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Abstract
New single-machine environments are emerging from
abundant computation available through multiple cores
and secure virtualization. In this paper, we describe the
research challenges and opportunities around diversified
replication as a method to increase the Byzantine-fault
tolerance (BFT) of single-machine servers to software at-
tacks or errors. We then discuss the design space of BFT
protocols enabled by these new environments.

1 Introduction
Current commodity computing architectures still offer
increasing, abundant power, despite the pessimists’ pe-
riodic proclamations that the underlying technology has
reached its limits. Chip makers double the number of
standard processing cores per chip with every semicon-
ductor process generation, and some research groups al-
ready design programming models and system architec-
tures for tens to thousands of cores per chip [2, 6]. Nev-
ertheless, the dependability of applications running on
this abundant power has not necessarily similarly im-
proved. First, as more transistors are crammed into the
same chip area, soft errors and undetected hardware de-
fects increase in incidence; furthermore, as cycle-hungry
software expands to absorb what hardware evolution pro-
vides it, its complexity also increases leading to more
bugs, more malicious exploits of those bugs, and more
application crashes.

In this paper, we revisit the classic idea of replication-
based system reliability: run the same application (say, a
database server) in multiple instances on the same pow-
erful server, and perform some form of consensus on the
results of each request across replicas, to mask out faults.
Multi-processor systems as far back as NonStop [10] and
TARGON [14] used this idea to increase reliability at the
instruction or kernel level, and distributed replicated ser-
vices using Paxos [26] or Castro and Liskov’s PBFT [16]
are increasingly practical [4,18,19,25]. In all cases, some
form of voting among replicas helps choose the right re-
sult, as long as no more than a maximum fraction of all
replicas are faulty at any time. In this position paper,
we focus on using replication in single-server systems—
that is, collocating multiple instances of the replicated
service on the same physical machine—to take advan-
tage of per-machine cycle abundance for Byzantine-fault
tolerance to software attacks or errors. Performance is
not necessarily the major challenge: running multiple

replicas in their own virtual machines (VMs) within a
single multi-core system is already feasible without in-
curring performance overheads [15]. Our goal is to pro-
vide single-server systems with an increase in reliability
that is commensurate with current trends in computation
power.

A fundamental challenge towards our goal is ensuring
that replicas of a server fail independently. For instance,
if the exact same bugs can be triggered by a malicious ex-
ploit in all instances of the code, replication will be an in-
effective dependability tool: no amount of voting will be
able to mask faults if all replicas exhibit the same fault.
Two trends in current research and technology make us
hopeful on this front. First, recent hardware and soft-
ware advances lead to improved isolation among differ-
ent execution domains: Intel’s LaGrande platform, a.k.a.
Trusted Execution Technology (TXT) [1] and AMD’s
Presidio (Secure Virtual Machine—SVM) [5]) can iso-
late threads, processes, or virtual machines from each
other, and similar advances such as SELinux and Singu-
larity [21] improve on software-only isolation. Second,
much work has been done to increase the diversity and
predictability of runtime systems, both to expose bugs
that might cause silent faults, and to prevent adversaries
from reliably exploiting software bugs. In particular, re-
cent research has diversified Guest OSes and rewritten
binaries via randomizing address space layout, system
call interfaces, instruction set numbering, event delivery,
etc. [9, 13, 17, 22, 24, 28, 34].

In what follows, we hope to describe the research chal-
lenges and opportunities around diversified replication
as a method to increase the Byzantine-fault tolerance of
single-machine servers. We start by treating the execu-
tion environment itself, in terms of its isolation and diver-
sity characteristics (Section 2). Then we describe the de-
sign choices available in adapting traditional Byzantine-
fault tolerant replication to such a single-machine exe-
cution environment, presenting some potentially promis-
ing design points in the space (Section 3). Finally,
we discuss the ecosystem around such a dependability
approach, including dealing with core defects, soft er-
rors [11] or hardware failures (Section 4). We conclude
with related work and our research agenda.

2 Challenges in a BFT Server
The execution environment we consider uses BFT repli-
cated state machines within a single server to tolerate
software Byzantine faults. Traditionally, such replication
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Figure 1: Traditional execution environment (top) vs.
new execution environment (bottom). In our new exe-
cution environment, each replica runs in a VM running a
diversified Guest OS.

is used across multiple machines, usually geographically
distributed. There, a client issues an authenticated re-
quest to the replicas over the network. Those requests
are ordered using methods such as agreement or ordered
atomic broadcast. Then each replica executes each re-
quest in that order on its local copy of the service state.
Figure 1(top) illustrates this traditional execution envi-
ronment. Running multiple such replicas in a single
machine is not obviously useful, since replicas compete
with each other for resources slowing the whole system
down, and they can interfere with each other spread-
ing bugs or malicious faults, losing fault independence
which is essential for replication to work. Thanks to
multi-core architectures, the performance disincentives
are no longer debilitating (especially for CPU-bound ser-
vices).

