
FlexVol: Flexible, Efficient File Volume Virtualization in WAFL

John K. Edwards, Daniel Ellard, Craig Everhart, Robert Fair,
Eric Hamilton, Andy Kahn, Arkady Kanevsky, James Lentini,

Ashish Prakash, Keith A. Smith, Edward Zayas
NetApp, Inc.

Abstract
Virtualization is a well-known method of abstracting
physical resources and of separating the manipulation
and use of logical resources from their underlying im-
plementation. We have used this technique to virtualize
file volumes in the WAFL R© file system, adding a level
of indirection between client-visible volumes and the un-
derlying physical storage. The resulting virtual file vol-
umes, or FlexVol R© volumes, are managed independent
of lower storage layers. Multiple volumes can be dynam-
ically created, deleted, resized, and reconfigured within
the same physical storage container.

We also exploit this new virtualization layer to pro-
vide several powerful new capabilities. We have en-
hanced SnapMirror R©, a tool for replicating volumes be-
tween storage systems, to remap storage allocation dur-
ing transfer, thus optimizing disk layout for the des-
tination storage system. FlexClone R© volumes pro-
vide writable Snapshot R© copies, using a FlexVol vol-
ume backed by a Snapshot copy of a different vol-
ume. FlexVol volumes also support thin provisioning; a
FlexVol volume can have a logical size that exceeds the
available physical storage. FlexClone volumes and thin
provisioning are a powerful combination, as they allow
the creation of light-weight copies of live data sets while
consuming minimal storage resources.

We present the basic architecture of FlexVol vol-
umes, including performance optimizations that de-
crease the overhead of our new virtualization layer. We
also describe the new features enabled by this architec-
ture. Our evaluation of FlexVol performance shows that
it incurs only a minor performance degradation com-
pared with traditional, nonvirtualized WAFL volumes.
On the industry-standard SPEC SFS benchmark, FlexVol
volumes exhibit less than 4% performance overhead,
while providing all the benefits of virtualization.

1 Introduction
Conventional file systems, such as FFS [18], ext2 [3], or
NTFS [9], are allocated on dedicated storage. Each file

system, representing a single namespace tree, has exclu-
sive ownership of one or more disks, partitions, and/or
RAID groups, which provide the underlying persistent
storage for the file system. The controlling file system is
solely responsible for all decisions about the allocation
and use of individual storage blocks on these devices.

With the continuing growth in disk capacities, this
has become an increasingly inefficient way to manage
physical storage. Larger storage capacities generate a
commensurate pressure to create larger file systems on
larger RAID groups. This optimizes for performance and
efficient capacity utilization. A large number of spindles
provides good performance; combining many disks into
one large file system makes it easy to dynamically allo-
cate or migrate storage capacity between the users or ap-
plications sharing the storage. But this growth in storage
capacity can be challenging for end users and adminis-
trators, who often prefer to manage their data in logical
units determined by the size and characteristics of their
application datasets.

As a result, administrators have faced competing
pressures in managing their storage systems: either cre-
ate large file systems to optimize performance and uti-
lization, or create smaller file systems to facilitate the
independent management of different datasets. A num-
ber of systems, ranging from the Andrew file system
[13, 23] to ZFS [26], have addressed these competing
needs by allowing multiple file systems, or namespace
trees, to share the same storage resources. By separating
the management of file systems from the management of
physical storage resources, these systems make it easier
to create, destroy, and resize file systems, as these oper-
ations can be performed independent of the underlying
storage.

NetApp R© has followed a similar evolution with its
WAFL file system [11]. For most of its history, users
have allocated WAFL file systems (or volumes in Net-
App terminology) on dedicated sets of disks configured
as one or more RAID groups. As a result, WAFL pre-
sented the same management challenges as many other
file systems. Customers who combined separate file sets
on a single volume were forced to manage these files as

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 129



a single unit. For example, WAFL Snapshot copies oper-
ate at the volume level, so an administrator had to create
a single Snapshot schedule sufficient to meet the needs
of all applications and users sharing a volume.

In this paper we describe flexible volumes, a stor-
age virtualization technology that NetApp introduced in
2004 in release 7.0 of Data ONTAP R©. By implementing
a level of indirection between physical storage contain-
ers (called aggregates) and logical volumes (FlexVol vol-
umes), we virtualize the allocation of volumes on phys-
ical storage, allowing multiple, independently managed
file volumes, along with their Snapshot copies, to share
the same storage.

Adding a level of indirection allows administrators
to manage datasets at the granularity of their choice. It
also provides a mechanism for seamlessly introducing
new functionality. We have used this indirection to im-
plement writable Snapshot copies (called FlexClone vol-
umes), thin provisioning, and efficient remote mirroring.

As is often the case, introducing a new level of in-
direction brings both benefits and challenges. Mapping
between virtual block addresses used by FlexVols and
physical block addresses used by aggregates can require
extra disk I/Os. This could have a significant impact on
I/O-intensive workloads. We have introduced two im-
portant optimizations that reduce this overhead. First,
dual VBN mappings cache physical block numbers in
the metadata for a FlexVol volume, eliminating the need
to look up these mappings on most I/O requests. Second,
lazily reclaiming freed space from a FlexVol volume dra-
matically reduces the I/O required to update the virtual-
to-physical block mappings. With these optimizations
we find that the performance of the SPEC SFS bench-
mark when using a FlexVol volume is within 4% of the
performance of a traditional, nonvirtualized WAFL vol-
ume.

In the remainder of this paper, we first describe the
design and implementation of flexible volumes, includ-
ing an overview of the WAFL file system and a descrip-
tion of some of the new functionality enabled by FlexVol
volumes. Next we describe our tests comparing FlexVol
performance to that of traditional WAFL volumes. Fi-
nally, we survey other systems with similar goals and
ideas and present our conclusions.

2 Background

This section provides a brief overview of the WAFL
file system, the core component of NetApp’s operating
system, Data ONTAP. The original WAFL paper [11]
provides a more complete overview of WAFL, although
some details have changed since its publication. In this
section, we focus on the aspects of WAFL that are most

important for understanding the FlexVol architecture.
Throughout this paper we distinguish between file

systems and volumes. A file system is the code and
data structures that implement a persistent hierarchical
namespace of files and directories. A volume is an in-
stantiation of the file system. Administrators create and
manage volumes; users store files on volumes. The
WAFL file system implements these volumes.

WAFL uses many of the same basic data structures
as traditional UNIX R© style file systems such as FFS [18]
or ext2 [3]. Each file is described by an inode, which
contains per-file metadata and pointers to data or indirect
blocks. For small files, the inode points directly to the
data blocks. For large files, the inode points to trees of
indirect blocks. In WAFL, we call the tree of indirect
blocks for a file its buftree.

Unlike FFS and its relatives, WAFL’s metadata is
stored in various metadata files. All of the inodes in the
file system are stored in the inode file, and the block al-
location bitmap is stored in the block map file.

These data structures form a tree, rooted in the
vol info block. The vol info block is analogous to the
superblock of other file systems. It contains the inode
describing the inode file, which in turn contains the in-
odes for all of the other files in the file system, including
the other metadata files.

WAFL can find any piece of data or metadata by
traversing the tree rooted at the vol info block. As long
as it can find the vol info block, it doesn’t matter where
any of the other blocks are allocated on disk. This leads
to the eponymous characteristic of WAFL—its Write
Anywhere File Layout.

