
Using causality to diagnose configuration bugs

Mona Attariyan and Jason Flinn
Computer Science and Engineering

University of Michigan

Abstract
We present a novel method for diagnosing config-

uration management errors. Our proposed approach de-
duces the state of a buggy computer by running predi-
cates that test system correctness and comparing the re-
sulting execution to that generated by running the same
predicates on a reference computer. Our approach gen-
erates signatures that represent the execution path of a
predicate by recording the causal dependencies of its ex-
ecution. Our results show that comparisons based on
dependency sets significantly outperform comparisons
based on predicate success or failure, uniquely identi-
fying the correct bug 86–100% of the time. In the re-
maining cases, the dependency set method identifies the
correct bug as one of two equally likely bugs.

1 Introduction
Software in modern computer systems is extraor-

dinarily complex. Many applications have a large num-
ber of configuration options that can customize their
behavior. Further, each application interacts with the
other software on a computer through channels such as
shared libraries, registry entries, environment variables
and shared configuration files. This flexibility has a
cost: when something goes wrong, fixing a configura-
tion problem can be both time-consuming and frustrat-
ing. Consequently, there has been considerable effort by
the research community to simplify configuration man-
agement [2, 5, 8, 9, 10, 11].

The process of configuration management can be
divided into two separate tasks: diagnosing which spe-
cific problem is afflicting the computer system, and de-
termining how to fix that problem. In this paper, we ad-
dress the former task: finding the root cause of a con-
figuration problem. We assume that the bug is known,
i.e., the problem has been previously encountered and
solved on a reference computer. The reference computer
could be a test system used by software developers or a
personal computer owned by a peer who had the same
problem. Thus, the problem of diagnosing an unknown
bug on a sick computer can be reduced to identifying that
the sick computer is in a state similar to a buggy state on
the reference computer for which a solution is known.

To deduce similarity between states on the refer-
ence and sick computers, our approach is to run a set of
predicates that test the correctness of the computer sys-
tem. In previous work [8], we used the success or failure
of predicates to deduce similarity. While this approach is
intuitive, we have since encountered several drawbacks.
First, an expert, e.g., a software developer or tester, must
craft a predicate to cover each new bug. Second, a sin-
gle predicate may often detect many bugs, causing many
states to appear similar. Finally, a test case that is too
finely crafted to the reference computer may inadver-
tently report an error due to a benign difference between
the environments of the sick and reference computers.

We present a method for diagnosing bugs that uses
signatures derived from the set of objects upon which
each predicate’s execution causally depends. We use
system call tracing tools such as strace to record each
predicate’s dependency set, i.e., the files, devices, fifos,
etc. read by the predicate. We compare the dependency
sets generated on the reference and sick computers to
deduce similarity. Our results show that comparisons
based on dependency sets significantly outperform com-
parisons based on predicate success or failure, uniquely
identifying the correct bug 86–100% of the time. In the
remaining cases, the dependency set method identifies
the correct bug as one of two equally likely bugs.

2 Background
Our previous work in configuration management,

titled AutoBash [8], used the pattern of success and fail-
ure of known predicates to diagnose configuration errors.
Using this approach, AutoBash executes all predicates,
{P0, P1, ..., Pn} on the sick machine and aggregates their
results as a binary vector Scurrent = {1, 0, ..., 1} (with 1
indicating success and 0 failure). AutoBash then com-
pares Scurrent with a set of system state vectors Si from
{S0, S1, ..., Sm}, where each system state was generated
by running the predicates on the reference computer prior
to fixing a known bug. Intuitively, each vector is a sig-
nature for a system state that represents a particular bug.
Thus, AutoBash chooses the system state vector that is
most similar to Scurrent as the most likely diagnosis for
the bug. According to the diagnosis, AutoBash chooses
a solution from its database and speculatively runs the

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 281

solution. Then, AutoBash tests the affected predicates
to determine whether the problem is fixed or not. If the
problem is fixed, AutoBash commits the solution; other-
wise, the solution is rolled back and AutoBash tries the
next most likely diagnosis. The accuracy of diagnosis de-
termines how fast AutoBash can find a correct solution.
As the AutoBash diagnosis method uses the Hamming
distance as a similarity metric, we will refer to it as the
Hamming distance method.