To provide fault independence, the main challenges
are isolation among replicas so that they do not interfere,
and replica diversity so that they do not suffer from com-
mon vulnerabilities. We propose to virtualize replicas,
running each replica in a VM with an automatically and
systematically “diversified” Guest OS, replication soft-
ware, and application replica (see Figure 1(bottom) for
an illustration). Here, our trusted computing base (TCB)
is the VMM and the hardware. Compared to making the
entire OS and application stack reliable through sound
software practices, making the VMM reliable enough to
be justifiably inside the TCB is much more plausible:
the Xen1 VMM consists of tens of thousands of lines of
code, but Microsoft Vista consists of 50 million lines of
code even excluding the target application service.2

Next, we describe in detail what isolation features are

required for protecting domains (VMs) and how Guest
OSes can be diversified automatically.

2.1 Isolation
To isolate protected domains (VMs), the VMM should
provide isolation of computation, memory, and disk. In
addition, it should provide a protected communication
mechanism between VMs for efficient communication.

The VMM schedules CPU resources fairly among
multiple VMs by partitioning CPU time. A VMM should
ensure availability and liveness by not starving VMs.
The VMM must protect physical memory pages of a VM
from inappropriate accesses of other VMs. The VMM
achieves this by partitioning the memory space, and con-
trolling the paging mechanism by managing the register
that contains the base address of the page directory. In
addition, the VMM should shepherd DMA-capable de-
vices.3 If a page is protected, the page is indicated in a
secure table maintaining protected pages, a page fault oc-
curs in a DMA, and the VMM disallows the DMA access
to the page. Hardware trusted execution and protection
such as Intel TXT [1] and AMD SVM [5] support a way
to implement memory protection from DMA. For exam-
ple, TXT supports the noDMA table that maintains this
information at a chipset component.

The VMM also isolates virtual disks used by VMs by
partitioning physical disk(s) into non-overlapping disk
space. All disk I/Os are mediated by the VMM, thus a
VM cannot directly access the virtual disk of other VMs.
Finally, the VMM should ensure that communication be-
tween two VMs cannot be tampered with by another VM.
No direct communication occurs among VMs, but the
VMM mediates all communication among VMs.

There could be several ways of providing this isola-
tion. The minimal mechanism that provides such iso-
lation is a fundamental research question, especially in
view of existing and future trusted hardware extensions
for protected execution.

2.2 Diversity
Providing isolation is not enough to defend against soft-
ware attacks. If replicas can be exploited simultaneously
due to their common vulnerabilities, the replicated sys-
tem cannot meet the bounded-fault assumption on which
replication guarantees are founded. To avoid such cor-
related faults, replicas need to be diversified. Replicas
are diverse if they maintain the same application seman-
tics (i.e., they produce the same output given the same
input) even though their implementation details (i.e., ac-
tual instructions executed) may be different.4 It is hard to
compromise diverse replicas simultaneously via bug ex-
ploits or other such software attacks, since those attacks
typically rely on specific memory layouts or instruction
sequences.
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Traditional approaches to achieving diversity include
N -version programming [8] or using N different im-
plementations of the same specification (e.g., by differ-
ent vendors) [30–32]. N-version programming takes a
design diversity approach: multiple teams produce dif-
ferent implementations of the same specification. N-
version programming is rarely used in practice due to
its high development and maintenance costs. Instead,
opportunistically using existing independent implemen-
tations of standard services or interfaces has been more
productive in practice. HACQIT [30] uses Apache run-
ning on Linux and IIS running on Microsoft Windows.
HRDB [32] uses different DBMS implementations that
support SQL. BASE [31] supports different NFS im-
plementations through abstraction. Such implementa-
tion diversity is applicable only when different imple-
mentations that produce identical outputs exist and often
when the service has a standardized high-level abstrac-
tion (e.g., SQL).