When writing a block to disk (data or metadata),
WAFL never overwrites the current version of that block.
Instead, the new value of each block is written to an un-
used location on disk. Thus, each time WAFL writes a
block, it must also update any block that points to the
old location of the block (which could be the vol info
block, an inode, or an indirect block). These updates re-
cursively create a chain of block updates that reaches all
the way up to the vol info block.

If WAFL performed all of these updates for each
data write, the extra I/O activity would be crippling. In-
stead, WAFL collects many block updates and writes
them to disk en masse. This allows WAFL to allocate
a large number of blocks to a single region in RAID,
providing good write performance. In addition, many of
the written blocks are typically referenced from the same
indirect blocks, significantly reducing the cost of updat-
ing the metadata tree. Each of these write episodes com-
pletes when the vol info block is updated, atomically ad-
vancing the on-disk file system state from the tree rooted
at the old vol info block to the tree rooted at the new one.
For this reason, each of these write episodes is called a

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association130



...

...

...

Inode file
indirect blocks

Inode file
data blocks

Regular file
indirect blocks

Regular file
data blocks

vol_info block

...

Large
file

Sm
all file

B
lock

M
ap

file

Figure 1: WAFL data structures

consistency point or CP for short.
WAFL uses non-volatile memory to log all incom-

ing requests. This ensures that no data is lost in the event
of a failure and allows WAFL to acknowledge write re-
quests as soon as they are logged, rather than waiting
until the next CP has completed and the data is on disk.
After a failure, WAFL returns to the most recently com-
mitted CP and replays the contents of the NVRAM log,
similar to error recovery in a journaling file system [22].

One of the benefits of the WAFL write anywhere al-
location scheme is that it can create point-in-time Snap-
shot copies of a volume almost for free. Each CP re-
sults in a completely consistent on-disk file system im-
age rooted at the current vol info block. By preserving
an old vol info block and the tree rooted from it, we can
create a Snapshot copy of the file system at that point
in time. These Snapshot copies are space efficient. The
only differences between a Snapshot copy and the live
file system are the blocks that have been modified since
the Snapshot copy was created (and the metadata that
points to them). In essence, WAFL implements copy-
on-write as a side effect of its normal operation.

3 FlexVol Architecture
Prior to the introduction of FlexVol volumes, Data ON-
TAP statically allocated WAFL volumes to one or more
RAID groups. Each disk and each RAID group would
belong exclusively to a single volume. We call this style
of configuration, which is still supported in Data ONTAP
today, a traditional volume, or a TradVol.

Our goal, in creating FlexVol volumes, was to
break this tight bond between volumes and their underly-
ing storage. Conceptually, we wanted to aggregate many
disks into a large storage container and allow adminis-
trators to create volumes by carving out arbitrarily sized
logical chunks of this storage.

Thinking about this problem, we realized the re-

lationship between volumes and physical storage is the
same as that between files and a volume. Since we had
a perfectly good file system available in WAFL, we used
it to implement FlexVol volumes. This is the essence of
the architecture: a FlexVol volume is a file system cre-
ated within a file on an underlying file system. A hidden
file system spans a pool of storage, and we create ex-
ternally visible volumes inside files on this file system.
This introduces a level of indirection, or virtualization,
between the logical storage space used by a volume and
the physical storage space provided by the RAID subsys-
tem.

3.1 Aggregates

An aggregate consists of one or more RAID groups. This
storage space is organized as a simple file system struc-
ture that keeps track of and manages individual FlexVol
volumes. It includes a bitmap indicating which blocks
in the aggregate are allocated. The aggregate also con-
tains a directory for each FlexVol volume. This direc-
tory serves as a repository for the FlexVol volume and
associated data, and it provides a uniform repository for
volume-related metadata. It contains two important files
for each FlexVol volume, the RAID file and the container
file.

The RAID file contains a variety of metadata de-
scribing the FlexVol volume, including its volume name,
file system identifier, current volume state, volume size,
and a small collection of other information. We call this
the RAID file because the corresponding information for
a TradVol is stored as part of the RAID label (along with
RAID configuration information).

The container file contains all the blocks of the
FlexVol volume. Thus, the block addresses used within a
FlexVol volume refer to block offsets within its container
file. In some respects, the container file serves as a vir-
tual disk containing the FlexVol volume, with significant
differences as described in later sections.

Since the container file contains every block within
a FlexVol volume, there are two ways to refer to the
location of a given block. The physical volume block
number (PVBN) specifies the block’s location within the
aggregate. This address can be used to read or write
the block to RAID. The virtual volume block number
(VVBN) specifies the block’s offset within the container
file.

To better understand VVBNs and PVBNs, consider
the process of finding the physical disk block given an
offset into a file within a FlexVol volume. WAFL uses
the file’s buftree to translate the file offset to a VVBN—a
block address within the FlexVol volume’s virtual block
address space. This is the same as the way a tradi-
tional file system would translate a file offset to a disk

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 131



2

1

3

4

FBNs

VVBNs

PVBNs

DBNs

FlexVol/Container File

Aggregate

Disks

File

Figure 2: Mapping a block from file to disk. We show a single block as part of several logical and physical storage
containers—a file, a container file holding a FlexVol volume, an aggregate, and a disk. Each provides an array of
blocks indexed by the appropriate type of block number. The file is indexed by file block number (FBN), the container
file by VVBN, and the aggregate by PVBN. Finally, the disks are indexed by disk block number (DBN). To translate an
FBN to a disk block, WAFL goes through several steps. In step 1, WAFL uses the file’s inode and buftree to translate
the FBN to a VVBN. In step 2, WAFL translates the VVBN to a PVBN using the container file’s inode and buftree.
Finally, in step 3, RAID translates the PVBN to a DBN. Step 4 shows the short-cut provided by dual VBNs (see Section
3.3). By storing PVBNs in the file’s buftree, WAFL bypasses the container map’s VVBN-to-PVBN translation.

address. The FlexVol volume’s block address space is
defined by the container file. WAFL uses the container
file’s buftree to translate the VVBN to a block address
in the aggregate’s block address space. This provides a
PVBN, which WAFL can give to the RAID subsystem to
store or retrieve the block. Figure 2 displays this map-
ping process and the relationship between the different
types of block numbers.

Observe that in the container file’s buftree, the first
level of indirect blocks list all of the PVBNs for the
container file. Together, these blocks form an array of
PVBNs indexed by VVBN. We refer to the VVBN-to-
PVBN mapping provided by this first level of indirect
data in the container file as the container map.

3.2 Volumes
Because FlexVol volumes are implemented by container
files, they inherit many characteristics of regular files.
This provides management flexibility, which we can ex-
pose to users and administrators.

When a FlexVol volume is created, its container file
is sparsely populated; most of the logical offsets have
no underlying physical storage. WAFL allocates phys-
ical storage to the container file as the FlexVol volume
writes data to new logical offsets. This occurs in much
the same way as hole-filling of a sparse file in a con-
ventional file system. This sparse allocation of container
files also allows the implementation of thin provisioning,
as described in Section 4.3.

The contents of a FlexVol volume are similar to
those of a traditional WAFL volume. As with a TradVol,

there is a vol info block, located at well-known locations
within the container file space. Within the volume are all
of the standard WAFL metadata files found in a TradVol.

A FlexVol volume contains the same block alloca-
tion files as a traditional volume. While the aggregate-
level versions of these files are indexed by PVBN, in a
FlexVol volume these files are indexed by VVBN. Thus,
the files and the associated processing scale with the log-
ical size of the volume, not with the physical size of the
aggregate.

