the experiment, we used a disk drive
simulator which can calculate energy consumption based
on a disk drive model. We implemented deferred log
application and eager log compaction on the top of the
disk drive simulator. The developed log applier can ap-
ply database log generated by HiRDB [15], a commercial
database system.

The experiments were done on a Linux server with
dual Xeon processors and 2GB main memory. We set up
TPC-C benchmark with 16 and 160 warehouses respec-
tively, and we generated database log on each configura-
tion by executing one million transactions using HiRDB
plus 512MB database buffer with no think time. At this
execution, we also traced IO behavior by using a kernel-
level IO tracer. Then, by replaying the traced IOs using a
disk drive model in the simulation environment, we sim-
ulated log generation at the primary site. Here, we as-
sumed that the primary site processed transactions at the
maximum rate on the specified disk drive model. Next,
we applied the generated database log by the log applier,
and measured the power reduction effect at the secondary
site. Throughout this experiment, we followed the stor-
age system configuration of “IBM System p5 595” in Ta-
ble 1. That is, we assumed that 94.4% of disk drives were
used for the data volume and the same type of disk stor-
age was used both in the primary and secondary sites.
The experiments were conducted for different RTO re-
quirements and different window buffer lengths. For
validation, we compared the energy saving of the pro-
posed power-aware system with the conventional system
in which the transferred update information is immedi-
ately reflected.

100[s] —
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1000[s] ===y

Average power consumption

0.5t
N
\
0 |
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Compaction buffer [MB]
(a) 16 warehouses
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8
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Figure 3: Power saving of secondary-site disk storage
with high-end disk drives.

Table 3: Batch interval for 160 warehouses and high-end
disks under 100 seconds of RTO requirement.
Window buffer | 32 MB | 128§ MB | 512 MB
Batch interval | 536s 1070 s 2150s

Figure 3 summarizes the results obtained with a high-
end disk drive model. Basic parameters of the model
are presented in Table 2. This model, which is based on
IBM Ultrastar 36715, may not be new, but has been used
in many previous papers [4, 20, 33,34]. In the graphs,
each bar, denoting the average power consumption of
the disk storage in the secondary-site storage, is normal-
ized by that of the conventional system. Larger window
buffer could accelerate the log application throughput
more, and accordingly, greater power saving was gained.
Note that, by using 512 MB window buffer, which is as
large as the database buffer of the primary site, 85% of
the power could be conserved totally in the secondary-
site storage. Such great saving was supported by ac-
celerated log application; R;::L could speed up to 20.5
(W=16) and 49.3 (W=160) at maximum by eager log
compaction. On the other hand, more tolerant RTO re-
quirements could lead to more energy saving, but its con-
tribution was slight. In our experiments, only short RTOs
(such as 30 seconds) failed because RTOs were shorter
than time penalties of spinning up and down the volume,
but moderate RTOs (100 seconds and more) could con-
serve the energy so much.
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Let us consider the batch interval T,,4. Frequent
transition of energy modes affects the life time of disk
drives. Table 3 summaries sampled values of T,,4.
With small buffer, the data volume had to change its
modes frequently, but with as large buffer as 512 MB,
the disk mode changes only 40 times a day. Note that
this frequency was given when the primary site gener-
ates database log at top speed. Thus, it looks almost
acceptable, since many high-end disk drives support at
least 50,000 cycles of starts/stops. Of course, more toler-
ant RTO gives larger intervals. This analysis reveals that
eager compaction is a key technique to the longevity of
disk drives.

We conducted the experiments using a recent mid-
range disk drive, which has new energy-efficient fea-
tures [14]. Basic parameters of the model are presented
in Table 2 too. The disk drive, which is based on HGST
Deskstar T7K250, has three standby states: unload, low-
rpm and non-spinning (equal to conventional standby
mode). Basically, the proposed disaster recovery system
could work with mid-range disk drives similarly. But,
since recent mid-range disk drives can change the energy
modes with much smaller time penalties than high-end
disk drives, the proposed system could work for such
small RTOs as 30 seconds. Figure 4 compares these
three standby modes with 160 warehouses. By using the
non-spinning standby mode, 80% saving was gained at
maximum in comparison with the conventional system.
However, we cannot observe the substantial benefit of
using new energy-saving functions such as unload and
low-rpm.

