
A TCP-layer name service for TCP ports

Sérgio Freire
PT Inovação / IEETA / Univ. of Aveiro

André Zúquete
IEETA / IT / Univ. of Aveiro

Abstract

This paper presents a simple name service for TCP ports,
allowing services to be reached by name instead of num-
ber. Names are arbitrary byte arrays that are bound to
listening ports. Name resolutions take place during the
TCP three-way handshake, not requiring extra message
exchanges. The new TCP handshake conforms with
the standard and is fully compatible with existing TCP
implementations. A prototype implementation was de-
veloped in Linux, paying special attention to backward
compatibility with legacy systems (kernels and applica-
tions). Among the many opportunities created by the
name service, it allows services with unusual names,
known only by small communities, to remain undetected
by port scanners (though not by network sniffers).

1 Introduction

Name systems are useful for translating user-friendly,
readable strings into numerical identifiers. A popular
name system is DNS [7], used for translating hierarchi-
cal, typed names into IP addresses, among other identi-
fiers. Other name services frequently used by applica-
tions are RPC name services, such as rpcbind for Sun
RPC and Microsoft Locator for Microsoft RPC. But up
to now there is no widely used, generic name service for
transport endpoints, such as TCP or UDP port names.

Historically, some TCP port names are statically
bound to well known services or servers [11]. Exam-
ples are ftp for port 21, telnet for port 23, http
for port 80, etc. This static mapping between names and
ports was initially supported by local services using lo-
cal data (e.g. file /etc/services in Unix systems).
Currently there is a database service with all these static
mappings [10]. However, these mappings are not manda-
tory; they just reflect a common use.

In this paper we propose a name service for TCP ports
which enables clients and servers to resolve arbitrary
names (byte arrays) to TCP ports. The advantages of

using this name service are twofold: (i) users may dis-
criminate servers using names instead of numbers and
(ii) TCP port scanners, such as nmap, should not be ca-
pable of discovering servers bound to unusual names.

Using names for referring ports provides a more intu-
itive way to refer services, instead of numbers. Service
names that formerly were bound to static well-known
port numbers may continue to exist but do not need any
more to be bound to the same ports. For instance, we
can bind the names http to port 8080 and http1 to
port 80. Clients access either port specifying their name,
http or http1, instead of numbers 8080 and 80. Port
names are also useful for uniform and uniquely tagging
ports used by the servers of overlay networks.

Using arbitrary byte arrays to name TCP ports also
prevents port scanning tools to discover listening ports.
In fact, the success of port scanners in discovering lis-
tening ports bound to servers is due to the current small
domain of port numbers —

[

1, 216 − 1
]

. With arbitrary
port names, we are able to deploy services with unusual,
possibly long port names which cannot be easily found
by port scanners. Services with unusual, confidential
port names may be useful in many circumstances requir-
ing restricted access profiles, namely:

• Experimental server deployment in pre-production
environments;

• Private service deployment, such as personal con-
tent providers (file or web servers, mail servers);

• Restricted overlay networks.

The screening of listening TCP ports by mapping them
to unusual port names is somewhat similar to the Port
Knocking mechanisms [1, 4]. However, Port Knocking
is an access control mechanism that requires a per-host or
per-network access key. Instead, we simply require the
knowledge of port names and not any key-based access
control mechanisms; the knowledge of a port name is the
key to access the service that uses the port.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 275



2 Related Work

In this paper we describe a way of addressing a peer port
by a name formed by a set of bytes, which acts as a weak
access control mechanism – one has to know the name
to access the port. Thus, in this section we briefly de-
scribe other contributions concerning these two subjects:
binding of names to transport ports and access control
mechanisms to transport ports.

DNS SRV records: RFC 2782 [3] defined a new type
of DNS records, SRV RR, for resolving port names to a
set of 〈host DNS name,port number〉 pairs. By creating
SRV RR entries in the DNS, domain administrators are
able to specify a set of locations (hosts) of a given ser-
vice described by a friendly name, for the domain. For
example, when the name foobar. tcp is resolved in
a DNS domain, it returns a set of 〈host DNS name,port
number〉 pairs where the foobar service over TCP sits.