To create diversified replicas, we take a more broadly
applicable approach, using OS and binary randomiza-
tion. In particular, we propose to combine multiple exist-
ing randomization techniques to create diversified Guest
OSes and/or binaries to run within VMs. Such random-
ization was used before to isolate bugs or to forestall par-
ticular intrusions via a specific attack vector. We use only
techniques that preserve the same application semantics,
so that it is safe to use voting over the replicas’ results.

Combining diversification techniques is not straight-
forward. Some techniques can be used continuously,
while some may conflict with each other, or in combi-
nation lead to unacceptably high overheads. We discuss
some instances and lay out the challenges of creating di-
verse replicas.

Randomizing the location of stack or heap mem-
ory [13,22,34] has been explored to defend against buffer
overflow attacks. Recent OSes such as Microsoft Vista
and Mac OS X Leopard employ address space layout
randomization (ASLR) as well. Randomizing interface
mappings has also been studied: system call interface
randomization changes mappings between system call
numbers and code [17], while instruction set random-
ization changes mappings between opcodes and instruc-
tions. In both cases, an exploit meant to piggy-back ex-
ecutable code in a buffer overflow cannot know which
system call number or even instruction opcode to use.
Recovering from bugs in Rx [28] also relies on various
randomizations: memory management randomizations
including delayed recycling of freed buffers, padding
allocated memory blocks, allocating memory in an al-
ternate location, and zero-filling newly allocated mem-
ory buffers; and asynchronous event delivery including
scheduling of events, signal delivery, and message re-
ordering.

With these techniques, we can create diversified Guest
OSes by combining randomization techniques with the
following design goals: 1) maximizing the diversity of
the replicas, 2) avoiding conflicting diversity techniques,
and 3) controlling the overhead of diversity techniques.

There are a few research challenges in this scheme
due to the use of randomization. First, among the sets
of diversified Guest OSes, how does one choose those
with the highest diversity? Naïvely using all random-
ization techniques together may be ineffective (e.g., de-
layed freeing combined with relocation defaults to one or
the other according to their order of application). Even
worse, some techniques in combination may result in
conflicts or incur overheads beyond what applications
can tolerate. For example, using two different stack ran-
domization techniques at the same time may incur in-
correct stack frames. The interplay of different types of
techniques must be carefully mapped.

Creating diverse replicas using randomization also of-
fers an opportunity to quantify the overall system proba-
bilistically. We conjecture that increasing the number of
replicas is likely to increase the safety of the system ex-
ponentially. To answer these questions, we would like to
research a formal way to measure diversity and run real
experiments with various attacks to quantify diversity.

Second, by using randomization techniques we may
transform Byzantine faults to crash faults (e.g., because
of failed exploits accessing disallowed memory regions).
Exploits that were successful for the original undiver-
sified code may translate to exploits that are still suc-
cessful (i.e., cause safety violations), cause crashes, or
are masked by our system. We need to examine how
different exploits translate to different outcomes in our
environment; e.g., this environment might have more
crash faults than the original code. Having crash faults
is clearly better than having faults violating safety, and
we speculate that restarting VMs running replicas with
crash faults in our secure virtualization environment can
fix this problem without side effects. This is related to
the Nysiad approach [23] of making crash-fault tolerant
distributed applications to ones that are Byzantine-fault
tolerant.

3 New BFT Opportunities
In this section, we discuss the spectrum of BFT repli-
cated algorithms enabled by our new execution environ-
ment. In particular, the environment allows us to explore
three axes of designing BFT systems: the trust charac-
teristics of a coordinator process, the synchrony assump-
tions of communication among replicas, and the level of
replication transparency towards clients.

The first design axis concerns whether the facility that
orders client requests is trusted or not. In traditional
replicated state machines, a replica acting as a coordi-
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nator or primary typically assigns sequence numbers to
requests. In a single-machine environment, this task can
be taken on by a distinguished coordinator component.
Since this functionality is simple, the coordinator may
be straightforward to implement and formally prove cor-
rect, therefore justifying its inclusion in the TCB. On the
other hand, not trusting the coordinator keeps the TCB
leaner, but results in more complex replication protocols.

The second axis concerns the question of synchrony
assumptions within the single machine. If one were to
assume memory and I/O buses to be fault-free and all
replicas equally fast regardless of diversification, then
all communication among VMs can be thought of as
synchronous. This simplifies the replication protocols,
since no ambiguity exists among “slow” and maliciously
“mute” replicas that try to stall the progress of the sys-
tem. On the other hand, buses are not always fault-
free, different diversification techniques or random seeds
might result in vastly different execution times of the
same code in different replicas at different times, making
it difficult to maintain this synchrony assumption. Repli-
cation protocols for asynchronous environments are sig-
nificantly more complex as a result. Bridging the gap be-
tween the two, one might imagine enforcing synchrony
via the VMM by bounding execution time at replicas and
restarting execution after a certain timeout, or resorting
to eventual or virtual synchrony designs.