In summary, the proposed power-aware disaster re-
covery system can achieve great energy saving of the
secondary-site disk storage without little harm to the re-
covery capability. Only 100 seconds and 30 seconds of
RTO allowance were needed for high-end disks and mid-
range disks respectively. This observation is surprising,
since strict high-availability systems, as known as five
nines (99.999%), allow only 315 seconds of breakdown
per year. Our proposal can be promising in such top-
drawn disaster recovery systems.

5 Related works

Research communities have presented various attempts
for energy-efficient disk storage.

The simplest approach is to transition disk drives to
a low-power mode after the predetermined time period
has elapsed after the last disk access. This technique is
widely deployed in commercial disk drives. More so-
phisticated techniques that try to tune the threshold adap-
tively have been also studied [6, 11]. Such threshold
based techniques work effectively for battery-operated
mobile and laptop computers. However, it looks difficult

‘ ‘
unload  m—
low-rpm XX
non-spinning SSSSXY

05

V7277777

N
\ N
i ‘
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Compaction buffer [MB]

Average power consumption

n

512

Figure 4: Power saving of secondary-site disk storage
with mid-range disk drives under 30 seconds of RTO re-
quirement.

to directly apply these techniques to enterprise systems.

Massive Array of Idle Disks (MAID) [5] and Pop-
ular Data Concentration (PDC) [4] are alternative ap-
proaches that migrate/replicate popular blocks on spe-
cific disk drives to create long idle period of the other
disk drives. These techniques leveraging access locality
are deployed in real archival storage systems.

Exploiting redundancy information and large cache
space that RAID capability holds seems a reasonable ap-
proach. Energy Efficient RAID (EERAID) [20] and RI-
MAC [33] can arrange IO requests at RAID controllers
so as to avoid evicting out blocks that are originally
stored in spun-down disk drives as much as possible.
Power-Aware RAID (PARAID) [30] introduces an asym-
metric parity placement on the legacy RAID-5 so that the
system can dynamically change the number of actively
spinning disk drives.

Other researchers [12, 34] have actively studied on
multi-speed disk drives which have the capability of
changing the rotational speeds. These attempts look very
effective. However, to our knowledge, such multi-speed
disk drives are still limited in experimental prototypes
and not yet seen in the market.

Recently several application-assisted approaches for
storage energy conservation have been reported. Cooper-
ative [0 [22,31] is a set of power-aware IO system calls,
by which the user can specify deferability and abortabil-
ity to each 10. Compiler-based application transforma-
tion [10, 13, 28] tries to arrange IO commands in source
code levels in order to concentrate 10 requests.

Our work differs from these previous works in that
we are trying to fully leverage the characteristics of the
secondary-site disk storage. That is, the disk storage
there manages only copies and its resources are not nec-
essarily busy when the primary site is alive. Our eager
strategy of concentrating database log can provide long
idleness to many disk drives, accordingly obtaining sub-
stantial energy saving opportunities.
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6 Conclusion

The paper proposes a power-aware disaster recovery sys-
tem, in which the reflection of transferred updated infor-
mation can be deferred through eager compaction tech-
nique, so as to gain great energy saving of storage sys-
tems in the remote secondary site. Experiments with a
commercial database system showed that 80-85% energy
consumption can be conserved in the secondary-site disk
storage with small penalties of possible service break-
down time.

In this paper, we focus on the energy consumption of
disk drives which are main components of recent disk
storage. Further, we would like to extend our approach so
as to provide a system-wide analysis considering RAID
controllers and cache memory.
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Abstract

Through clean-slate implementation of two storage
optimizations—track-aligned extents and track-aligned
RAIDs—this paper shows the values of independent
validations. The experience revealed many
unanticipated disk and storage data path behaviors as
potential roadblocks for wide deployment of these
optimizations, and also identified implementation issues
to retrofit these concepts to legacy data paths.

1 Introduction

Validation studies are common in science, but less
emphasized in computer science, because a rapidly
moving field tends to focus on advancing the frontier.

Through a clean-slate Linux implementation of two
storage optimization techniques, we aim to demonstrate
the values of validations. (1) Existing validations are
often implicit when the original contributors extend
their work. Therefore, subtle assumptions on the OS
platforms, system configurations, and hardware
constraints can become obscure over time.
Independent validations help identify these roadblocks,
to ease the technology transfer for wide adoptions. (2)
Independent validations can explore design alternatives
to verify the resiliency of a concept to different
platforms and hardware generations.