These records are useful for locating public services
with well-known names in a domain, but not for deal-
ing with arbitrary port names used in ad-hoc client-server
connections, due to three reasons. First, the client appli-
cation must initially learn the DNS domain of the tar-
get host before resolving the port name. For instance,
to connect to port foobar at host 192.168.1.1, the
client must first discover the DNS domain of 192.168.1.1
(e.g. example.org) and then to resolve the name
foobar. tcp.example.org. Second, the server

host must have a DNS name so that clients could match
target IP addresses with host names returned by SRV RR
resolutions. Finally, it requires frequent DNS updates,
and the inherent administrative privileges to do so, in
order to dynamically create SRV RR entries whenever
servers bind names to port numbers. This is a major
blocker for dynamic port name assignment and for nor-
mal end-user usage of port names.

TCPMUX: This is a service using TCP port 1 which
allows a host to provide a port name handoff service for
itself [5]. A client host opens a connection to port 1 on
a server host and transmits the desired port name in the
data stream; the server replies with a positive or negative
name resolution by means of a reply character in the data
stream. If the named service is available, the connection
is transferred to the desired service.

In Linux systems the TCPMUX service is provided
for named services handled by the inetd daemon. Thus,
arbitrary servers cannot provide name-number bindings
to TCPMUX; only servers listed in inetd configuration
files can have named ports.

The use of TCPMUX is not transparent to clients, as
they must use in a different way the connection to a
server: first they must contact TCPMUX and provide the
port name, then interpret the TCPMUX reply and only

afterwards, in case of success, proceed with the intended
client-server interaction. Since most TCP client-server
applications use a different approach, they contact di-
rectly a target server using its port number, our goal was
just to improve this semantic by allowing them to use
names instead of numbers to identify servers.

Port Knocking: Also known as Spread-Spectrum
TCP [1, 4], Port Knocking (PK) is a mechanism for re-
stricting access to services by allowing only authenti-
cated requests to reach servers. It is a passive authen-
tication scheme for TCP connections, acting as an auxil-
iary and external mechanism, independent of the kernel
and the applications. The so called knock or authenti-
cation is typically a sequence of connection attempts to
closed ports, which are intercepted and validated by a PK
daemon at the destination peer. After receiving a correct
knock from a client, the daemon allows it to connect to
the wanted service port. The sequence of ports contacted
in a knock can have an encoded meaning, like the origin
IP, the remote port number and a checksum, that allows
further control of the connection establishment.

Port Knocking, though a simple concept, requires: (i)
a PK daemon between the client and the server; (ii) a
firewall close to the server with an interaction mecha-
nism with the PK daemon; (iii) a client application, or
library functions, to carry on the knock before starting a
connection to a protected port; and (iv) a set of closed
ports for sending knock sequences.

Alternative PK implementations, using a single knock
datagram (Tailgate TCP) or either an IP or TCP option
(Option-Key TCP), have also been discussed in [1]. Nev-
ertheless, the requirements are mainly the same.

Proposed Internet Draft: A discontinued IETF Inter-
net Draft [12] proposed an extension to support TCP port
names. The main goal of this proposal was to increase
the number of concurrent connections for existing ser-
vices by decoupling them from fixed IANA reserved port
numbers. In this proposal, named server ports are in fact
resolved by clients, i.e., clients proposed a resolution that
is accepted by the server host if the name exists. Thus, a
SYN with a server named port contains also a proposed
server port name, and the returned SYN+ACK returns a
name-number acceptance reply.

Port names are UTF-8 strings exchanged in a TCP
header option, which strongly limits their maximum
length. As a TCP header is limited to a maximum of
60 bytes, 20 of them mandatory, TCP options can only
occupy 40 bytes. Moreover, part of these 40 bytes may
be occupied by other TCP options, which further reduces
the possible lengths of port names. This was one of the
major concerns with this proposal.

Our name service is somewhat similar to this proposal
but takes some different approaches. First, name to num-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association276



ber resolutions are given by servers, and not proposed by
clients, which allows us to get the same port-service de-
coupling on the server side if required. Second, names
have arbitrary contents, they are simply byte arrays, and
not just UTF-8 strings. Third, names are transmitted in
the payload of TCP segments to overcome the space lim-
itations of TCP headers. And fourth, name-number res-
olutions are provided to client TCP stacks, which allows
future enhancements to perform semantic-aware valida-
tions (e.g. signed name resolutions, which can be vali-
dated by client applications). Therefore, our proposal is
a superset of this one, in the sense that it includes all its
benefits while being more flexible and powerful.

