
Passwords for Everyone: Secure Mnemonic-based Accessible Authentication

Umut Topkara Mercan Topkara Mikhail J. Atallah
Department of Computer Science

Purdue University
utopkara,mkarahan,mja@cs.purdue.edu

Abstract

In many environments, a computer system is severely
constrained to the extent that the practical input mech-
anisms are merely binary switches. Requiring the user
to remember a long random bit string and to authenti-
cate by entering each bit in the available binary input
mechanism, is completely impractical. This paper deals
with the question of authentication in such environments
where the inputs are constrained to be yes/no responses
to statements displayed on the user’s screen. We present
PassWit, a mnemonic-based system for such environ-
ments that combines good usability with high security,
and has many additional features such as (to mention a
few) resistance to phishing, keystroke-logging, and com-
patibility with currently deployed systems and password
file formats (hence it can co-exist with existing login
mechanisms).

1 Introduction

We present PassWit, an authentication system that can
be used in environments where the input mechanisms
are constrained to low bandwidth switches. For exam-
ple, a disabled person may only be capable of yes/no re-
sponses to prompts from the screen (by different nods of
the head, eye movements, or even by different thought
patterns that are captured by a sensor). Alternatively,
the user may not suffer from any impairment yet the en-
vironment precludes the use of a keyboard or keypad,
as happens with tiny portable devices such as some of
the smaller mp3 players, voice sensors at the doors of
restricted-access areas, and hands-free situations such as
construction work sites, operation of a motor vehicle, etc.
Finally, a case can be made, in situations where shoulder-
surfing is prevalent (such as in crowded cyber-cafes), for
deliberately restricting the input to be a response that
is hard to detect by a shoulder-surfer (e.g., left-click vs
right-click).

PassWit enables users to achieve security of truly ran-
dom passwords while authenticating themselves by just
answering a series of “yes/no” questions. An important
ingredient in our recipe is the use of a mnemonic that
enables the user to produce a long enough (hence more
secure) string of appropriate yes/no answers to displayed
prompts (i.e., challenges). Each user is required to re-
member a mnemonic sentence of which they have sev-
eral choices to pick from. Another important ingredi-
ent is the non-adaptive nature of these challenges – so
they are inherently non-revealing to a shoulder-surfer or
phisher. The mnemonic is a sentence or a set of words
known only to the user and authenticating server (in the
server they are stored in a cryptographically protected
way rather than in the clear) – the users are never asked
to enter their mnemonics to the system, they only use
the mnemonic to answer the server’s challenge questions.
PassWit is safe against many attacks including shoulder
surfing, phishing, and acoustic attack.

In PassWit, authentication can be achieved without re-
quiring any special input device, or any computation at
the client site. The authentication questions are designed
in such a way that a short mnemonic sentence can encode
a long password. There is no restriction on the size of
the mnemonic sentence or the password, and the security
(hence the length) of the passwords can be increased by
requiring the user to remember more than one sentence.

Our design is compatible with pure text based inter-
faces as well as other media interfaces that can represent
the text mnemonics. Our usage of text for mnemonics
is not necessary but it is what we implemented for rea-
sons of convenience and compatibility with existing lo-
gin mechanisms; similar methods can be easily used in
conjunction with speech, video, or pictures.

Moreover, using text for mnemonics (as opposed to
pictures, video or audio) brings more flexibility to our
system, since it is compatible with text consoles and LED
screens. There is no language restriction for PassWit, it
can be implemented for languages other than English.

2007 USENIX Annual Technical ConferenceUSENIX Association 369

2 Challenges and The Adversary Model

The primary challenge that we seek to overcome is to
develop an authentication system which would be able
to work in input-constrained environments. The ability
to provide yes/no inputs makes it possible to transmit any
random bit string but it does not help at all for remember-
ing which bit string to transmit. A useful scheme needs
to involve a mnemonic that makes it possible to securely
remember a long random bit string, by remembering only
a relatively short sentence.

A desirable authentication system should not require
the user to carry an extra portable device (e.g. calculator)
or even a paper and a pen to be widely applicable.

The password initialization and reset should be easy.
In our case, initialization consists of asking the users on
which topic they would like their mnemonic sentence to
be, and later providing them alternative mnemonic sen-
tences. Note that the users can use only yes/no answers
to input their choice of mnemonic sentence.