3.3 Dual Block Numbers
The use of VVBNs introduces a layer of indirection
which, if not addressed, may have significant impact on
read latencies. In a naı̈ve implementation, translating
a file offset to a physical block (PVBN) would require
WAFL to read two buftrees—one for the file to find the
VVBN and one for the container file to find the PVBN.
In the worst case, this overhead could be quite high, as
WAFL might have to perform this translation for each
indirect block as it traverses the file’s buftree.

To address this problem, FlexVol volumes use dual
VBNs. Each block pointer in a FlexVol volume contains
two block addresses, the VVBN and its PVBN transla-
tion. For normal read operations, WAFL never needs to
look up PVBNs in the container file buftree. It just uses
the PVBN values it finds in the dual VBNs stored in the
inodes and indirect blocks of the FlexVol volume. Figure
3 illustrates this process.

For writes, WAFL allocates a VVBN from the
FlexVol volume’s container file and a PVBN from its ag-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association132



2

...
Container map

7

7

...
1 2 3 4 5 6 7 8 9 10 110

Blocks within the aggregate

VVBNPVBN

Pointer
Block

Figure 3: Dual volume block numbers in indirect blocks.
A block pointer within a FlexVol volume contains two
block addresses. One is the FlexVol volume’s VVBN, the
location of the block within the flexible volume’s con-
tainer file. The other is the aggregate’s PVBN, the phys-
ical location of the block. In this example the read path
bypasses the container map and goes directly to PVBN
#7. The VVBN of 2 is the index into the container map
that can be used as an alternate means to find the PVBN.

gregate, and it updates the file and container file buftrees
accordingly. This requires extra processing and I/O. Be-
cause WAFL delays write allocation until it writes a con-
sistency point, this work occurs asynchronously and does
not add latency to the original write request. In work-
loads with good locality of reference, the overhead is
further reduced by amortizing it across multiple updates
to the same buftrees.

3.4 Delayed Block Freeing
When a block is freed—for example, by a file deletion—
we would like to mark it as free in the aggregate as
well as in the FlexVol volume. In other words, we want
FlexVol volumes to return their free space to the under-
lying aggregate. Thus, when a block is no longer ref-
erenced from the active file system or from any Snap-
shot copies we not only mark it free in the FlexVol vol-
ume’s block map, we also free the block in the aggre-
gate’s block map and mark the corresponding location in
the container file as unallocated, effectively “punching a
hole” in the container file.

The fact that unused blocks are eventually returned
from the FlexVol volume to the aggregate is a key feature
of the FlexVol design. Without this functionality, freed
blocks would remain allocated to their FlexVol. The ag-
gregate would not know that these blocks were free and
would not be able to allocate them to other volumes, re-
sulting in artificial free space fragmentation. In contrast,
in our implementation, free space is held by the aggre-
gate, not the FlexVol volume; the free space in the aggre-
gate can be made available to any volume within the ag-

gregate. Most importantly, the unrestricted flow of free
space requires no external intervention and no manage-
ment.

This mechanism also motivates an important per-
formance optimization for freeing blocks. Since WAFL
always writes modified data to new locations on disk,
random overwrites on a large file tend to produce ran-
dom frees within the VVBN space of the FlexVol vol-
ume. This results in random updates of the container
file’s indirect blocks, adding an unacceptable overhead
to random updates of large files.

WAFL avoids this problem by delaying frees from
the container file in order to batch updates. WAFL main-
tains a count of the number of delayed free blocks on
each page of the container map. Up to two percent
of a FlexVol volume’s VVBN space can be in the de-
layed free state. Once the number of delayed free blocks
crosses a one percent threshold, newly generated delayed
frees trigger background cleaning. The cleaning of the
container file is focused on regions of the container block
file that have larger than average concentrations of de-
layed free blocks. Since an indirect block in the con-
tainer file buftree has 1,024 entries, an average indirect
block of the container will hold at least ten (1% of 1,024)
delayed frees, and often significantly more. This reduces
the container file overhead of freeing blocks to less than
one update per ten frees.

4 New Features
Adding a level of indirection between the block address-
ing used by a FlexVol volume and the physical block ad-
dressing used by the underlying RAID system creates a
leverage point that we have used to introduce new func-
tionality and optimizations. In this section, we describe
three such improvements—volume mirroring for remote
replication, volume cloning, and thin provisioning.

4.1 Volume Mirroring
Volume SnapMirror[20] is a replication technology that
mirrors a volume from one system to another. Snap-
Mirror examines and compares block allocation bitmaps
from different Snapshot copies on the source volume to
determine the set of blocks that it must transfer to trans-
mit the corresponding Snapshot copy to the remote vol-
ume. This allows SnapMirror to efficiently update the re-
mote volume by advancing its state from Snapshot copy
to Snapshot copy.

Since the decisions of which blocks to transfer and
where to place them at the destination are based on the
allocation maps, they are based on the type of VBN that
serves as the index to those files. In a traditional vol-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 133



2

...

7

7

...
1 2 3 4 5 6 7 8 9 100

...

...

U 2

5

0 1 2 3 4 5 6 7 9 10811 11

Blocks within the
source aggregate

Blocks within the
destination aggregate

PVBN VVBN
Destination
Block
Pointer

Source
Block
Pointer

container map
destinationsource

container map

???

Figure 4: SnapMirror Transfer. SnapMirror transfers blocks from a source volume to a destination volume based
on VVBNs. The transfers are independent of the physical block numbers involved. Here we show how SnapMirror
updates a block pointer as a block is transferred. On the source, the block has a VVBN of 2 and a PVBN of 7.
When the block is transferred, the destination system assigns it a new PVBN (5) and enters that it in the destination
FlexVol volume’s container map. When it copies the block pointer, SnapMirror preserves the VVBN; the block has the
same logical address within both FlexVols. The PVBN of the destination block pointer is set to PVBN-UNKNOWN
(indicated by a ‘U’ above). A background process will eventually replace this with the correct PVBN. If WAFL needs
to resolve the block pointer before the PVBN is filled in, it can look up the PVBN using the container map.

ume, file block pointers are PVBNs. Thus, to transfer
a block, WAFL reads it from RAID using the PVBN
and transfers it to the destination where it is written to
the same PVBN. If the physical geometries of the source
and destination differ, WAFL cannot optimize the I/O for
the transfer on both the source and the destination. This
is particularly problematic when transferring blocks be-
tween systems with drives that have different sizes and
geometries, such as when transferring between smaller,
faster primary storage disks and larger, slower secondary
storage disks.

In contrast, flexible volume transfers are VVBN-
based. WAFL uses the FlexVol volume’s block alloca-
tion files to determine which VVBNs to transfer, and
it transfers those blocks from the container file on the
source system to the container file at the destination. The
destination system assigns a new PVBN to each block
while maintaining the same VVBN as on the source sys-
tem. This removes geometry restrictions from Volume
SnapMirror because the source and destination make
physical allocation decisions independently. As a result,
volumes can be mirrored between aggregates with dif-
ferent sizes and/or disk configurations.

Changing the PVBNs of the volume across a trans-
fer introduces a difficulty. Among the blocks trans-
ferred are metadata blocks that contain block pointers,
particularly inode file blocks and indirect blocks. Since
the VVBN-to-PVBN mapping at the destination is dif-
ferent from that at the source, all of the PVBNs in
block pointers must be changed as part of the trans-
fer. To allow SnapMirror to locate the block pointers
within blocks, WAFL maintains a block type file that

identifies the general function of each block within the
volume, indexed by VVBN. As part of the transfer it-
self, PVBNs are replaced with a special reserved value,
PVBN-UNKNOWN. The destination must then replace
the PVBN-UNKNOWNs with actual PVBNs. Figure 4
illustrates the process of mirroring a single block from
one FlexVol volume to another.