3 Proposed Name System

DNS and RPC name systems are implemented by
autonomous servers, using well-known port numbers,
which receive resolution requests from the application
layer. Their goal is to provide a mapping from a name
to a number that could be used as a parameter for lower
protocol layers, namely the transport layer. Our proposal
for a TCP name system goes in the opposite direction,
which is to integrate it in the existing mechanism used
for TCP connection establishment: the three-way hand-
shake. Consequently, we do not use any new or existing
name server, which is preferable for fault tolerance, and
the name service is implemented by the TCP layer.

Besides fault tolerance, we designed the new TCP
name service with the following goals in mind. The first
one was to maintain compatibility with existing TCP/IP
stacks. The second one was to add a new name service,
and not to replace the current addressing mechanism
used by TCP segments, with port numbers, by names,
as numbers are more efficient to handle than names. The
third one was to allow TCP clients and servers to use ar-
bitrary name formats, in order not to restrict future uses
by upper protocol layers. We also foreseen another goal,
which is not covered in this paper, which is to add arbi-
trary semantics to name resolution (e.g. versions). In this
paper we only have one simple, default semantic: strict
byte equality between names.

3.1 Name binding
Our TCP name service allows TCP servers to bind names
to listening ports and clients to use port names when re-
questing a TCP connection. The port name is associ-
ated with the service/application during the socket bind-
ing procedure at the server side. Clients refer the port
name when they specify the TCP address of the server.

As we just want to provide a TCP name service,
and not to fully replace port numbers by port names,
port names must always be associated to port numbers.
Therefore, the modified TCP layer on the server side will
keep a port number to each local port name. When a

SYN SENT
(x, 0, name)

SYN SENT (x, y)

CLOSED

CLOSED

ESTABLISHED
(x, y)

ESTABLISHED
(x, y)

LISTENING
(y, name)

LISTENING (y)

SYN RECV
(y, x, name)

SYN RECV (y, x)

ESTABLISHED
(y, x)

ESTABLISHED
(y, x)

@@

@@

@@

@@

-

-

-

-

SYN (x, 0), name

RST (0, x), name

SYN+ACK (y, x), name

ACK (x, y)

SYN (x, y)

RST (y, x)

SYN+ACK (y, x)

ACK (x, y)

�

�

�
�

�

�
�

�

�

�

(b)

(a)
Client Server

Figure 1: Standard 3-way handshake, using port numbers
x and y (a) and extended 3-way handshake using a server port
name (b). The slashed line represents an alternative server reply
(RST segment) when the connection to port y or with the given
name is rejected.

application binds a name to a TCP endpoint (socket), it
immediately gets a number as well. For backward com-
patibility, applications may specify the port number; if
not specified, the TCP layer allocates a free port number.

For applications binding only names to ports, and not
fixed numbers, the TCP layer can allocate random port
numbers on a per-request basis. The benefits of this pro-
tocol decoupling from fixed port numbers are (i) harder
traffic eavesdropping and (ii) increased number of con-
current connections, as in [12].

Port names are resolved as soon as possible to allow
clients and servers to use port numbers in the normal
TCP stream exchanges. Consequently, we integrated
the name resolution in the TCP synchronization phase,
where clients and servers exchange initial sequence num-
bers and TCP options (see Fig. 1). The port name is spec-
ified in the SYN request, the name→number resolution is
given in the subsequent SYN+ACK segment. Thereafter,
both peers will always use the server port number in all
segments exchanged in the TCP stream. Stateful fire-
walls should have no problems managing this, if properly
updated to keep track of port number/name pairs.

The name resolution works as follows. The server
host, when receiving a SYN with a port name, ignores
the destination port number and looks for a socket in the
LISTEN state bound to that port name. If such a socket
is found, a SYN+ACK is sent to the client containing the
name resolution, i.e. port name and number. Otherwise,
a RST packet is sent with the unresolved port name.

3.2 Backward compatibility
Port name resolutions, expressed in SYN requests, should
carry a null server port number to force a RST reply from

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 277



standard TCP stacks. Though the TCP standard does not
refer that 0 is an invalid port number, in practice it is not
used; therefore, it can be used for differentiating old TCP
stacks from new ones implementing port names. Proto-
col scrubbers [6] should be updated to include TCP des-
tination port 0 as valid when port name option is present.

Port name resolutions are only provided to clients that
request a connection to a TCP endpoint with a port name.
Clients using the normal TCP connection request, i.e.
using a server port number, do not get any name reso-
lution when the port number is actually associated with
a name. Likewise, they do not receive a port name in
a RST reply. This is done for two reasons. First, the
client didn’t request a name resolution, so it should not
get one. Second, for backward compatibility with cur-
rent TCP stacks, clients using the actual number-based
port addressing should observe the standard TCP behav-
ior from servers (described in Fig. 1).