We assume that all of the information used by the sys-
tem during mnemonic creation is public and the adver-
sary has equal (or more) computational power compared
to our system.

The text passwords as well as the mnemonics in our
system have to be secure against dictionary attacks.
Mnemonics can not be a popular quote, or the lyrics of
a well known song. We achieve this security by employ-
ing a mnemonic sentence generation method which was
proposed as a part of a scheme for remembering conven-
tional text passwords [16]. An adversary who has access
to the passwords file (e.g., “/etc/passwd”) does not gain
any advantage when our system is used for authentica-
tion; our system does not weaken the security of existing
authentication, it improves it by helping the users to have
a truly random password.

A desired system should have resistance to attacks
that involve capturing the user input for replay attacks
(e.g. keystroke logging) or capturing the challenges (e.g.
shoulder surfing). In our system the challenges and the
user’s responses are meaningless to an adversary, unless
both are successfully captured at the same time.

Resistance to phishing attacks is a desired feature.
Mnemonics are shared secrets between the user and the
authenticating server and the users are never asked to en-
ter their mnemonics to the system. The users can detect
an adversary that does not know the shared secret. Oth-
erwise an adversary does not gain any information about
the password even if the user answers random phishing
challenges.

Refer to [17] for a more detailed analysis of the chal-
lenges involved in building an authentication system for
input constrained environments.

3 System Overview

We propose PassWit, an authentication system that is
based on mnemonic passwords [16], whose details will
be described in the following subsections, where P de-
notes the user’s previously existing (and securely gener-
ated) password bit string (for now we assume P is 40 bits
long, but we can accommodate any other length).

3.1 Password initialization step

1. The system generates a number of random sen-
tences s1, . . . , sλ and displays them to the user.
Each sentence has a length of µ words (not counting
functional words such as “the”, “a”, “with”). In our
implementation we used µ = 10. For example, s2

could come from tracing a random left-to-right path
along the columns of Table 1, using some of the
password bits to select one word from each column.
In this case, 4 password bits are used per column
and first column shows the bit string encoded by
the words in the same row. For example, if P =

0101100101010011111101001000101010001101
then the resulting s2 is Angry union artists simply
dismissed demand to forgive the laziness of the
crazy mayor. Each si is selected from a separate ta-
ble like Table 1 which was derived from a different
text source (e.g., sports news, stock markets, etc).

2. The user selects one of the above si’s, suppose it
consists of the successive words m1, m2, . . . , mµ.

3. The column Cj from which word mj was selected
contains what we call the equivalence class (in that
table) of the word mj . We use r to denote the size
of an equivalence class; in our example r = 16.
The user does not need to memorize the equivalence
class (only mj needs to be remembered).

3.2 Authentication step

For j = 1, . . . , µ in turn, the system asks the user , ` =

log
2
r questions (` = 4 in our example) about column

Cj , as follows.

1. The system randomly permutes the entries of col-
umn Cj before creating the challenges at each ses-
sion (which foils a replay attack). For the ith entry
of Cj in the permuted order, let bi,3bi,2bi,1bi,0 be the
binary representation of i. For instance last column
of Table 1 might be permuted as {leader, senator,
enemy, foe, king, queen, president, chairman, chil-
dren, mayor, friend, ally, associate, assistant, man-
ager, supporter}.

2007 USENIX Annual Technical Conference USENIX Association370

2. The system creates 4 sets Q3, Q2, Q1, Q0 such that
the ith word of the permuted Cj is included in Qk if
and only if bi,k = 1. For the permutation of C10

in the previous step, Q0 would be {senator, foe,
queen, chairman, mayor, ally, assistant, supporter},
and Q1 would be {enemy, foe, president, chairman,
friend, ally, manager, supporter}. Since the entry
leader has index i = 0 in the permutation of this
example session, it does not appear in any of the
Qk. See Figure 1 for the challenges of this session,
which are displayed in random order (as opposed
to alphabetical order) as CAPTCHAs for added se-
curity against sophisticated malicious software (the
random re-ordering as well as the CAPTCHA repre-
sentation are not needed if there is no threat of such
an adversary).