This paper presents a validation study of track-
aligned extents [9] and track-aligned RAIDs [10].
Both showed significant performance gains. Our
experience shows many unanticipated disk features and
interactions along the storage data path, and identifies
implementation issues to retrofit these concepts to the
legacy data path.

2 Track-aligned Extents

The basic idea of track-aligned extents is that an OS
typically accesses disks in blocks, each containing
multiple sectors. Therefore, accessing a block can
potentially cross a track boundary and incur additional
head positioning time to switch tracks. By exploiting
track boundaries, the performance of accessing a track
size of data can improve substantially [9].

2.1 Original Implementation

Track-aligned extents [9] was built under FreeBSD by
modifying FFS [7]. Two methods were proposed to
extract disk track boundaries, one from the user space
and one via SCSI commands. The track boundaries
are extracted once, stored, and imported to FFS at

mount times. The FFS free block bitmaps are
modified to exclude blocks that cross track boundaries.
The FFS prefetching mechanism was modified to stop
at track boundaries, so that speculative disk I/Os made
for sequential accesses would respect track alignments.

Track-aligned extents rely on disks that support
zero-latency access, which allows the tail-end of a
requested track to be accessed before the beginning of
the requested track content [13]. This feature allows
an aligned track of data to be transferred without
rotational overhead.

With Quantum Atlas 10K II disks, the measured
results showed 50% improvement in read efficiency.
Simulated and computed results also demonstrated
improved disk response times and support for 56%
higher concurrency under video-on-demand workloads.

2.2 Recreating Track-aligned Extents

Recreating track-aligned extents involves (1) finding
the track boundaries and the zero-latency access disk
characteristics, (2) making use of such information, and
(3) verifying its benefits. The hardware and software
experimental settings are summarized in Table 1.

Hardware/software
Processor

Configurations
Pentium D 830, 3GHz, 16KB L1 cache,
2x1MB L2 cache

Memory 128 MB or 2GB
RAID controller Adaptec 4805SAS
Disks tested Maxtor SCSI 10K5 Atlas, 73GB, 10K

RPM, 8MB on-disk cache [6]
Seagate CheetahR 15K.4 Ultra320 SCSI,
36GB, 8MB on-disk cache [12]
Fujitsu MAP3367NC, 10K RPM, 37GB,
with 8MB on-disk cache [5]

Operating system Linux 2.6.16.9
File system Ext2 [4]
Table 1: Experimental settings.

2.3 Extracting Disk Characteristics

User-level scanning: Since the reported performance
gains for track alignments are high, conceivably a user-
level program can observe timing variations to identify
track boundaries. A program can incrementally issue
reads, requesting one more sector than before, starting
from the 0™ sector. ~ As the request size grows, the disk
bandwidth should first increase and then drop as the
request size exceeds the size of the first track (due to
track switching overhead). The process can then
repeat, starting from the first sector of the previously
found track. Binary search can improve the scheme.
To reduce disturbances caused by various disk data
path components, we used the DIRECT IO flag to
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bypass the Linux page cache, and we accessed the disk
as a raw device to bypass the file system. We used a
modified aacraid driver code to bypass the SCSI
controller, and we used sdparm to disable the read
cache (RCD=1) and prefetch (DPTL=0) of the disk.

As a sanity check, we repeated this experiment
with an arbitrary starting position at the 256" sector
(instead of the 0" sector). Additionally, we repeated
this experiment with a random starting sector between 0
and 512, with each succeeding request size increasing
by 1 sector (512 bytes).

70
60
50

§
bandwidth 40 1§, <.~ - B} - .
(MB1sec) 30 ' [ G (IO o st
2] o od
10 4/
0. ,
0o 1000

2000 3000 4000 5000 6000

request size (sectors)

« starting from the Oth sector = 256th sector random sector

Figure 1: Bandwidth for various read request sizes
from varying starting sectors on a Maxtor disk.