The final axis concerns the transparency of replication
to clients. In traditional replicated systems, clients do in-
teract with multiple replicas. In our setting, the coordina-
tor can collect replies from multiple replicas inside a ma-
chine and interact with clients directly, offering the illu-
sion of an unreplicated service, which is simpler and re-
quires only a single communication session between the
client and the server. In contrast, if replication is exposed
to the client, individual replicas at the server communi-
cate with the client directly. At the expense of greater
bandwidth requirements and greater protocol complex-
ity, exposure of replication removes the aggregation task
(vote tallying, formation of a single response message)
from the coordinator’s functionality.

In the design space we have described, there are many
design combinations. For example, a design point that
is closest to traditional agreement-based BFT protocols
is built using an untrusted coordinator, asynchrony, and
exposed replication. Here, we take two other unconven-
tional design points from the design space and explain
the resulting specific protocols in detail to illustrate that
BFT can be achieved in a simpler way in our new execu-
tion environment.

To explain protocols concisely, we use the authentica-
tion notation of Yin et al. [35], according to which we
denote by 〈X〉S,D,k an authentication certificate that any
node in a set D can regard as proof that k distinct nodes
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Figure 2: Lightweight BFT (LBFT) protocol instances.
Thicker lines indicate communication inside a machine.

in S said X . For example, a traditional digital signature
from p that is verifiable by the entire replica population
R would be 〈X〉{p},R,1, and a message authentication
code (MAC) from p to q would be 〈X〉{p},{q},1. If X is
not signed, there is no subscript in the notation.

LBFT1: In LBFT1, we assume a trusted coordinator,
asynchrony, and non-transparent replication. We run one
coordinator and a set R of 2f + 1 execution replicas to
provide both safety and liveness with up to f Byzantine
faults. Figure 2(a) shows LBFT1, our simple protocol
that uses the trusted coordinator. When p, the coordina-
tor, receives req = 〈REQUEST, o, t, c〉{c},R,1 from client
c where o is the operation requested and t is the times-
tamp, it multicasts to R a 〈DIST, n, req〉 message where
n is the assigned sequence number. Note that there is no
authenticator in this message. Each replica executes the
request, and sends a reply message to the client. When
the client receives f + 1 valid matching reply messages
forming the reply certificate 〈REPLY, n, t, c, r〉R,{c},f+1,
it accepts the result r.

It is worthwhile noting the distinct characteristics of
this protocol. The coordinator does not deal with any
cryptographic operation, but only replicas and clients
perform the operations: there is no cryptographic oper-
ation between the coordinator and clients and between
the coordinator and replicas. In this protocol, the client
knows that it interacts with multiple replicas and per-
forms majority voting from the received reply messages.

By trusting the coordinator, LBFT1 reduces the com-
plexity for implementing BFT protocols. It needs only a
single phase request dissemination from the coordinator
to the replicas with O(N) messages. It does not need
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to deal with a faulty coordinator (which would required
complex view change algorithms). In addition, it needs
2f +1 replicas instead of 3f +1 replicas. The downside
of the trusted coordinator is that our TCB grows slightly.
LBFT2: By changing LBFT1 slightly, we can create
a protocol LBFT2 that performs transparent replication.
LBFT2 (shown in Figure 2(b)) provides clients with an
interface that is similar to interacting with a single server.

In LBFT2, when p, the coordinator, receives a request
message 〈REQUEST, o, t, c〉{c},{p},1, it checks whether
the message authenticator is correct. If the authenticator
is correct, it disseminates the message as in LBFT1. Oth-
erwise, it drops the message. When each replica executes
the request, it sends its reply 〈REPLY, n, t, c, r〉 back to p.
Note that there is no authenticator in the message. When
p collects f + 1 valid matching reply messages (i.e, per-
forms majority voting), it forwards to the client a reply
message 〈REPLY, n, t, c, r〉{p},{c},1.

Unlike LBFT1, this protocol incurs more crypto-
graphic overhead at the coordinator, which must ver-
ify request authentication and collate/sign responses to
clients. However, this protocol simplifies the interface
to clients and reduces wide-area bandwidth overheads.
Clearly many trade-offs exist in the customization of
such replication protocols and different choices make
sense for any given operating environment.