3. For k = 3, 2, 1, 0 in turn, the system displays Qk to
the user who answers “Yes” if the mnemonic word
mj (corresponding to the current column Cj) is in
Qk, and answers “No” otherwise.

We note that (i) the user’s answers uniquely identify
to the server the mnemonic word in each column; (ii)
the total number of questions is logarithmic in the size
r of each column, so that password security can be in-
creased by a factor of 2µ by doubling the size of a col-
umn yet adding only 1 extra question per column (and,
more importantly, without any increase in the size of
the mnemonic, i.e., without further burdening the user’s
memory); (iii) a shoulder-surfer adversary sees the ques-
tions but not the user’s yes/no answers (hence learns
nothing); (iv) that a keystroke-logger sees the answers
but cannot use them to authenticate itself or to obtain
the passwords unless it can relate these answers to the
challenges (which are preferably obfuscated as in the fig-
ure); (v) that a phisher adversary does not even know
what questions to display, immediately alerting the user
that something seriously phishy is going on (even if the
phisher got a user to respond to very unfamiliar chal-
lenges, those responses are useless to such an attacker).

4 Implementation Details

We assume that the environment enables the user to read
(or hear) the challenges displayed on the screen and the
user can input the yes/no answers through a switch. The
system includes a large set of tables, S, which are al-
ready populated offline. These tables, such as Table 1,
are used for generating mnemonic sentences and chal-
lenges. Each table has a unique ID. Every table cor-
responds to a source sentence from a corpus, and these
source sentences are stored in the first row of the table.
Table 1 was generated using an example source sentence
“Leading U.S. couturiers are strongly resisting pressure

to regulate the thinness of the popular models.” Every
column in this table shows a possible candidate word set
for replacing the original word in the first row (functional
words are excluded).

4.1 Mnemonic Creation

At mnemonic-creation time, the system first generates a
random password, P , for the user (e.g. a random string
of 40 bits), or the user’s existing password is used. Next
step is generating the possible candidates for mnemonic
sentences that will encode this password.

If the source sentence has 10 words as in our example
sentence, and each of these words have 16 alternatives; a
random password chooses one word out of each of these
16 alternative words, hence encodes 4 bits per word, 40

bits in total.
The system selects the words that encode P . This

process generates one candidate mnemonic sentence per
such table. All of the candidate mnemonic sentences en-
code the same P .

At the end, the user is provided with a set of candi-
date mnemonic sentences to pick from and the random
password, P , to use in a keyboard setting if needed.

Mnemonic creation concludes with the user’s selection
of one of the candidate mnemonic sentences for remem-
bering as a mnemonic.

Once the user selects which mnemonic sentence to
use, the ID of the corresponding table that generated it is
recorded in the least significant log

2
|S| bits of the salted

hash of the password file entry.
Since we have many source sentences (say 1024

of them), the user can choose from 1024 different
mnemonic sentences generated for each source sentence.
However there might be psychological attacks [8] to such
a flexible system; hence we advise only a small random
portion of these possible mnemonics be given as choice
to the users.

4.2 Mnemonic Usage

The mnemonic sentence is not stored in the system, in-
stead the source table ID is stored in the salted password
hash. The authentication involves a conversion of the
yes/no answers of the user into a password.

We achieve this by generating the challenges in such
a way that every yes/no answer narrows the search space
by one-bit, similar to the idea behind the “20-Question
Game”. In our scheme, instead of looking for one ob-
ject, we are searching for a password that is composed
of concatenation of several substrings, each of which is
encoded by a different word of the mnemonic sentence.
Each mnemonic word is a member of an equivalence