One advantage of the Hamming distance method
is that it treats predicates as black boxes. AutoBash
does not need to understand what each predicate does;
it only needs to execute each predicate as a child process
and check the return code to determine success or fail-
ure. Another advantage is portability; since predicates
are application-level test cases, their success or failure
should not be perturbed by irrelevant fluctuations in the
application environment such as variations in the operat-
ing system or installed software.

However, as Section 5 shows, the Hamming dis-
tance method suffers from ambiguity. Since the simi-
larity metric takes into account only the success or fail-
ure of predicates, many different bugs may have identical
state vectors. To allow correct diagnoses, a tester or de-
veloper must painstakingly craft specific predicates that
target each known bug. Easy-to-create stress tests, which
we refer to as kitchen sink predicates, are useless because
they fail for most bugs. For example, a Linux kernel
compile can trigger many possible compiler configura-
tion bugs, so its failure tells little about the underlying
system state. On the other hand, failure of a hand-crafted
predicate that only checks a specific kernel header re-
veals much more about the bug. However, writing such
predicates to cover all known bugs takes a lot of effort.

Another drawback of the Hamming distance
method is lack of granularity: many system state vec-
tors may lie at a Hamming distance of one or two from a
given result vector, even though each state causes a dif-
ferent set of predicates to fail.

3 Design
Based on our observations, we tried to design a

method that would retain the advantages of the Hamming
distance method while eliminating its disadvantages.

Looking more closely, we realized that although
the success or failure of predicates may be similar for
many bugs, the execution paths of those predicates usu-
ally differ for each bug. For example, if a predicate com-
piles and runs a program, any bug in the compilation,
linking or loading phases can cause the predicate to fail.
However, bugs in each of the three phases cause the pred-
icate to take different execution paths. As another ex-
ample, a configure script takes different execution paths
depending upon the particular software that is installed
on a computer. Thus, if we can generate a signature that
captures the execution path of a predicate, we should be
able to more precisely identify a configuration error.

Ideally, we would like to generate a signature that
is precise enough to capture different execution paths
that are induced by different configuration bugs. How-
ever, the signature should be robust enough so that exe-
cuting a predicate on computers with the same bug but
different operating systems, installed software, and ex-
ecution environments generates similar signatures. For
example, we could use all the system calls executed
by a program to generate a signature for the execution
path [4, 12]. However, random permutations caused
by thread scheduling, interactions with other processes,
and other sources of non-determinism will cause the se-
quence of system calls to vary even when a predicate
is executed on the same platform. Further, this method
would perform poorly for our purposes because we run
the same predicate on two computers with different soft-
ware. For example, the sequence of system calls will
change with different versions of shared libraries such as
libc, with different versions of the same operating sys-
tem, or with different operating systems.

To generate a more robust signature, we decided to
instead use the causal dependencies of predicate execu-
tion as a signature. We define the dependency set of a
process to be the set of files, directory entries, file meta-
data, devices, fifos, and other objects read by the process
and its descendants during their execution. This choice
is based on the observation that the layout of application
files and directories shows only minor fluctuations across
platforms. Further, the concept of files and directories is
common to most operating systems, while specific sys-
tem calls differ greatly. At the same time, the depen-
dency set usually reflects significant differences in the
execution paths of a predicate in the presence of differ-
ent bugs. For instance, in the above compilation exam-
ple, if the predicate fails in compilation, the predicate’s
dependency set will not contain any objects related to the
linker or loader simply because execution ended before
those phases. Therefore, the dependency set can capture
the progress of predicate execution and generate different
signatures for different failures.

There are several possible approaches for generat-
ing dependency sets. We wished to avoid intrusive mon-
itoring methods that require the application under test or
the host operating system to bemodified. We also wanted
to reuse existing tools as much as possible. We observed
that most operating systems have a system call tracing
tool such as Linux’s strace or FreeBSD’s ktrace. We
wrote parsing programs that take tracing tool output and
generate the corresponding dependency set. The only
drawback of these tools is that they can only trace the
main process and its descendants. Activities of other
processes communicating with the main process and its
descendants via shared memory, pipes or files cannot be
automatically traced with these tools. To address this is-
sue, we could trace all processes in the system. However,
we judged that tracing all processes would incur a lot of
overhead while adding negligible accuracy.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association282

4 Implementation
We use strace and ktrace to generate depen-

dency sets on Linux and FreeBSD, respectively. These
tools intercept all system calls made by a process and its
descendants along with their parameters and return val-
ues. We trace each predicate and pipe the tool output to
a parser that calculates the predicate’s dependency set.