Surprisingly, although Figure 1 exhibits bandwidth
“cliffs,” the characteristic trends are not sensitive to the
starting location of requests, suggesting that those cliffs
are caused by sources of data misalignments other than
tracks. Some possibilities are transfer granularity of
the DMA and the management granularity of 10
buffers. The graph also suggests the presence of other
optimizations that are not disabled. For example, the
high bandwidth before the first cliff far exceeds our
expected performance gain. [2] conjectures that the
DEC prefetch scheme implemented in Maxtor may
override specified disk settings at times and proceed
with prefetching. Additionally, for certain ranges of
request sizes (e.g., between 1,000 and 1,500 sectors),
the average bandwidth shows multimodal behaviors.

To verify that those cliff locations are not track
boundaries, we wrote a program to access random cliff
locations with the access size of 512 sectors (256KB),
as indicated by the first cliff location. We ran multiple
instances of this program concurrently and perceived no
noticeable performance difference compared to the
cases where the accesses started with random sectors.

SCSI diagnostic commands: Unable to extract
track boundaries from a naive user-level program, we
resorted to SCSI SEND/RECEIVE DIAGNOSTIC
commands to map a logical block address (LBA) to a
physical track, surface, and sector number.! However,
this translation for large drives is very slow, and it took
days to analyze a 73-GB drive. We modified the
sg _senddiag program in the Linux sg3 utils
package to speed up the extraction process, according
to the following pseudocode:

' We did not use DIXtrac [8] for the purpose of clean-slate
implementation and validation.

1. Extract from LBA 0 sector-by-sector until either
track number or surface number changes. Record
LBA and the physical address of this track boundary.
Store the track size S.

2. Add S to the last known track boundary T and
translate S+ Tand S+ T — 1.

a. If we detect a track change between S + T and S
+ T -1, then S + T is a new boundary. Record
the boundary. Go to step 2.

b. If there is no change between S+ Tand S+ T —
1, the track size has changed. Extract sector-
by-sector from the previous boundary until we
detect a new track boundary. Record the
boundary, update S, and go to step 2.

3. If sector reaches the end of the disk in step 2, exit.

Through this scheme, we extracted the layout mapping
specifics that are not always published in vendors’
datasheets and manuals [5, 6, 12] in about 7 minutes.

Disk spindle
LBA36607..0 LBA 106496..143103
—
g -
—
—_—

LBA106495..71552
LBA 36608..71551

Disk platter (side view)

Figure 2: Non-monotonic mapping between LBA
and track numbers.

First, the LBA mapping to the physical track number is
not monotonic (Figure 2). For the Maxtor drive, LBA
0 starts on track 31 of the top surface and increases
outward (from the disk spindle) to track 0, and then the
LBA continues from the bottom surface of track 0
inward to track 31. Next, the LBA jumps to track 63
of the bottom surface growing outward to track 32, and
then switches back to the top surface’s track 32 and
continues inward to track 63. The pattern repeats.

Variants of this serpentine numbering scheme [1,
11] are observed in Seagate [12] and Fujitsu [5] drives
as well. At the first glace, one might conjecture this
numbering scheme relates to the elevator and scanning-
based 10 schedulers, but this scheme is attributed to the
faster timing when switching a head track-to-track on
the same surface than when switching to a head on a
different surface [11].

Second, the track size differs even for the same
disk model from the same vendor, due to the
manufacturing process of the disks. After assembly,
the disk head frequency response is tested. Disk heads
with a lower frequency response are formatted with
fewer sectors per track [2]. We purchased 6 Maxtor
10K V drives at the same time and found 4 different
LBA numbering schemes (Table 2). The implication
is that track extraction needs to be performed on every
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disk, even those from the same model. Track size may
differ in the same zone on the same surface due to
defects. Thus, we are no longer able to calculate the
track boundary with zone information but have to
extract all tracks.

Serial number Surface 1, outer

most track

Surface 0, outer
most track

J20 Q3 CZK 1144 sectors 1092 sectors
J20 Q3 COK/J20 Q3 C9K 1092 sectors 1144 sectors
J20 TK 7GK 1025 sectors 1196 sectors

J20 TF S0K/J20 TF MKK 1060 sectors 1170 sectors
Table 2: Track sizes of Maxtor 10K V drives.

Verifying track boundaries: To verify track
boundaries, we wrote a program to measure the elapsed
time to access 64 sectors with shifting offsets from
random track boundaries. The use of 64 sectors eases
the visual identifications of boundaries. We measured
tracks only from the top surface within the first zone of
a Maxtor disk, so we could simplify our experiment by
accessing a mostly uniform track size of 1,144 sectors.