3

2007 USENIX Annual Technical ConferenceUSENIX Association 371

leading U.S. couturiers strongly resist pressure regulate thinness popular models
0000 peaceful viking tailor alarmingly welcome attempt modify rent passive queen
0001 thoughtful romanian cartoonist hardly agree haste alter wisdom inept leader
0010 rich city beekeeper suddenly reject duress cement culture able senator
0011 uninterested rural realist simply embrace pressure manipulate education dull supporter
0100 provoked irish firefighters warily resist demand secure diligence hot king
0101 angry suburban artist doubtfully renounce bid fix weakness skilled ally
0110 outraged texan architect remarkably submit call quantify salary adept foe
0111 neutral aussie police again honor ultimatum measure pension dormant manager
1000 furious canadian cubist blindly recognize struggle forgive thinness crazy friend
1001 poor union farmer suspiciously allow operation change obedience gifted president
1010 average british fantasist delicately accept order limit laziness bright enemy
1011 determined european developer fiercely surrender imperative throttle spirit witless children
1100 strong downtown farmer repeatedly tolerate hurry harness tenuity exhausted associate
1101 calm urban goldsmith reluctantly permit insistence deregulate slenderness talented mayor
1110 silent italian musician discreetly refuse ban restrict citizenship clumsy chairman
1111 ordinary french drivers slowly dismiss decree fiddle discipline sharp assistant

Table 1: The mnemonic generation table for the sentence “Leading U.S. couturiers are strongly resisting pressure to regulate the
thinness of the popular models.” The order of words within a column is randomly determined.

class, and we need to ask several questions that will de-
terministically find the exact mnemonic word within a
class. We ask log

2
r, (e.g., 4), questions to determine

one mnemonic word, where r, (e.g., 16), is the number
of words in an equivalence class.

The key idea behind generating each challenge is very
similar to the idea behind non-adaptive blood testing
technique [9]. The area of combinatorial group testing
concerns itself with performing group tests on subsets of
a given set to identify defective elements in that set: A
test for a subset tells whether that subset contains a de-
fective element. If the set size is r and the number of
defective elements is no more than d, then the goal is
to pinpoint all the defective elements by making as few
group tests as possible. The original problem was adap-
tive in the sense that test i+1 could be designed after the
outcome of test i was known, thereby enabling a sim-
ple binary search for the defective element in the special
case of d = 1. The non-adaptive version of the problem
is when all the tests are done in a single round, with all
the subsets to be tested determined in advance.

The analogy with our problem is as follows: For each
mnemonic word mj , the r “blood samples” are the r

words in mj’s equivalence class. The mnemonic word is
like the contaminated blood sample. The server presents
the user with a subset of words from mj’s equivalence
class, Cj , (possibly containing mj) and the user is sup-
posed to respond yes or no based on whether mj is in
that subset (i.e., whether that subset is “contaminated”).
The server tests subsets in a manner that enables it to
uniquely identify mj , and then the server does a table
lookup (local to the server) to derive the password bit
string associated with mj .

To prevent the adversary from learning anything by us-

ing the questions, it is imperative for the server to use a
non-adaptive technique whereby all the questions have
been pre-determined well in advance, as in non-adaptive
combinatorial group testing. The questions are therefore
independent of which item in the set is the “contami-
nated” one, and hence they reveal nothing to the adver-
sary who sees them. Using adaptive group testing tech-
niques (like binary search) for determining the questions
would be lethal from the security point of view.

Our scheme will use d = 1, for which an ` = dlog
2
re

test non-adaptive solution is well known and in fact quite
straightforward. We briefly sketch it, for the sake of mak-
ing this paper self-contained. In what follows Cj is the
equivalence class of word mj , where |Cj | = r. (Recall
the authentication step described in Section 3)

1. Let the words in Cj be listed in an order (which
will be randomly changed at every authentication
session) as w1, . . . , wµ.

2. For each word wi, let the ` bit binary representation
of i be denoted as the bit string bi,`−1, . . . , bi,0.

3. For k = 0, . . . , ` − 1 in turn, the server’s ques-
tion Qk is constructed as follows: Every wj whose
bi,k = 1 is included in Qk.

The server asks ` questions, and each question is con-
structed without any dependency on which element of Cj

is the “contaminated” one, mj . The server can easily de-
termine mj : It is the only word of Cj such that all of the
Qk’s that contained it were answered with a “yes” by the
user. Note that, this scheme is not restricted to inputting
passwords using mnemonics, and it can be used to input
plain text passwords when the challenges contain single
ASCII symbols.

4
2007 USENIX Annual Technical Conference USENIX Association372

When the equivalence classes have a size of 16 as in
our example, each challenge will have 8 words and the
user will be asked 4 questions. An example question
for finding the mnemonic word in the last column of Ta-
ble 1 would be as follows:“Does your mnemonic sen-
tence contain one of the following words?: { senator,
foe, queen, chairman, mayor, ally, assistant, supporter
}”. The user answers 40 such questions in total (4 for
each one of the 10 mnemonic words) with a “yes” or
a “no” signal using the switch (equivalently with 1 for
“yes” or 0 for “no”).