Even in the presence of PVBN-UNKNOWN, ac-
cess and use of the destination volume are possible. Any
code encountering an unknown PVBN while attempting
to read data can instead use the VVBN and the container
map to find the PVBN for the required block. This al-
lows access to transferred data while the PVBNs are still
being repaired via a background process.

4.2 Volume Cloning
WAFL Snapshot copies provide consistent point-in-time
copies of a volume. This has many uses, but sometimes
the read-only nature of a Snapshot copy is a limitation.
In database environments, for example, it is often desir-
able to make writable copies of a production database for
development or test purposes. Other uses for writable
Snapshots copies include upgrades or modifications to
large applications and provisioning many systems in a
grid or virtual machine environment from a single mas-
ter disk image.

Volume cloning creates a FlexVol volume in which
the active file system is a logical replica of a Snapshot
copy in a different FlexVol volume within the same ag-
gregate. The parent volume can be any FlexVol volume,
including a read-only mirror. Like the creation of a snap-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association134



shot, creating a flexible volume clone, or FlexClone vol-
ume, requires the writing of a fixed, small number of
blocks and is nearly instantaneous. The FlexClone vol-
ume is a full-fledged FlexVol volume with all the features
and capabilities of a normal WAFL volume.

Creating a clone volume is a simple process.
WAFL creates the files required for a new FlexVol vol-
ume. But, rather than creating and writing a new file
system inside the volume, WAFL seeds the container
file of the clone with a vol info block that is a copy of
the vol info block of the Snapshot copy on which the
clone is based. Since that vol info is the top-level block
in the tree of blocks that form the Snapshot copy, the
clone inherits pointers to the complete file system im-
age stored in the original Snapshot copy. Since the clone
does not actually own the blocks it has inherited from
the parent, it does not have those blocks in its container
file. Rather the clone’s container has holes, represented
by zeros in the container map, indicating that the block
at that VVBN is inherited from the parent volume (or
some more distant ancestor, if the parent volume is also
a clone).

To protect the cloned blocks from being freed and
overwritten, the system needs to ensure that the origi-
nal volume will not free the blocks used by the clone.
The system records that the clone volume is relying on
the Snapshot copy in the parent volume and prevents the
deletion of the Snapshot copy in the parent volume or the
destruction of the parent volume. Similarly, WAFL en-
sures that the clone will not free blocks in the aggregate
that are owned by the parent volume. Inherited blocks
are easily identified at the time they are freed because
the container file of the clone has a hole at that VVBN.

A clone volume can be split from the parent vol-
ume. To do this a background thread creates new copies
of any blocks that are shared with the parent. As a result
of this process, the clone and parent will no longer share
any blocks, severing the connection between them.

4.3 Thin Provisioning

As described earlier, the free space within a WAFL ag-
gregate is held by the aggregate. Since FlexVol volumes
do not consume physical space for unallocated blocks in
their address space, it is natural to consider thin provi-
sioning of volumes. For example, several 1TB volumes
can be contained in a 1TB aggregate if the total phys-
ical space used by the volumes is less than 1TB. The
ability to present sparsely filled volumes of requested
sizes without committing underlying physical storage is
a powerful planning tool for administrators. Volume
clones also present a natural case for thin provisioning,
since users will often want many clones of a given vol-
ume, but the administrator knows that the clones will all

share most of their blocks with the base snapshot.
While thin provisioning of volumes presents many

opportunities to administrators, it also provides chal-
lenges. An aggregate can contain many volumes, and
no single provisioning policy will suit all of them, so
WAFL allows different volumes in the same aggregate
to use different policies. The policies are volume, none,
and file, which provide a range of options for managing
thin provisioning. The three policies differ in their treat-
ment of volume free space and their treatment of space-
reserved objects within volumes.

The volume policy is equivalent to a space reserva-
tion at the aggregate level. It ensures that no other vol-
umes can encroach on the free space of the volume. The
none policy implements thin provisioning for the entire
volume. No space is reserved for the aggregate beyond
that currently consumed by its allocated blocks.

The third policy, file, exists for cases where writes
to specific files should not fail due to lack of space. This
typically occurs when clients access a file using a block
protocol such as iSCSI. In such a case, the file appears to
the client as logical disk device. For such objects, WAFL
provides the ability to reserve space for the underlying
files. On a volume with a file policy, the reservations
on individual objects within the volume are honored at
the aggregate level. Thus, if a 400GB database table
is created on a 1TB FlexVol volume with a file policy,
the aggregate would reserve 400GB of space to back the
database file, but the remaining 600GB would be thinly
provisioned, with no storage reservation.

The default policy for a FlexVol volume is volume,
since this means that volumes behave precisely the same
as a fully provisioned TradVol. By default, a FlexClone
volume inherits the storage policy of its parent volume.

4.4 Other Enhancements
Over time we have continued to find this new level of vir-
tualization valuable for cleanly implementing new fea-
tures in WAFL. In addition to the features described
above, we are also using this technique to introduce
block-level storage deduplication and background de-
fragmentation of files and free space.

5 Evaluation
In this section, we evaluate the performance overhead
imposed by the FlexVol architecture. While FlexVol vir-
tualization is not free, we find that the extra overhead it
imposes is quite modest. We compare the performance
of FlexVol volumes and TradVol volumes using both mi-
crobenchmarks and a large-scale workload. We also dis-
cuss how customers use FlexVol volumes in production

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 135



environments, presenting data drawn from NetApp’s in-
stalled base. Finally, we comment on our practical ex-
periences with the engineering challenges of introducing
FlexVol volumes into Data ONTAP.

5.1 FlexVol Overhead
We compare the performance of FlexVol volumes and
TradVol volumes for basic file serving operations and for
larger workloads. Our goal is to quantify and understand
the overheads imposed by the extra level of indirection
that allows us to implement the features of FlexVol vol-
umes.

Intuitively, we expect FlexVol volumes to impose
overhead due to the increased metadata footprint re-
quired to maintain two levels of buftree. Larger metadata
working sets will increase cache pressure, I/O load, and
disk utilization. In addition, generating and traversing
this increased metadata will add CPU overhead.

To determine where these overheads occur and
quantify them, we ran a set of simple micro-benchmarks
on both FlexVol volumes and TradVol volumes. By ex-
amining the performance differences between the two
volume types in conjunction with performance counter
data from Data ONTAP, we can measure the specific per-
formance cost of FlexVol volumes.

Finally, to understand how these detailed perfor-
mance differences affect large-scale benchmarks, we
used the industry-standard SPEC SFS benchmark [24]
to compare the macro-level performance of both volume
types.

5.1.1 Microbenchmarks

For our microbenchmarks, we used an FAS980 server
running Data ONTAP version 7.2.2. This system has
two 2.8GHz Intel R© Xeon processors, 8GB of RAM, and
512MB of NVRAM. The storage consists of 28 disk
drives (72GB Seagate Cheetah 10K RPM) configured as
two 11 disk RAID-DP R© [7] aggregates. One aggregate
was used for FlexVol volumes and the other as a Trad-
Vol volume. The remaining disks were not used in these
tests; they held the root volume or served as spares.

The benchmark we used is called filersio. It is a
simple tool that runs on a file server as part of Data ON-
TAP. We used it to generate read and write workloads
with either sequential or random access patterns. Be-
cause filersio runs on the file server, it issues requests
directly to WAFL, bypassing the network and protocol
stacks. This allows us to focus our investigation on the
file system, ignoring the interactions of client caches and
protocol implementations.