14
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10

Elapsed time 8
(msec) 6

4
24
0

2288

ll) 11:14
Offsset from track boundaries (sectors
Figure 3: Elapsed time to access 64 sectors,
starting from different offsets from various track

boundaries on a Maxtor drive (the track size is 1,144
sectors).

Figure 3 confirms extracted track boundaries. Each
data point represents the time to access a 64-sector
request starting from a randomly chosen sector offset
from a track boundary. The 6-msec timing variation
reflects the rotation delay for a 10,000 RPM drive.
The average elapsed time for accessing 64 sectors
across a track boundary is 7.3 msec, compared to 5.7
msec for not crossing the track boundaries.
Interestingly, the difference of 1.6 msec is much higher
than the track switching time of 0.3 to 0.5 msec [6].
We also verified this extraction method with other
vendor drives. The findings were largely consistent.

Zero-latency feature verification: Since the
effectiveness of track-aligned extents relies on whether
a disk can access the data within a track out-of-order,
we performed the tests suggested in [13]. Basically,
we randomly picked two consecutive sectors, read those
sectors in reverse LBA order, and observed the timing
characteristics. We performed the test with various
caching options on.

As shown in Figure 4, with a Maxtor drive, 50% of
the time the second request is served from the on-disk
cache, indicating the zero-latency capability. (We did
not observe correlations between the chosen sectors and

whether the zero-latency feature is triggered.) In
contrast, the other two drives always need to wait for a
3- to 6-msec rotational delay before serving the second
sector request.  For the remainder of the paper, we will
use the Maxtor drives.

1

08 = Fujitsu lst access

Fujitsu 2st access

Percentage of 06 = Maxtor 1st access
accesses ) 4 Maxtor 2nd access
Seagate Ist access
02 Seagate 2nd access
0
0 2 4 6 8 10
Access time (msec)
Figure 4: CDF of disk access times for accessing

random sets of two consecutive LBAs in the reverse
order.

24 Exploiting Track Boundaries

The track boundary information can be exploited at
different levels.

User level: One possibility is to create a user
program to make use of this track information.
Similar to the disk defragmentation, instead of moving
file blocks to reduce the level of fragmentation, we can
move blocks to align with track boundaries. This
approach avoids kernel changes and can make files
smaller than a track not cross track boundaries, and files
larger than a track aligned to track boundaries.

However, this approach needs to overcome many
tricky design points. For example, certain blocks are
referenced from many places (e.g., hardlinks).
Moving those blocks requires tracking down and
updating all references to the block being moved.
Such information might not be readily available.

File system level: We can mark certain sectors as
bad so a file system cannot allocate blocks that consist
of sectors across track boundaries. However, this
method does not prevent a track-size file from being
allocated across two tracks. This approach also
anticipates some bandwidth loss when a single IO
stream accesses multi-track files due to unused sectors.
However, when a system is under multiple concurrent
10 streams, the performance benefits of accessing fewer
tracks when multiplexing among streams can outweigh
the performance loss.

Implementation: We implemented track-aligned
extents in ext2 [4] under Linux. First, we used the
track boundary list extracted by the SCSI diagnostic
commands as the bad-block list input for the mke2fs
program, which marks all of these blocks, so that they
will not be allocated to files. We also put this list in a
kernel module along with two functions.  One
initializes and reads the list from user space. The
other is used by different kernel components to find a
track boundary after a given position.
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We then modified the ext2 pre-allocation routine to
allocate in tracks (or up to a track boundary). One
disadvantage of this approach is over-allocation, but the
unused space can later be returned to the system.
However, should the system anticipate mostly track-
size accesses, we are less concerned with the wasted

space. For instance, database and multimedia
applications can adjust their access granularity
accordingly. With the aid of this list, we can also

change the read-ahead to perform prefetches with
respect to track boundaries.

Our experience suggests that individual file
systems only need to make minor changes to benefit
from track alignments.

2.5 Verification of the Performance Benefits

We used the sequential read and write phases of the
Bonnie benchmark [3], which is unaware of the track
alignments. The write phase creates a 1-GB file,
which exceeds our 128-MB memory limit. We
enabled SCSI cache, disk caching, and prefetch to
reflect normal usage. Each experiment was repeated
10 times, analyzed at a 90% confidence interval.