The parser divides system calls into three cate-
gories. The first category consists of system calls that do
not affect the dependency set of the predicate. For exam-
ple, the brk, mmap and mprotect system calls manage a
process’s memory. The parser simply ignores these sys-
tem calls. The second category consists of system calls
that do not directly affect the dependency set but may
change the objects that are added later. For example, the
fchdir system call changes the current directory to the
file descriptor specified by its first parameter. This sys-
tem call does not change the dependency set, but it af-
fects all following file names with relative paths.

The third category consists of system calls that di-
rectly affect the dependency set. For each system call,
the parser adds appropriate dependency records to the
process’s dependency set. For example, the stat sys-
tem call provides information about a specified file. A
successful stat system call makes the process depen-
dent on the directory entry and metadata of the specified
file, as well as the directory entries and metadata of all
directories in the file path. As another example, reading
from a file makes a process dependent on the content of
the specified file, as well as its metadata.

Before processing the parameters of a system call,
we check the return value and error type. Without con-
sidering the return value, we are in danger of adding
wrong records to the dependency set. For example,
ENOENT as the return value of an access system call in-
dicates that the requested path does not exist or is a dan-
gling symbolic link. Therefore, we cannot simply gener-
ate dependency records for the entire path. Instead, we
determine which part of the path exists and add appropri-
ate dependency records for only that part.

Usually, the main process creates child processes
using fork. Our parser tracks dependency sets for the
descendants of a traced process in order to generate a
good signature. For example, a make process forks chil-
dren to compile and link objects; if these child processes
were omitted, the resulting dependency set would con-
tain little useful information.

Initially, the parser sets the dependency set of a
child process equal to the dependency set of its parent.
It adds new records to the child’s dependency set as the
child executes. If the child communicates to its parent
(e.g., by sending the parent a signal when it exits), the
parser sets the dependency set of the parent process to be
the union of the parent’s current dependency set and the
child’s dependency set. The fork system call is usually
followed by an exec system call that replaces the mem-
ory image of the process with one from an executable

file. When this happens, the parser adds the executable
file to the process’s dependency set.

In our current implementation, the parser uses full
path information for files and directories. We also con-
sidered using only the name of a file or directory instead
of the whole path. However, our experiments revealed
that the former method was slightly superior, mainly due
to false matches between files with the same name but
different paths. We did find that using only the file name
was especially useful for shared libraries, because the
location of libraries can vary widely across platforms.
Therefore, our implementation uses only the file name
for shared libraries. Our parser has one further optimiza-
tions: if an object being read is referred to by a symlink,
the parser follows the symlink to also add entries for the
real path of the object.

To diagnose a configuration error on a sick com-
puter, our tool runs each predicate, traces its output, and
generates its dependency set. It compares the depen-
dency sets with those generated on the reference com-
puter for each known bug. To compare dependency sets,
the tool calculates the edit distance between the sets for
each predicate. For each known bug, it sums the edit dis-
tances to calculate the similarity between the state of the
sick computer and the state of the reference computer. It
identifies the bug with the lowest total as the most likely
diagnosis; in the case of ties, it reports all tied bugs as
being equally likely to be the root cause.

5 Evaluation
Our evaluation measures how effectively our pro-

posed dependency set method diagnoses configuration
bugs using both targeted and “kitchen sink” predicates.

5.1 Methodology
In previous work [8], we developed a benchmark

consisting of three applications: the CVS version con-
trol system, the gcc cross compiler and the Apache Web
server. For each application, the benchmark consists of
10 common configuration bugs. It also contains 5–6 tar-
geted predicates for each application such that each bug
causes at least one predicate to fail. Although a complete
description of our benchmark is omitted due to space
constraints, Table 1 shows some examples of bugs and
predicates. In addition, for each application we created a
single “kitchen sink” predicate that detects all bugs.