We used filersio to examine four workloads—
random reads, sequential reads, random writes, and se-

quential writes. To examine the impact of FlexVols vol-
umes’ larger metadata foot print, we ran each test on in-
creasing dataset sizes, ranging from 512MB to 32GB. At
512MB, all of the test data and metadata fits in the buffer
cache or our test system. With a 32GB data set, the buffer
cache holds less than 20% of the test data. In each test,
our data set was a single large file of the appropriate size.

For each test, we ran the workload for 5 minutes.
We configured filersio to maintain ten outstanding I/O
requests. We warm the WAFL buffer cache for these
tests by first creating the test file and then performing
five minutes of the test workload before we execute the
measured test. The I/O request size and alignment for all
tests is 4KB, matching the underlying WAFL block size.
All of the results are averages of multiple runs, each us-
ing a different test file.

Figures 5, 6, 7, and 8 show the results of our
microbenchmarks. We note that across most of these
benchmarks the FlexVol volume has performance nearly
identical to the TradVol. There are three significant areas
where FlexVol performance lags—for file sizes less than
about 6GB in the random read tests, for file sizes greater
than 8GB in the sequential write test, and for all file sizes
in the random write test. The largest performance differ-
ences were for 32GB random writes, where the FlexVol
performed 14% worse than the TradVol. In the remain-
der of this section, we discuss these differences and also
provide some intuition about the general shapes of the
performance curves we see in these microbenchmarks.

Figure 5 shows the results of the random read
benchmark. This graph can be divided into two regions.
For file sizes larger than about 5.8GB, the working set
size exceeds the available cache. Performance drops off
rapidly in this region, as more and more requests require
disk I/O. It is in this region that we might expect to see
the performance overhead of the FlexVol volume, as it
needs to access additional metadata, both on disk and in
memory, to satisfy cache misses. The FlexVol requires
twice as many indirect blocks to describe a file of a given
size. These extra blocks compete with data blocks for
cache space and reduce our hit rate. In fact, the perfor-
mance of the two configurations is nearly identical, as
the increase in cache pressure is negligible. Roughly 1
in 500 cache blocks is used for indirect metadata on a
FlexVol volume, compared to 1 in 1000 on a TradVol.

On the left-hand side of Figure 5 our working set
fits entirely in the buffer cache. Cache hits in WAFL fol-
low the same code path, regardless of the volume type,
and do not read any buftree metadata. Thus, we would
expect all tests in this range to perform identically, re-
gardless of file size or volume type. Surprisingly, this
was not the case. The performance of both volume types
steadily declines as the file size increases, and FlexVol
volumes consistently underperform TradVols.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association136



0

20000

40000

60000

80000

100000

120000

140000

0.5 1 2 4 8 16 32

R
ea

d
R

eq
ue

st
s

pe
rS

ec
on

d

File Size (GB)

filersio 4KB Random Reads

TradVol
FlexVol

Figure 5: The performance of a random read workload
on files of increasing size. Each data point is the aver-
age of eight test runs. Standard deviations are less than
5% of the average on all data points except where the
working set starts to exceed the size of the buffer cache
(5.7–6.4GB). At these sizes standard deviations ranged
from 5–30%, reflecting the sensitivity of these tests. With
a 100x performance difference between cache hits and
cache misses, small differences in cache hit rates, caused
by the random number generator, result in large differ-
ences in average performance.

To better understand this behavior, we examined
the performance statistics Data ONTAP collects. As ex-
pected, these tests had 100% hit rates in the buffer cache.
Further study of these statistics uncovered the explana-
tions for these behaviors. First, because we have 8GB
of RAM on a system with a 32-bit architecture, not all
cache hits have the same cost. When WAFL finds a page
in the cache that is not mapped into its address space,
Data ONTAP must remap the page before returning a
data pointer to the page. This accounts for the declin-
ing performance as the file size increases. With larger
working set sizes, a greater percentage of blocks are
cached but not in Data ONTAP’s address space, and thus
a greater percentage of cache hits pay the page remap-
ping penalty. In the tests with 512MB files, the total
number of page remappings is less than 0.001% of the
number of cache hits. For the 5.5GB tests, this ratio is
75%.

The second anomaly—the fact that TradVol vol-
umes appear to serve cache hits faster than FlexVol
volumes—is explained by a cached read optimization.
When WAFL detects a sequence of 5,000 or more suc-
cessive reads that are serviced from the cache, it stops
issuing read-ahead requests until there is a cache miss.
Unexpectedly, this optimization is not always enabled
during these filersio runs. The culprit is various scan-
ner threads that WAFL runs in the background. These
threads perform a variety of tasks, such as the delayed-
free processing described in Section 3.4. Whenever one

0

20000

40000

60000

80000

100000

120000

140000

0.5 1 2 4 8 16 32

R
ea

d
R

eq
ue

st
s

pe
rS

ec
on

d

File Size (GB)

filersio 4KB Sequential Reads

TradVol
FlexVol

Figure 6: The performance of a sequential read workload
on files of increasing size. Each data point is the average
of eight runs. Standard deviations are less than 9% of the
average at all data points.

of these scanners has a read miss, it disables the cached
read optimization on its volume. There is more of this
background activity on a FlexVol volume than a TradVol.
As a result, the cached read optimization is not enabled
as much on the FlexVol volume, causing it to spend ex-
tra CPU cycles needlessly looking for blocks to prefetch.
Since this workload is completely CPU-bound, this extra
overhead has a noticeable effect on performance. In the
tests with 512MB files, the cached read optimization was
enabled for 82% of the reads from the TradVol, but only
for 32% of the reads from the FlexVol volume. Unfortu-
nately, it is not possible to completely disable this back-
ground processing in WAFL. It generally causes very lit-
tle additional I/O, and this was the only test case where
it had a noticeable effect on our test results.

Figure 6 shows sequential read performance. The
performance on the FlexVol volume is, again, nearly
identical to TradVol performance. The overall shape of
the performance curves is similar to the random read
benchmark with two noteworthy differences. First, the
out-of-cache performance is substantially better than the
random read case, reflecting the performance gains from
prefetching and sequential I/O. The second difference
is the step-like performance drop around the 1.5GB file
size. This is where the file size exceeds the available
mapped buffer cache. For file sizes smaller than this we
see almost no page remaps, but for file sizes larger than
this the number of page remaps roughly equals the total
number of reads during the test.

Figure 7 shows sequential write performance. Here
we see similar performance for FlexVol volumes and
TradVol volumes at most file sizes. Although FlexVol
volumes update more metadata during this benchmark,
it has no discernible effect on performance for most file
sizes. The sequential nature of the workload provides
good locality of reference in the metadata the FlexVol

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 137



0

5000

10000

15000

20000

25000

0.5 1 2 4 8 16 32

W
rit

e
R

eq
ue

st
s

pe
rS

ec
on

d

File Size (GB)

filersio 4KB Sequential Writes

TradVol
FlexVol

Figure 7: The performance of a sequential write work-
load on files of increasing size. Each data point is the
average of ten runs. Standard deviations are less than
5% of the average at all data points.

volume needs to modify. Thus, the amount of metadata
of written to the FlexVol volume is quite modest com-
pared to the file data writes, which dominate this test.