3.3 Port names in TCP segments

As above described, port names are only used in the TCP
synchronization phase, therefore in SYN, SYN+ACK and
RST segments. Thus, we have to conceive a way of
adding arbitrary names to these segments and to signal
that they should be used.

As referred in §2, adding a name to a TCP header is not
a suitable solution, because it severely limits the length
of port names. Instead, we decided to use the TCP pay-
load to store the port name and to use a new TCP option
to signal the presence and the length of the port name in
the beginning of the segment payload.

TCP synchronization segments allow clients and
servers to exchange data. Though this is not supported
by the Berkeley sockets API, it is allowed by the XTI
(X/Open Transport Interface) and is a correct behavior
according to the standard [9]. RST segments usually do
not carry any data in their payload but a standard amend-
ment [2, §4.2.2.12] defines that they may carry a reason
message in their payload. Thus, using the payload of
synchronization and reset segments for exchanging port
names is correct, according to the standards, though such
data should not be delivered to upper layers.

As port names are transmitted in the segments’ pay-
load, they have a direct effect in the management of the
stream sequence numbers. The sequence and acknowl-
edge numbers exist to control the data stream between
peers, guaranteeing byte order and resilience to data loss.

We decided to keep the semantics of sequence num-
bers during the synchronization using port names, i.e.
names are seen as data exchanged in payloads (see ta-
ble below), but they are removed from the data that is
provided to upper protocol layers. This does not raise
any coherence problem, since upper layers are not aware
of sequence numbers. In other words, upper layers do

not notice that the amount of data received in segments’
payload is not the same amount of data they actually get.

Consequently, whenever a name resolution is required
in a SYN segment, its reply, SYN+ACK or RST, acknowl-
edges a sequence number equal to the client’s ISN plus
the port name length plus one. Similarly, the client’s ACK
will contain a sequence number equal to its ISN plus the
server’s port name plus one:

TCP standard TCP with port names
Segment seq ack seq ack

SYN ISNc 0 ISNc 0
RST 0 ISNc + 1 0 ISNc + 1 + L

SYN+ACK ISNs ISNc + 1 ISNs ISNc + 1 + L

ACK ISNc + 1 ISNs + 1 ISNc + 1 + L ISNs + 1

where L is the length of the port name.

3.4 Caching of name resolutions
Some name services’ clients maintain caches of name
resolutions, which is common in DNS but not in RPC.
We decided not to maintain caches in our TCP port name
resolutions. Two main reasons justify our decision. First,
name resolutions are piggybacked in the first two seg-
ments of a TCP synchronization, thus the overhead of
name resolution is too reduced to justify the existence
and management of caches in clients for increasing per-
formance. Second, stalled cached resolutions can lead to
wrong TCP connections that only applications can pos-
sibly detect, but not the TCP layer.

3.5 Managing port access restrictions

The TCP name service prevents services with unusual
names to be discovered by port scanning tools, hiding
them from people or tools that wish to exploit and not
really use them. But in §3.1 we saw that port names may
be associated to fixed port numbers. Thus, to enforce the
name-based access control we need to disallow clients to
connect server ports using only their number. So, servers
must specify, when binding, if (i) port-based connections
are permitted or (ii) only name-based connections are al-
lowed. The latter allows the TCP layer to use random
numbers for the server port on each connection request.

3.6 Denial of Service (DoS) issues
Name resolutions in servers require more time than sim-
ple port number lookups. However, the extra workload
required to resolve port names does not prevent other
clients from accessing the server or even local server ap-
plications to run. Thus, though name resolution flooding
attacks may slow down servers, by itself they do not cre-
ate a clear and well defined DoS scenario.

4 Implementation

Our TCP name service was implemented in a recent
Linux kernel (2.6.22.9), using a Fedora 7 kernel source.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association278



In Linux there are two separate implementations of
TCP, one for IPv4 and another for IPv6. Since our im-
plementation is mainly a proof of concept, we only up-
dated the TCP version for IPv4. Nevertheless, we took
into consideration some IPv6 issues, as for the naming of
TCP endpoints, described in §4.7.