4 Discussion
Core failures: Core failures such as manufacturing de-
fects and soft errors are becoming a concern as more and
more transistors are put into a processor without a corre-
sponding reliability increase for each individual transis-
tor. We can mask these core failures by modifying the
VMM running our architecture. First, the VMM should
provide the capability to pin a VM at a specific core. If a
VM is allowed to run at any core (typical in the symmet-
ric multi-processing (SMP) model), the a defective core
can affect all VMs, thus violating our fault assumptions.
Second, the VMM itself should be able to handle core
failures. This can be achieved by replicating VMM state,
or by running the VMM at a more reliable core if such
core heterogeneity is supported by the platform.

Machine crashes: Our BFT system runs in a single
machine. If the machine crashes (e.g., hardware and
power failure), our system is not available. To handle this
type of failures, we can run our BFT system in multiple
machines and coordinate the BFT groups. For example,
an extended system coordinates BFT groups (one group
per machine) using a benign fault tolerant replicated state
machine algorithm like primary-backup replication and
Paxos; this is a hybrid of benign and Byzantine fault tol-
erant protocols. There are other ways to organize these
groups that give different fault tolerance properties and
protocol complexity.

Adaptive replication: This replication utilizes idle
cores opportunistically for improved fault tolerance. In-
stead of fixing the number of replicas, we can adaptively
change the number of replicas based on load to keep per-
formance the same. Adaptive replication trades off fault
tolerance for performance.

Confidentiality: Our BFT system increases integrity
and availability. However, the system can weaken con-
fidentiality since compromising any one replica can leak
sensitive information. This problem can be addressed by
using threshold signatures [29] or privacy firewalls [35].
For example, to obtain sensitive information in threshold
signature schemes, the attacker should compromise the
majority of replicas.

5 Related Work
We briefly discuss other related work which is not pre-
sented in previous sections.

Diversity has also been explored for detecting specific
malicious behavior. TightLip [36] runs a shadow pro-
cess to detect the use of sensitive information. N-Variant
Systems [20] aim to create general, deterministic vari-
ants with disjoint exploitation sets. The authors showed
address space partitioning that detects attacks using ab-
solute addresses and instruction set tagging. We might be
able to borrow techniques from either camp to diversify
virtualized applications on the fly.

Processor-level replication that addresses benign
faults has been widely studied. All instructions of the
application are replicated and checked through hard-
ware redundancy [12, 33] or time redundancy [7]. These
instruction-level replication schemes are suitable for
masking hardware faults, but not for defending against
software attacks. Executing the same instruction stream
having common vulnerabilities multiple times does not
help to mitigate Byzantine faults.

Replication systems such as MARE (Multiple Almost-
Redundant Executions) [37] focus on reducing repli-
cation costs for software and configuration testing and
checking. Such a partial-replication system executes a
single instruction stream most of the time, and only runs
redundant streams of instructions for some parts of a
program. This approach could be used to provide the
adaptive replication mechanism we envision in Section 4.
Replicant [27] creates replicated processes with OS sup-
port and focuses on handling non-determinism caused by
multiple threads running in a process.

6 Conclusion
In this paper, we argue for a new single-machine ex-
ecution environment for BFT which is emerging from
abundant computation through many cores, virtualiza-
tion, and trusted execution and protection. To avoid com-
mon exploits, we propose to run diversified Guest OSes
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in VMs by combining several OS and binary random-
ization techniques. In this new execution environment,
we discuss new BFT protocol design opportunities, e.g.,
factoring out serialization from traditional BFT protocols
and pushing it to our TCB, or designing protocols on syn-
chrony assumptions. As future work, we plan to develop
prototypes of systems from our design space and eval-
uate the diversity, availability, and performance of the
systems.
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Notes
1Xen [3] runs a special management VM (called Dom0) that hosts

device drivers. To improve the fault tolerance of Dom0, Dom0 can also
be replicated.

2Note that other possible architectures exist, e.g., using an unvir-
tualized secure operating system such as SELinux or Singularity, and
running process-level diversification to the application replicas within
regular isolated processes. Here we concentrate on a virtualization-
based approach, for concreteness.

3DMA-capable devices are hardware, but they are typically config-
ured by software.

4Of course, this works only if the replicas implement the correct ap-
plication semantics; there is no amount of diversification that can make
an application that implements the wrong protocol appear to implement
the right protocol.
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