In order to measure how sensitive our dependency
set method is to variation across operating systems and
installed software, we ran our experiments on four com-
puters running different operating systems: Red Hat En-
terprise Linux 3, Fedora core release 6, Ubuntu ver-
sion 7.04, and FreeBSD version 6.2. Although these
platforms are fairly similar in overall behavior, the ex-
ecution signatures revealed a lot of subtle differences.
For instance, in our Ubuntu platform libraries are lo-
cated in “/lib/tls/i686”, while in other systems “/lib”
contains the libraries. As another example, FreeBSD

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 283

Application Configuration problem descriptions
CVS Setgid bit not set on repository, so group for new

files is incorrect
$CVSROOT misconfigured for a CVS user

GCC Cross-compiler not configured for -pthread flag
Cross-compiler not configured to pass the static link
flag to the linker

Apache Apache configuration does not allow CGI execution
in user’s home directory
Apache not configured to load PHP module

Application Predicate descriptions
CVS a user checks in a project and checks it out again

a user checks in a project, and a different user checks
it out

GCC compile a .c file and statically link in a math library
take a multi-threaded .c file, compile it for the XS-
cale architecture

Apache wget a CGI script from a user’s home directory
wget the result of a PHP test page

Table 1. Example bugs and predicates

uses “/etc/pwd.db” and “/etc/spwd.db” for authentica-
tion, while other platforms use “/etc/passwd”. We in-
stalled the same version of CVS and the gcc cross com-
piler on all machines. For Apache, we used version
2.0.50 for all machines, except for FreeBSD, which runs
2.0.59. The version of the PHP module that we used is
4.4.6, except for Fedora, which runs 4.4.7.

We used the Red Hat machine as the reference
computer. For each application, we injected each bug.
We then executed the targeted predicates and recorded
the success or failure of each one, as well as its depen-
dency set. We also executed the “kitchen sink” predicate
for each bug, recording its outcome and dependency set.

We emulated sick computers by injecting each bug
into all four computers. For each bug, we ran the tar-
geted and “kitchen sink” predicates on each sick com-
puter and used both the Hamming distance and depen-
dency set methods to diagnose the bug. Each method
returns a set of bugs that are judged to be the root cause
of the configuration problem. Multiple bugs are returned
by each method only in the case of ties, where each bug
is judged equally likely to be the root cause. Two bugs
of the benchmark (CVS bug 4 and Apache bug 4) were
not applicable to FreeBSD platform due to differences
in platform default behavior and application versions, so
we omitted these bugs from our results.

We evaluated our results using two metrics from
the information retrieval literature: precision and recall.
Precision, which is the percent of false positives, is cal-
culated as |R∩C|/|R|, where R is the set of bugs returned
by a method and C is the set of bugs that are the correct
root cause. Recall, which is the percent of false nega-
tives, is calculated as |R∩C|/|C|.

5.2 Results
Table 2 shows results for the targeted predicates.

We only show precision in the table since both the Ham-
ming distance and dependency set methods have a recall
of 100%, i.e., there were no false negatives in our ex-
periments. Because the Hamming distance method only

considers the success or failure of predicates, its results
are the same on all sick computers. Therefore, we only
show its precision once in the third column of the table.
The remaining columns show the precision of the depen-
dency set method on each sick computer.

As the third column of Table 2 shows, the Ham-
ming distance method performs fairly well as long as
an expert has taken the time to write targeted test cases.
However, this method only considers the success or fail-
ure of predicate execution. Therefore, it cannot distin-
guish between situations with identical fail/pass patterns.
Although our benchmark consists of targeted predicates,
the Hamming distance algorithm still generates many
ties. Across all bugs, its average precision is 57%.

As the remaining columns in the table show, the
dependency set method has greater precision. On the
Red Hat platform, the sick computer is identical to the
reference computer. Thus, the dependency set method
acts like an oracle, having precision of 100% for all bugs.
For the remaining platforms, the dependency set method
has average precision of 93%.

Table 3 shows results for the “kitchen sink” pred-
icates. As before, neither method generates false nega-
tives. However, the Hamming distance method has low
precision for all bugs. It does not provide any useful in-
formation because kitchen sink predicates always fail. In
contrast, the dependency set method is able to diagnose
bugs much more accurately. The average precision of the
dependency set method ranges from 93% to 100%, com-
pared to 10% for the Hamming distance method. These
results show that the dependency set method can still do
an excellent job of diagnosing bugs without requiring the
time-consuming task of writing targeted predicates.

The overhead of generating dependency sets is
very small. On average, it takes less than 0.2 seconds
to generate a signature from each trace output. Overall,
it takes less than 14 seconds for CVS, 11 seconds for gcc
and 27 seconds for Apache to run all the predicates under
strace and generate a complete signature. In our exper-
iments, the time required to compare the complete signa-
ture of a sick computer against the reference computer is
less than 0.5 seconds. As the number of predicates and
bugs in the database increases, the time required for gen-
erating the complete signature and comparing against the
reference machine increases as well.