Figure 5 shows the expected 3% slowdown for a
single stream of sequential disk accesses, where
skipped blocks that cross track boundaries can no
longer contribute to the bandwidth.

We also ran diff from GNU diffutils 2.8.1
to compare two 512-MB large files via interleaved
reads between two files, with the —~speed-large-
files option. Without this option, diff will try to
read one entire file into the memory and then the other
file and compare them if memory permits, which
nullifies our intent of testing interleaved reads. Figure
6 shows that track-aligned accesses are almost twice as
fast as the normal case. In addition, we observed that
disk firmware prefetch has no regard for track
boundaries. Disabling on-disk prefetch further speeds
up track-aligned access by another 8%. Therefore, for
subsequent experiments, we disabled disk firmware
prefetch for track-aligned accesses.

Additionally, we conducted an experiment that
involves concurrent processes issuing multimedia-like
traffic streams at around 500KB/sec. We used 2GB
for our memory size. We wrote a script that increases
the number of streams by one after each second, and the
script records the startup latency of each new stream.
Each emulated multimedia streaming process first
randomly selects a disk position and sequentially
accesses the subsequent blocks at the specified
streaming rate. We assumed that the acceptable
startup latency is around 3 seconds, and the program
terminates once the latency reaches 3 seconds.

Figure 7 shows that the original disk can support
up to 130 streams with a startup latency within 3
seconds. A track-size readahead window can reduce
the latency at 130 streams by 30%, while track-aligned
access can reduce the latency by 55%.

90 -
80 = =3 =
70 4
60 4
Bandwidt}50 Track-aligned
(MB/ sec) 40 - O Normal
30
20 -
10
0
Write Read
Figure 5: Bandwidth comparisons between

conventional and track-aligned accesses to a single
disk, when running the Bonnie benchmark.

0+ T T T d

Track-aligned Track-aligned, Normal Normal, no on-
no on-disk disk prefetch
prefetch

Figure 6: Speed comparisons between conventional
and track-aligned accesses to a single disk, diffing
two 512MB files with 128MB of RAM.
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Figure 7: Startup latency comparisons of

conventional I/O requests, requests with a one-track
prefetch window, and track-aligned requests on a
single disk, with a varying number of multimedia-
like request streams.

3 Track-aligned RAIDs

implementation: Schindler et al [10]
a track-aligned RAID. The
implementation was through a user-level logical
volume manager process. The process bypasses
conventional storage data paths and issues raw IOs.
An application needs to be linked with a stub library to
issue reads and writes. The library uses shared
memory to avoid data copies and communicates with
Atropos through a socket.

Without the conventional storage data path,
Atropos is responsible for scheduling requests with the
help of a detailed disk model. Atropos also needs to
duplicate logics provided by conventional RAID levels.
As a proof of concept, the measured prototype
implemented RAID-0 (no redundancy) and RAID-1

Original
proposed Atropos,
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(mirroring), although issues relevant to other RAID
levels are addressed in the design.

To handle different track sizes due to disk defects,
for simplicity Atropos skips tracks that contain more
than a threshold number of defects, which translates to
about 5% of storage overhead.

The performance for track-aligned RAIDs matches
the efficiency expectation of track-aligned extents.

Recreating Track-aligned RAIDs: Our clean-
slate validation implements track-aligned RAIDs via
modifying RAID-5 (distributed parity), retrofitting the
conventional storage data path. Thus, unmodified
applications can enjoy the performance benefit as well.
However, we had to overcome a number of
implementation constraints.

Recall from Section 2.3 that the track sizes can
differ even from the same disk model. This difference
was much more than that caused by defects.
Therefore, we need measures beyond skipping tracks.
For one, we can construct stripes with tracks of
different sizes. Although this scheme can work with
RAID-0, it does not balance load well or work well
with other RAID levels. For example, RAID-5 parity
is generated via XORing chunks (units of data striping)
of the same size. Suppose we want the chunk unit to
be set to the size of a track. If we use the largest track
size as the chunk unit, some disks need to use 1+ tracks
to form a chunk. Or we can use the smallest track size
as the chunk unit, leading to about 10% of unused
sectors for disks with larger track sizes.