4.1 Socket related structures

Port names, either bound to local ports or to be resolved
within connection handshakes, are stored in dynamically
allocated, kernel space memory areas. Structures storing
port numbers, inet sock and tcp sock, were updated
to include an optional port name; the latter was also up-
dated to include port access restrictions.

Some auxiliary structures, tcp request sock and
tcp options received, were also enriched to main-
tain the length of the port name. This value simplifies the
calculation of sequence numbers in TCP segments con-
taining port names and helps locating the socket structure
in hashed lists (see §4.3).

4.2 Name→number mappings
Since port names are just a step towards port num-
bers, some mapping table converting names to num-
bers must exist. This mapping only applies for lo-
cal ports, as no caching of remote name-number bind-
ings is required. We implemented this mapping by
extending the inet hashinfo structure to include
an hashed variable based on a new structure named
portname hashbucket:

struct portname_hashbucket {
spinlock_t lock;
struct list_head list;
unsigned short port;
char * portname;
unsigned short int portname_len;

};

An element is first added to this hashed variable when
a socket is bound to a port name, in inet bind. This is
implemented by a new function, inet bind hash portname,
which extends the functionality of inet bind hash. An el-
ement is removed from the hashed variable when the
socket referring it is eliminated in inet unhash.

This variable is used for name lookup in two dis-
tinct occasions: (i) when binding a name to a port, in
inet csk get port, to check if it is not already being used,
and (ii) in inet lookup listener, to get the port number of
a listening socket upon receiving a SYN with a port name.

4.3 Socket hashed lists

Linux implements several hashed lists to index sock-
ets. One of them is listening hash, containing
INET LHTABLE SIZE lists of sockets involved in TCP
connections. The actual list of a socket is given by the
functions inet ehashfn and inet sk ehashfn, which produce

an integer from the source/destination addresses and port
numbers. Thus, both local and remote port numbers are
crucial for indexing sockets in listening hash.

However, clients using name-based connections raise
a problem: they don’t have a remote port number when
adding a socket in the SYN SENT state, i.e. after sending
a SYN segment with a port name. Thus, for these client
sockets there is a temporary hashing within listening hash
until getting the name resolution. This temporary hash-
ing applies only to sockets in the SYN SENT state; after
getting a correct SYN+ACK segment with the required
name resolution, the remote port is used to relocate the
socket, now in the ESTABLISHED state.

For the temporary hashing we used the same functions
and replaced the server port number by the port name
length. We could as well have used a null server port
number but using the name length is more likely to im-
prove, with no extra costs, the spreading of sockets (only
in the SYN SENT state) among the hashed lists when
many port names are used.

4.4 Defining port access restrictions
Implementing TCP port access restrictions is accom-
plished by setting a new, TCP level socket option. We
named this option TCP BIND PORTNAME and gave it the
value 15. There are three different listening modes that
can be set through this option: (0) port number only (cur-
rent standard); (1) port name only (legacy connection re-
quests are not allowed); and (2) port number and port
name: both legacy and name-based SYN requests are ac-
cepted. This option is checked by tcp v4 rcv function,
upon the arrival of a SYN segment.

4.5 Port names in TCP segments

When a client application issues a connection request
using a port name, the local TCP stack copies the
port name from the sin portname field of the pro-
vided sockaddr in named structure and updates inter-
nal variables as needed. The kernel will then send a SYN
packet with the port name in the payload and a TCP op-
tion indicating the length of the port name, which cor-
responds to the given sin portname len. We used the
value 0x45 for the new TCP option, which uses a 16-bit
integer to communicate the port name length.

As the Linux TCP does not handle user data in syn-
chronization segments, no modifications were required
to prevent port names exchanged in SYN and SYN+ACK
segments to be delivered as normal data to applications.

Linux has one special socket tcp socket that is
only used for sending RST segments by the function
tcp v4 send reset. This function and ip send reply, called
to generate the actual RST IP datagram, were extended
to process further parameters, namely port names, and to
handle port names in TCP segments.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 279



4.6 IP fragmentation
Linux sets the Don’t Fragment IP flag in TCP segments
not containing payload, such as SYN and SYN+ACK,
which is a correct behavior [8] since their packet length
is bellow the fragmentation threshold of 68 bytes. But
with our port name resolution their payload contains a
(possibly large) port name, thus fragmentation must be
allowed in those cases. The function tcp transmit skb was
modified, when calling ip queue xmit, to allow IP frag-
mentation for this synchronization segments.