The accuracy of our method is dependent on
the distance between bugs rather than the size of bug
database. In other words, our method cannot accurately
distinguish between bugs that are subtly different from
each other and cause predicates to have similar execu-
tions. Although the chance of having such bugs increases
as the database grows, the size of the database does not
solely determine the precision of our method.

6 Related work
To the best of our knowledge, this work is the first

to use the causal dependencies of predicate execution to

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association284

Hamming Dependency set Dependency set Dependency set Dependency set
Application Bug distance (RHEL 3) (Fedora) (Ubuntu) (FreeBSD)

1 100% 100% 100% 100% 100%
2 33% 100% 50% 50% 50%
3 100% 100% 100% 100% 100%
4 33% 100% 100% 100% N/A

CVS 5 100% 100% 100% 100% 100%
6 33% 100% 100% 100% 100%
7 33% 100% 50% 50% 50%
8 33% 100% 50% 50% 50%
9 100% 100% 100% 100% 100%
10 33% 100% 50% 50% 50%
1 50% 100% 100% 100% 100%
2 50% 100% 100% 100% 100%
3 100% 100% 100% 100% 100%
4 33% 100% 100% 100% 100%

gcc 5 33% 100% 100% 100% 100%
6 100% 100% 100% 100% 100%
7 50% 100% 100% 100% 100%
8 50% 100% 100% 100% 100%
9 100% 100% 100% 100% 100%
10 33% 100% 100% 100% 100%
1 100% 100% 100% 100% 100%
2 100% 100% 100% 100% 100%
3 20% 100% 100% 100% 100%
4 20% 100% 100% 100% N/A

Apache 5 20% 100% 100% 100% 100%
6 50% 100% 100% 100% 100%
7 50% 100% 100% 100% 100%
8 100% 100% 100% 100% 100%
9 20% 100% 100% 100% 100%
10 20% 100% 100% 100% 100%

Table 2. Precision of bug diagnoses for targeted predicates

Hamming Dependency set Dependency set Dependency set Dependency set
Application Bug distance (RHEL 3) (Fedora) (Ubuntu) (FreeBSD)

1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 50%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% N/A

CVS 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 50% 50% 50%
8 10% 100% 50% 50% 50%
9 10% 100% 100% 100% 100%
10 10% 100% 50% 50% 50%
1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 100%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% 100%

gcc 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 100% 100% 100%
8 10% 100% 100% 100% 100%
9 10% 100% 100% 100% 100%
10 10% 100% 100% 100% 100%
1 10% 100% 100% 100% 100%
2 10% 100% 100% 100% 100%
3 10% 100% 100% 100% 100%
4 10% 100% 100% 100% N/A

Apache 5 10% 100% 100% 100% 100%
6 10% 100% 100% 100% 100%
7 10% 100% 100% 100% 100%
8 10% 100% 100% 100% 100%
9 10% 100% 100% 100% 100%
10 10% 100% 100% 100% 100%

Table 3. Precision of bug diagnoses for kitchen sink predicates

diagnose configuration bugs. Previous systems have used
predicates to help fix buggy computers. Chronus [11]
also uses user-defined predicates to test the behavior of

the system. Chronus tries to find the point in time where
a system ceased to operate correctly by testing a pred-
icate against different virtual machine snapshots. The

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 285

success or failure of the predicate is assumed to precisely
diagnose the bug. We must avoid this assumption in or-
der to eliminate having an expert write a targeted predi-
cate for each new bug. Since Chronus compares the sys-
tem against itself, it is able to diagnose unknown bugs.
Our method, however, cannot diagnose bugs that do not
exist in the reference computer database. Our previous
work, AutoBash [8], also used predicates but employed
the Hamming distance method discussed in the paper.

PeerPressure [9] and its predecessor, Strider [10],
also address the configuration management problem.
These tools apply statistical methods to diagnose and fix
configuration problems. PeerPressure and Strider benefit
from the known schema of the registry, but cannot detect
configuration errors that lie outside the registry. Our ap-
proach of analyzing predicate causality is more general
and holds promise for dealing with errors that lie outside
the registry and on other operating systems such as Unix
variants. We assume that the bug is already known and
exists in the reference computer database, but PeerPres-
sure and Strider do not have this assumption.