As the file sizes grow past 8GB, sequential write
performance on both volumes started to drop, with a
larger performance decrease on the FlexVol volume. Our
performance statistics are less clear about the cause of
this drop. It appears to stem from an increase in the
number of cache misses for metadata pages, particu-
larly the allocation bitmaps. This has a larger impact
on the FlexVol volume because it has twice as much
bitmap information—both a volume-level bitmap and an
aggregate-level bitmap.

Finally, in Figure 8 we show random write perfor-
mance. On both volumes, performance slowly decreased
as we increased the file size. This occurs because we
have to write more data to disk for larger file sizes. For
smaller file sizes, a greater percentage of the random
writes in each consistency point are overwrites of a pre-
viously written block, reducing the number of I/Os we
have to perform in that consistency point. For example,
the 512MB FlexVol test wrote an average of 45,570 dis-
tinct data blocks per CP; the 32GB FlexVol test wrote an
average of 72,514 distinct data blocks per CP.

In the random write test we also see that FlexVol
performance lagged TradVol performance. The per-
formance difference ranges from a few percent at the
smaller file sizes to 14% for 32GB files. This per-
formance gap reflects several types of extra work that
the FlexVol volume performs, most notably the extra
I/O associated with updating both the file and container
buftrees and the delayed free activity associated with all
of the blocks that are overwritten during this test. These
same factors occur in the sequential write test, but their
performance impact is attenuated by the locality of refer-
ence we get in the metadata from doing sequential writes.

0

5000

10000

15000

20000

25000

0.5 1 2 4 8 16 32

W
rit

e
R

eq
ue

st
s

pe
rS

ec
on

d

File Size (GB)

filersio 4KB Random Writes

TradVol
FlexVol

Figure 8: The performance of a random write workload
on files of increasing size. Each data point is the average
of eight test runs. Standard deviations are less than 8%
of the average on all data points.

With random writes, we change much more metadata in
each CP, increasing the amount of data that have we to
write to disk. The slightly larger performance gap for
large file sizes is due to the cache misses loading bitmap
files, as we saw in the sequential write test described
above.

In summary, most of our microbenchmarks show
nearly identical FlexVol and TradVol performance. The
major exceptions are cached random reads, random
writes, and sequential writes to large files. In these cases,
FlexVol performance is often within a few percent of
TradVol performance; in the worst cases the performance
difference is as much as 14%.

5.1.2 SFS Benchmark

To understand how the behaviors observed in our mi-
crobenchmarks combine to affect the performance of a
more realistic workload, we now examine the behavior
of a large scale benchmark on both FlexVol volumes and
TradVol volumes.

For this test, we use the SPEC Server File Sys-
tem (SFS) benchmark [24]. SFS is an industry stan-
dard benchmark for evaluating NFS file server perfor-
mance. SFS originated 1993 when SPEC adopted the
LADDIS benchmark [28] as a standard benchmark for
NFS servers. We used version SFSv3.0r1, which was
released in 2001.

SFS uses multiple clients to generate a stochastic
mix of NFS operations from a predefined distribution.
The load generating clients attempt to maintain a fixed
load level, for example 5,000 operations/second. SFS
records the actual performance of the server under test,
which may not be the target load level. SFS scales the to-
tal data set size and the working set size with the offered
load. A complete SFS run consists of multiple runs with

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association138



0

1

2

3

4

5

0 5000 10000 15000 20000 25000

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e

(m
s)

Achieved SFS ops/sec

SPEC SFS performance

TradVol
FlexVol

Figure 9: Performance of the SPEC SFS benchmark.
This graph plots average response time as a function of
the achieved throughput (in operations per second). We
performed three SFS runs in each configuration. Here
we show the runs with median peak performance. There
was little variance across the runs. Throughputs for all
load points are within 1.5% of the values shown here.
Response times are were within 10% of the values shown
here, except for the two highest FlexVol load points,
where they varied by as much as 18%.

increasing offered load, until the server’s performance
peaks. At each load point, SFS runs a five minute load to
warm the server cache, then a five minute load for mea-
surement. The result from each load point is the achieved
performance in operations per second and the average la-
tency per request. Further details about SFS are available
from the SPEC web site [24].

Our SFS tests used NFSv3 over TCP/IP. The file
server was a single FAS 3050 (two 2.8GHz P4 Xeon
processors, 4GB RAM, 512MB NVRAM) with 84 disk
drives (72 GB Seagate Cheetah 15K RPM). The disks
were configured as a single volume (either flexible or tra-
ditional) spanning five RAID-DP [7] groups, each with
14 data disks and 2 parity disks.

Figure 9 shows the results of these tests. As we
would expect, given the relatively small performance dif-
ferences uncovered in our microbenchmarks, the FlexVol
and TradVol volumes have similar performance. The
TradVol achieves a peak performance of 24,487 ops/sec,
4.4% better than the peak FlexVol performance of 23,452
ops/sec. With increasing loads, there is an increasing gap
in response time, with FlexVol volumes showing higher
latencies than TradVols. At the peak FlexVol throughput,
its average response time of 3.9ms is 15% longer than the
corresponding TradVol load point.

Our microbenchmarks exhibited several sources of
FlexVol overhead that affect SFS performance, including
extra CPU time and I/Os to process and update FlexVol
metadata. Performance statistics collected from the file
server during the SFS runs show that at comparable load

points the FlexVol volume used 3–5% more CPU than
the TradVol, read 4–8% more disk blocks, and wrote 5–
10% more disk blocks. A large amount of the extra load
came from medium size files (32–64KB) that don’t need
any indirect blocks on the TradVol but use indirect blocks
on the FlexVol volume because of the extra space used
by dual VBNs.

Overall, we are pleased with the modest overhead
imposed by FlexVol virtualization. FlexVol performance
is seldom more than a few of percent worse than Trad-
Vol performance. In comparison, this overhead is far less
than the performance increase seen with each new gen-
eration of server hardware. In exchange for this slight
performance penalty, customers have increased flexibil-
ity in how they manage, provision, and use their data.

5.2 Customer Usage of FlexVol Volumes

NetApp storage systems have a built-in, low-overhead
facility for reporting important system events and config-
uration data back to the NetApp AutoSupport database.
The use of this reporting tool is optional, but a large per-
centage of NetApp customers enable it. Previous studies
have used this data to analyze storage subsystem failures
[14], latent sector errors [1], and data corruptions [2].
In this section we examine system configuration data to
understand how our customers use FlexVol volumes.

We examined customer configuration data over a
span of a year from September 2006 to August 2007.
At the beginning of this period, our database had infor-
mation about 38,800 systems with a total of 117.8PB of
storage. At the end of this period, we had data from
50,800 systems with 320.3PB of storage. Examining
this data, we find evidence that customers have embraced
FlexVol technology and rely on it heavily. Over this year,
we found that the percentage of deployed systems that
use only TradVols decreased from 46% of all systems
to less than 30% of all systems. At the same time, the
percentage of systems that use only FlexVol volumes in-
creased from 42% to almost 60%. The remainder, sys-
tems that had a mixture of TradVol and FlexVol volumes,
was fairly stable at 11.5% of the systems in our dataset.

Looking at numbers of volumes instead of systems
we found that over the same year the number of FlexVol
volumes increased from 69% of all volumes to 84%,
while traditional volumes decreased from 31% to 16%.

FlexVol volumes allow customers to manage their
data (volumes) at a different granularity than their stor-
age (aggregates). As disk capacities have grown, we see
increasing evidence that our customers are using FlexVol
volumes in this way—allocating multiple FlexVol vol-
umes on a single aggregate. During the year, the aver-
age size of the aggregates in our data set increased from
1.5TB to 2.3TB. At the same time, the average number

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 139



of volumes per aggregate increased from 1.36 to 1.96.
Excluding traditional volumes, which occupy the whole
aggregate, the average number of volumes per aggregate
increased from 1.95 to 3.40.