4.7 Using TCP port names

For binding names to TCP ports and to express
port names when connecting to them, we created
two new structures by extending sockaddr in and
sockaddr in6 structures, for IPv4 and IPv6, respec-
tively. The new types were created by adding two ex-
tra fields: a pointer to the port name and the port name
length, see below.

struct sockaddr_in_named {
sa_family_t sin_family; /* AF_INET_NAMED */
in_port_t sin_port; /* port number */
struct in_addr sin_addr; /* IP address */
unsigned char sin_zero[2];
uint16_t sin_portname_len; /* Port name len */
char __user *sin_portname; /* Port name */

};

Furthermore, we created two new address families for
using with these new structures: AF INET NAMED for
IPv4 and AF INET6 NAMED for IPv6. At kernel level,
these new address families are used solely for identifying
the type of naming structures provided by client applica-
tions; for all other family tagging requirements, it uses
the families AF INET and AF INET6.

The function inet bind was extended to support binding
to a local port name. Similarly, the functions tcp connect
and tcp v4 connect were extended to support the connec-
tion to named ports.

5 Experience

For evaluating the features described in this proposal, we
implemented some basic TCP client/server programs us-
ing the new sockaddr in named structure and ran them
in a server with our modified Linux kernel. We also
patched some well known applications, such as Apache2
web server and netcat. Apache2 was partially patched
to bind to a specific port name; netcat was used as
a basis to build a command line application supporting
both port number and port name bindings.

All possible combinations of server port name bind
modes with client connection methods were tested suc-
cessfully within and between machines with the stan-
dard and enhanced TCP stacks, as shown in the table
below. Clients with old TCP stacks can only connect to

port numbers (cases 3 and 4) and servers with old TCP
stacks can only handle connection requests including a
valid port number (cases 2 and 4). Clients with new TCP
stack (cases 1 and 2) can either connect by port number
or name but the latest will only be fully understood by
the new TCP port name aware stack (case 1).

Server-side stack
new old

Client-side new X1 X2

stack old X3 X4

6 Conclusions

In this paper we presented a simple name service for TCP
ports. This name service allows TCP clients to identify
services by port name, instead of port number, which is
more user-friendly. The name service extends TCP syn-
chronization segments, conforms with the TCP standard
and is compatible with existing TCP implementations.
Resolution of port names requires additional processing
but does not create an opportunity for DoS attacks.

A security advantage of TCP port naming is that it al-
lows services with unusual names, known only by small
communities, to remain undetected by port scanners.

Our prototype implementation confirmed the compati-
bility with other TCP implementations. Furthermore, we
were able to maintain compatibility with legacy systems,
kernels and applications.

References
[1] BARHAM, P., HAND, S., ISAACS, R., JARDETZKY, P.,

MORTIER, R., AND ROSCOE, T. Techniques for Lightweight
Concealment and Authentication in IP Networks. Tech. Rep.
IRB-TR-02-009, Intel Research Berkeley, 2002.

[2] BRADEN, R. Requirements for Internet Hosts – Communication
Layers. RFC 1122, IETF, Oct. 1989.

[3] GULBRANDSEN, A., VIXIE, P., AND ESIBOV, L. A DNS RR
for specifying the location of services (DNS SRV). RFC 2782,
IETF, Feb. 2000.

[4] KRZYWINSKI, M. Port Knocking: Network Authentication
Across Closed Ports. SysAdmin Magazine, 12 (2003), 12–17.

[5] LOTTOR, M. TCP port service Multiplexer (TCPMUX). RFC
1078, IETF, Nov. 1988.

[6] MALAN, G. R., WATSON, D., JAHANIAN, F., AND HOWELL,
P. Transport and application protocol scrubbing. In INFOCOM
(3) (2000), pp. 1381–1390.

[7] MOCKAPETRIS, P. Domain names – implementation and speci-
fication. RFC 1035, IETF, Nov. 1987.

[8] POSTEL, J. Internet Protocol. RFC 791, IETF, Sept. 1981.

[9] POSTEL, J. Transmission Control Protocol. RFC 793, IETF,
Sept. 1981.

[10] REYNOLDS, J. Assigned Numbers: RFC 1700 is Replaced by an
On-line Database. RFC 3232, IETF, Jan. 2002.

[11] REYNOLDS, J., AND POSTEL, J. Assigned Numbers. RFC 1700,
IETF, Oct. 1994.

[12] TOUCH, J. A TCP Option for Port Names. Internet draft (ex-
pired), IETF, Apr. 2006.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association280