Clarify [3] uses a similar approach of generating
signatures that are based on program behavior. Clar-
ify targets improved error reporting rather than config-
uration management. Clarify generates signatures using
program features such as function call counts, call sites,
and stack dumps. It then classifies the signatures using
machine learning techniques. In contrast, our approach
uses causal dependency information from a tree of pro-
cesses to generate a signature.

Similar to our method, Yuan et al. [12] leverage
system call information to diagnose configuration bugs.
They correlate system call traces to problem root causes
using machine learning techniques. To reduce system
call variations, they use cross-time and cross-machine
noise filtering techniques. Our method generates more
robust signatures by extracting dependency sets from
system call traces. The dependency set method does not
need cross-time filtration and is accurate across varia-
tions of Unix operating systems.

Many prior systems use causality analysis. For
instance, BackTracker [6] traces causality to determine
what state has been changed during an intrusion. Aguil-
era et al. [1] trace RPCs to debug performance problems.
PASS [7] uses causality to annotate files with provenance
that describes their causal inputs. Our dependency sets
capture similar information, but limit the scope of infor-
mation collected to specific periods of time.

7 Conclusion
Configuration management is a difficult problem

that is taking on increased importance as the complex-
ity of modern computer systems grows. This paper con-
tributes a novel method for error diagnosis that uses the
causal dependencies of test case execution to detect sim-
ilarities between a configuration state on a sick computer
and another on a reference computer. We show that such

information can be collected using only pre-existing sys-
tem call tracing tools and without requiring application
or operating system modification. As future work, we
would like to measure the robustness of our signatures
across different versions of the same application.

Acknowledgments
We thank Ya-Yunn Su and Kaushik Veeraraghavan for com-

ments on this paper. This work has been supported by the National
Science Foundation under award CNS-0306251. Jason Flinn is sup-
ported by NSF CAREER award CNS-0346686. The views and conclu-
sions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or
implied, of NSF, the University of Michigan, or the U.S. government.

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS,
P., AND MUTHITACHAROEN, A. Performance debugging for
distributed systems of black boxes. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles (Bolton Land-
ing, NY, October 2003), pp. 74–89.

[2] BROWN, A. B., AND PATTERSON, D. A. Undo for operators:
Building an undoable e-mail store. In Proceedings of the 2003
USENIX Technical Conference (San Antonio, TX, June 2003).

[3] HA, J., ROSSBACH, C. J., DAVIS, J. V., ROY, I., RAMADAN,
H. E., PORTER, D. E., CHEN, D. L., AND WITCHEL, E. Im-
proved error reporting for software that uses black-box compo-
nents. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation 2007 (San Diego, CA, 2007).

[4] HOFMEYR, S. A., FORREST, S., AND SOMAYAJI, A. Intrusion
detection using sequences of system calls. Journal of Computer
Security 6, 3 (1998), 151–180.

[5] HOLLAND, D. A., JOSEPHSON, W., MAGOUTIS, K., SELTZER,
M., STEIN, C., AND LIM, A. Research issues in no-futz com-
puting. In Proceedings of the 8th Workshop on Hot Topics in
Operating Systems (HotOS-VIII) (Schloss Elmau, Germany, May
2001), pp. 106–110.

[6] K ING, S. T., AND CHEN, P. M. Backtracking intrusions. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (Bolton Landing, NY, October 2003), pp. 223–236.

[7] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In
Proceedings of the 2006 USENIX Annual Technical Conference
(Boston, MA, May/June 2006), pp. 43–56.

[8] SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. AutoBash: Improv-
ing configuration management with operating system causality
analysis. In Proceedings of the 21st ACM Symposium on Operat-
ing Systems Principles (Stevenson, WA, October 2007), pp. 237–
250.

[9] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (San Francisco, CA, Decem-
ber 2004), pp. 245–257.

[10] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. STRIDER: A black-
box, state-based approach to change and configuration manage-
ment and support. In Proceedings of Usenix Large Installation
Systems Administration Conference (October 2003), pp. 159–
172.

[11] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configu-
ration debugging as search: Finding the needle in the haystack.
In Proceedings of the 6th Symposium on Operating Systems De-
sign and Implementation (San Francisco, CA, December 2004),
pp. 77–90.

[12] YUAN, C., LAO, N., WEN, J.-R., LI, J., ZHANG, Z., WANG,
Y.-M., AND MA, W.-Y. Automated known problem diagnosis
with event traces. In Proceedings of EuroSys 2006 (Leuven, Bel-
gium, 2006).

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association286