Finally, we explored customer adoption of thinly
provisioned FlexVol and FlexClone volumes. Over the
past year, the number of thinly provisioned volumes (i.e.,
with a provisioning policy of none) has grown by 128%,
representing 6.0% of all FlexVol volumes in the most re-
cent data. The total size of all thin provisioned volumes
currently exceeds the physical space available to them by
44%, up from 35% a year ago.

FlexClone volumes represent a smaller fraction of
volumes, but their use has been growing rapidly, from
0.05% to 1.0% of all FlexVol volumes during our year of
data. Customers are making heavy use of thin provision-
ing with their clone volumes. In the current data, 82%
of all clones are thinly provisioned. We expect that this
data under-represents customer adoption of FlexClone
volumes, since many use cases involve short-lived clones
created for testing and development purposes.

5.3 Experience
While FlexVol volumes provide good performance and
have been readily adopted by NetApp customers, the ex-
perience of introducing a major piece of new function-
ality into an existing operating system has not been per-
fect. The majority of the challenges we faced have come
from legacy parts of Data ONTAP, which assumed there
would be a modest number of volumes.

One of the major areas where these problems have
manifested is in limits on the total number of volumes
allowed on a single system. At boot time and at failover,
Data ONTAP serially mounts every volume on a system
before accepting client requests. With many hundreds or
thousands of volumes, this can have an adverse effect on
system availability. Likewise, when Data ONTAP sup-
ported only a small number of volumes, there was lit-
tle pressure to limit the memory footprint of per-volume
data structures, and no provision was made to swap out
volume-related metadata for inactive volumes.

Over time, these constraints have gradually been
addressed. Data ONTAP currently restricts the total
number of volumes on a single system to 500. This limits
failover and reboot times and prevents volume metadata
from consuming too much RAM.

6 Related Work
FlexVol is not the first system to allow multiple logi-
cal storage containers to share the same physical storage
pool. In this section we survey other systems that have

provided similar functionality. We first discuss other sys-
tems that provide virtual file systems, contrasting them
with FlexVol volumes in terms of implementation and
functionality. In the remainder of this section we con-
trast FlexVol volumes with various systems that provide
other virtualized storage abstractions.

The earliest example of a file system supporting
multiple file systems in the same storage was the An-
drew File System (AFS) [12, 13, 15]. In AFS, each sep-
arate file system was called a volume [23]. AFS is a
client-server system; on a file server, many volumes are
housed on a single disk partition. Clients address each
volume independently. Volumes grow or shrink depend-
ing on how much data is stored in them, growing by al-
locating free space within the disk region and shrinking
by freeing space for use by others. An administrative
limit (or quota) on this growth can be set independent of
the disk region size. Thus, administrators can implement
thin provisioning by overcommitting the free space in the
region. AFS maintains a read-only copy-on-write point-
in-time image of an active volume, called a clone in AFS
terminology; the clone shares some of the storage with
the active volume, similar to WAFL Snapshots copies.
In AFS, clones are always read-only; the writable clones
we describe do not exist in AFS.

Howard et al. [13] describe an evolution of AFS
similar to that of WAFL and FlexVol volumes—moving
from a prototype implementation that supported a single
file volume per storage device (essentially unmodified
4.2BSD) to a revised system with the multiple volume
per container architecture described above. Both the re-
vised AFS implementation as well as FlexVol volumes
implement virtualization by providing a layer of indirec-
tion: in the AFS case, per-volume inode tables, and in
the FlexVols case, per-volume block maps.

Other file systems have since used an architecture
similar to volumes in AFS. Coda [21] is a direct de-
scendant of AFS that supports disconnected and mo-
bile clients. DCE/DFS [6, 16], like WAFL, can also
accommodate growth of the underlying disk media, for
instance by adding a disk to a logical volume manager,
allowing thin provisioning of volumes (called filesets in
DCE/DFS) since space can be added to a storage region.
Both of these systems can also maintain read-only copy-
on-write clones as images of their active file systems.

DEC’s AdvFS [10], available with the Tru64 oper-
ating system [5], provides a storage pooling concept atop
which separate file systems (filesets) are allocated. It al-
lows not only for media growth, and thus complete thin
provisioning, but also media shrinkage as well. Disks
can be added to or deleted from an AdvFS storage pool.
It, too, provides for read-only copy-on-write images of
filesets, also called clones.

SunTM ZFS is the file system with the closest match

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association140



to FlexVol functionality. ZFS provides multiple direc-
tory trees (file systems) in a storage pool and supports
both read-only snapshots and read-write clones [26].
ZFS does not use a two-level block addressing scheme
in the manner of FlexVol volumes. Instead, all file sys-
tems, snapshots, and clones in a ZFS storage pool use
storage pool address, the equivalent of aggregate-level
PVBNs [25]. Thus, ZFS avoids some of the overheads
in WAFL, such as the need to store dual VBN mappings
and to perform block allocation in both the container file
and the aggregate. As we have shown, these overheads
are quite modest in WAFL, and the resulting indirection
facilitates the introduction of new functionality.

IBM’s Storage Tank is an example of another class
of file system. It stores file data and file system metadata
on separate, shared storage devices [19]. Treating the
data as a whole, Storage Tank implements multiple file
system images (“containers”) that can grow or shrink,
and active and snapshot file systems can share pointers
to storage blocks. Read-write clones are not provided.

The basic FlexVol idea of virtualizing file systems
by creating a file system inside a file can be implemented
using standard tools on commodity operating systems.
Both the BSD and Linux R© operating systems support the
creation of a block device backed by a file. By formatting
these devices as subsidiary file systems, an administrator
can achieve a result similar to FlexVol volumes. This
mode of operation would support thin provisioning by
using a sparse backing file. It would not, however, pro-
vide many of the other optimizations and enhancements
available with FlexVols—dual VBNs, storage dealloca-
tion by hole punching, free behind, clone volumes, etc.

There are many block-oriented storage systems that
provide virtualization functionality similar to FlexVol
volumes. Logical volume managers (LVMs) such as
VeritasTM Volume Manager [27] and LVM2 in Linux
[17] allow the dynamic allocation of logical disk vol-
umes from pools of physical disk resources. Some vol-
ume managers also include support for read-only snap-
shots and read-write clones. Many mid-range and high-
end disk arrays [4, 8] provide similar features, essentially
implementing volume management internally to the de-
vice and exporting the resulting logical disk volumes to
hosts via block protocols such as FCP or iSCSI.

Since volume managers and disk arrays provide
block-oriented storage virtualization, their implementa-
tion differs substantially from file-based virtualization
such as FlexVol volumes. Volume managers do not
support allocation at the fine grain of a file system
(4KB in WAFL), so copy-on-write allocation for snap-
shots and clones is handled in larger units—often sev-
eral megabytes. Similarly, file-system-level knowledge
allows WAFL to determine when blocks are no longer
in use (e.g., because they belonged to a deleted file) so it

can transfer free space from a FlexVol volume back to its
aggregate, enabling features such as thin provisioning.