Additionally, we observed that parity in RAIDs can
interact poorly with prefetching in the following way.
Take RAID-5 as an example. At the file system level,
prefetching one track from each non-parity disk
involves a prefetching window that is the size of a track
multiplied by the number of disks that do not contain
the parity information. However, as a RAID redirects
the contiguous prefetching requests from the file system
level, the actual forwarded track-size prefetching
requests to individual disks are fragmented, since reads
in RAIDs do not need to access the parity information.

Another poor interaction is the Linux plug and
unplug mechanisms associated with disk queues and
multi-device queues. These mechanisms are designed
to increase the opportunities for data reordering by
introducing artificial forwarding delays at times (e.g., 3
msec), and do not respect track boundaries. Therefore,
by making these mechanisms aware of track boundaries,
we were finally able to make individual disks in a
RAID-5 access in a track-aligned manner.

Implementation: We modified Linux software
RAID-5 to implement the track-aligned accesses. We
altered the make request function, which is
responsible for translating the RAID wvirtual disk
address into individual disk addresses. If the
translated requests crossed track boundaries, the unplug
functions for individual disk queues were explicitly
invoked to issue track-aligned requests.

To prevent the parity mechanisms from
fragmenting track-size prefetching requests, we
modified RAID-5. Whenever the parity holding disk
in a stripe was the only one not requested for that stripe,
we filled in the read request for that disk and passed it
down with all others. When this dummy request was
completed, we simply discarded the data. The data
buffer in Linux software RAID-5 is pre-allocated at
initialization, so this implementation does not cause
additional memory overhead.

Verification of performance benefits: We
compared the base case RAID-5 with a track-aligned
RAID-5 with five disks, and a chunk size of 4KB. For
the Bonnie benchmark, we used a 1-GB working set
with 128MB of RAM. Figure 8 shows that the write
bandwidth for the three system settings falls within a
similar range due to buffered writes. However, for
read bandwidth, the track-aligned RAID-5 outperforms
the conventional one by 57%.

The diff experiment compared two 512-MB files
with 128MB of RAM. Figure 9 shows that the track-
aligned RAID-5 can achieve a 3x factor speedup
compared to the original RAID-5.
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Figure 8: Bandwidth comparisons of the track-

aligned RAID-5, a RAID-5 with a prefetch window
of four tracks, and the original RAID-S, running
Bonnie with 1GB working set and 128MB of RAM.
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Figure 9: Elapsed time comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window
of four tracks, and the original RAID-5, when
running diff comparing two S12MB files.

For the multimedia-like workload with 2GB of RAM,
the track-aligned RAID-5 demonstrates a 3.3x better
scaling in concurrency than the conventional RAID-5
(Figure 10), where a RAID-5 with a readahead window
comparable to the track-aligned RAID-5 contributes
only less than half of the scaling improvement. The
latency improvement of track-aligned RAID-5 is
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impressive considering that the RAID-5 was expected
to degrade in latency when compared to the single-disk
case, due to the need to wait for the slowest disk for
striped requests. Track-aligned accesses reduce the
worst-case rotational timing variance and can realize
more benefits of parallelism.
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Figure 10: Startup latency comparisons of the
track-aligned RAID-5, a RAID-5 with a prefetch
window of four tracks, and the original RAID-5,
with a varying number of multimedia-like request
streams.

4 Lessons Learned and Conclusions

Through clean-slate implementations of track-aligned
extents and track-aligned RAIDs, we have
demonstrated important values of independent
validations. First, the validation of research results
obtained five years ago shows the relative resiliency
and applicability of these concepts to different
platforms and generations of disks. On the other hand,
as the behaviors of disks and the legacy storage data
path become increasingly complex, extracting physical
disk geometries will likely become increasingly more
difficult. Also, as disks become less homogeneous
even within the same model, techniques such as track-
aligned RAIDs need to devise additional measures to
prevent a RAID from being limited by the slowest disk.

Second, through  exploring design and
implementation alternatives, we revealed many
unanticipated interactions among layers of data path
optimizations. On-disk prefetching, IO scheduling
and aggregation, RAID parity, file system allocation,
and file system prefetching—all have side effects on 10
access alignment and profound performance
implications.  Unfortunately, the interfaces among
data path layers are lacking in expressiveness and
control, leading to modifications of many locations to
retrofit the concepts of access alignment into the legacy
storage data path, the remedy for which is another
fruitful area of research to explore.
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