7 Conclusion
FlexVol volumes separate the management of physical
storage devices from the management of logical data
sets, reducing the management burden of a file server
and allowing administrators to match data set size to user
and application needs. The virtualization of file volumes
also provides increased flexibility for many routine man-
agement tasks, such as creating or resizing volumes or
dynamically dividing physical storage among volumes.
The FlexVol architecture enables many new features, in-
cluding FlexClone volumes and thin provisioning of vol-
umes. Using a few simple optimizations, we provided
this expanded functionality at low cost. Many operations
see no overhead when using FlexVol volumes. Even a
workload with a broad functional profile, such as SFS,
only shows a modest performance degradation of 4%—
much less than the performance gain achieved with each
new generation of hardware.

8 Acknowledgments
We thank Sudheer Miryala, the lead development man-
ager on the FlexVol project, and Blake Lewis, who was
the Technical Director for WAFL and provided many
significant insights in numerous discussions. We also
wish to thank the many others at NetApp—far too many
to list here—whose inspiration and hard work made
FlexVol volumes a reality. Finally, we thank the anony-
mous reviewers for their thoughtful comments.

References
[1] Lakshmi N. Bairavasundaram, Garth R. Goodson,

Shankar Pasupathy, and Jiri Schindler. An Analysis of
Latent Sector Errors in Disk Drives. In Proceedings
of SIGMETRICS 2007: Measurement and Modeling of
Computer Systems, pages 289–300, San Diego, CA, June
2007.

[2] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca
Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. An Analysis of Data Corruption in the
Storage Stack. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), pages 223–
238, San Jose, CA, February 2008.

[3] Remy Card, Theodore Ts’o, and Stephen Tweedie. De-
sign and implementation of the second extended filesys-
tem. In Proceedings of the First Dutch International Sym-
posium on Linux, December 1994.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 141



[4] Gustavo. A. Castets, Daniel Leplaideur, J. Alcino Bras,
and Jason Galang. IBM Enterprise Storage Server, SG24-
5465-01. IBM Corporation, October 2001.

[5] Matthew Cheek, Scott Fafrak, Steven Hancock, Martin
Moore, and Gregory Yates. Tru64 UNIX System Admin-
istrators Guide. Digital Press, 2001.

[6] Sailesh Chutani, Owen T. Anderson, Michael L. Kazar,
Bruce W. Leverett, W. Anthony Mason, and Robert N.
Sidebotham. The Episode File System. In Proceedings of
the Winter 1992 USENIX Conference, pages 43–60, San
Francisco, CA, January 1992.

[7] Peter Corbett, Bob English, Atul Goel, Tomislav Gr-
canac, Steven Kleiman, James Leong, and Sunitha
Sankar. Row-diagonal parity for double disk failure cor-
rection. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 1–14, San
Francisco, CA, March 2004.

[8] EMC Corporation. EMC Symmetrix DMX Ar-
chitecture Product Description Guide. http:
//www.emc.com/products/systems/
interstitial/inter c1011.jsp, March 2004.

[9] Helen Custer. Inside the Windows NT File System. Mi-
crosoft Press, Redmond, WA, 1994.

[10] Steven Hancock. Tru64 UNIX File System Adminstration
Handbook. Digital Press, 2000.

[11] Dave Hitz, James Lau, and Michael Malcolm. File sys-
tem design for an NFS file server appliance. In Proceed-
ings of the USENIX Winter 1994 Technical Conference,
pages 235–246, San Fransisco, CA, January 1994.

[12] John Howard. An Overview of the Andrew File System.
Technical Report CMU-ITC-88-062, Information Tech-
nology Center, Carnegie-Mellon University, 1988.

[13] John Howard, Michael Kazar, Sherri Menees, David
Nichols, M. Satyanarayanan, Robert Sidebotham, and
Michael West. Scale and Performance in a Distributed
System. ACM Transactions on Computer Systems,
6(1):51–81, February 1988.

[14] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are Disks the Dominant Contributor
for Storage Failures? In Proceedings of the USENIX Con-
ference on File and Storage Technologies (FAST), San
Jose, CA, February 2008.

[15] Michael Kazar. Synchronization and Caching Issues
in the Andrew File System. Technical Report CMU-
ITC-88-063, Information Technology Center, Carnegie-
Mellon University, 1988.

[16] Michael L. Kazar, Bruce W. Leverett, Owen T. Ander-
son, Vasilis Apostolides, Ben A. Bottos, Sailesh Chutani,
Craig F. Everhart, W. Antony Mason, Shu-Tsui Tu, and
Edward R. Zayas. DEcorum File System Architectural
Overview. In Proceedings of the Summer 1990 USENIX
Conference, pages 151–164, Anaheim, CA, June 1990.

[17] A.J. Lewis. LVM HOWTO. http://www.linux.
org/docs/ldp/howto/LVM-HOWTO, 2006.

[18] Marshall K. McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. A Fast File System for UNIX.

Computer Systems, 2(3):181–197, 1984.
[19] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and

B. Hillsberg. IBM Storage Tank—A heterogeneous scal-
able SAN file system. IBM Systems Journal, 42(2):250–
267, 2003.

[20] Hugo Patterson, Stephen Manley, Mike Federwisch,
Dave Hitz, Steve Kleiman, and Shane Owara. SnapMir-
ror: File-System Based Asynchronous Mirroring for Dis-
aster Recovery. In Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies (FAST), pages
117–129, Monterey, CA, January 2002.

[21] M. Satyanarayanan, James J. Kistler, Puneet Kumar,
Maria E. Okasaki, Ellen H. Siegel, and David C. Steere.
Coda: A highly available file system for a distributed
workstation environment. IEEE Transactions on Com-
puters, 39(4):447–459, 1990.

[22] Margo Seltzer, Greg Ganger, M. Kirk McKusick, Keith
Smith, Craig Soules, and Christopher Stein. Journaling
versus Soft Updates: Asynchronous Meta-data Protection
in File Systems. In Proceedings of the 2000 USENIX
Annual Technical Conference, pages 71–84, San Diego,
CA, June 2000.

[23] Robert Sidebotham. VOLUMES: the Andrew File Sys-
tem data structuring primitive. In Proceedings of the
European UNIX Systems User Group, pages 473–480,
September 1986.

[24] SPEC SFS (System File Server) Benchmark. http://
www.spec.org/osg/sfs97r1, 1997.

[25] Sun Microsystems, Inc. ZFS On-Disk Specifica-
tion. http://www.opensolaris.org/os/
community/zfs/docs/ondiskformat0822.
pdf, 2006.

[26] Sun Microsystems, Inc. Solaris ZFS Administra-
tion Guide. http://www.opensolaris.org/os/
community/zfs/docs/zfsadmin.pdf, 2008.

[27] Symantec Corporation. Veritas Volume Manager Ad-
ministrator’s Guide. http://sfdoccentral.
symantec.com/sf/5.0/solaris/pdf/
vxvm admin.pdf, 2006.

[28] Mark Wittle and Bruce E. Keith. LADDIS: The Next
Generation in NFS File Server Benchmarking. In Pro-
ceedings of the Summer 1993 USENIX Technical Confer-
ence, pages 111–128, Cincinnati, OH, June 1993.

NetApp, Data ONTAP, FlexClone, FlexVol, RAID-DP, Snap-
Mirror, Snapshot, and WAFL are trademarks of NetApp, Inc.
in the United States and/or other countries. Linux is a regis-
tered trademark of Linus Torvalds. Intel is a registered trade-
mark of Intel Corporation. Solaris and Sun are trademarks
of Sun Microsystems, Inc. Veritas is a trademark of Syman-
tec Corporation or its affiliates in the U.S. and other countries.
UNIX is a registered trademark of The Open Group. All other
brands or products are trademarks or registered trademarks of
their respective holders and should be treated as such.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association142