After the answers are collected, the system extracts
each password substring encoded by the mnemonic
words and concatenates them in the order correspond-
ing to the order of words in the source sentence to form
the password P . The hash of P with the salt is com-
pared to the hash value kept in the password file (where
the hash value is stored as in the regular UNIX password
file). Note that the same password file can still be used
with the ASCII passwords.

Our current password size of 40 bits falls short of the
52 bits commonly used in deployed systems, but we are
confident that we will be able to exceed the 52 bits in
the continuation and further refinement of this work. In
the meantime, even in its present form our current im-
plementation is suitable for use as a front-end to a 52-bit
password system: We would use our system for enter-
ing 40 of the 52 bits, and the missing 12 bits would be
handled as private salt in a similar fashion to what was
described in [12] – by the front-end essentially trying all
212 possibilities for the remaining 12 bits. The password
file would stay the same as before our system was de-
ployed, as would the password: We act only as a front
end, when normal keyboard entry is either impossible or
risky.

5 Related Work

Previous studies state the requirements for increasing
the accessibility of electronic resources for the disabled
users [1, 6, 5, 13, 2, 4] and suggest possible techniques to
increase the bandwidth of input from these users [10, 7].
There is also a body of work for providing access to web
through smaller devices which have limited input capa-
bilities [3, 18]. These two research areas have a consider-
able overlap in the design requirements such as assump-
tion of low input bandwidth, emphasis on usability, and
the need for platform independence. Trewin discusses
the overlap between the accessibility requirements for
desktop browsers for Web, and the requirements for a
usable Mobile Web in [18].

Mankoff et al. discuss the needs of motor disabled
users for accessing the web in [13]. They study scenarios
where the users control a switch through simple muscle

movements such as raising an eye brow [10], or Brain
Computer Interface (BCI) [19].

Pass-thoughts system [15] is based on recognition of
unique brain signals send by the users. Thorpe et al.
list the following set of requirements for an authentica-
tion system: i) changeability; ii) shoulder-surfing resis-
tance; iii) theft protection (e.g. through acoustic attacks,
or brute force attacks); iv) protection from user non-
compliance; and, v) usability. The authors also present
an authentication scheme that is solely based on training
a user to think about the same idea (e.g. a place, a thing,
or a melody), and recording the repeatable parts of the
brain signal features extracted from this “pass-thought”.
Thorpe et al. reported that the BCI technology, that was
available at the time of their study (September 2005), en-
abled the users to input approximately 25 bits per minute,
which was not sufficient to provide enough bandwidth
for the implementation of their sophisticated authentica-
tion scheme.

In 2004, Yan et al. conducted a controlled experiment
to compare the effects of giving three alternative forms
of advice about password selection [20]. The results of
this study gave very valuable hints for designing a usable
and secure authentication system: i) users have difficulty
remembering random passwords (students in the group
that was asked to write down their random passwords
continued to carry the written copy for 4.8 weeks on the
average.), ii) passwords derived from mnemonic phrases
are indeed harder for an adversary to guess than naively
selected passwords, iii) it is equally easy to remember
strong passwords derived from mnemonic phrases and
naively selected weak passwords.

Jeyaraman and Topkara proposed a system to increase
the usability of text password authentication by auto-
matically generating mnemonic sentences which help
the users in remembering truly random passwords [11].
A more recently introduced mnemonic scheme for text
password authentication by Topkara et al. [16] allows
the users to maintain a multiplicity of truly random pass-
words, which are independently selected, by remember-
ing only one mnemonic sentence. An adversary who
breaks one of the passwords encoded in the mnemonic
sentence does not gain information about the other pass-
words.

Note that in both schemes, [11, 16], the mnemonics
are used as an aid to remember text passwords, whereas
the current paper enables the use of the mnemonic sen-
tence to serve as the password itself. In the current pa-
per our main challenge is to construct an authentication
mechanism that can work in restricted environments. We
present a suggested mode of use for other mnemonic
password schemes that use other media mnemonics in-
cluding graphics, and audio besides text. The scheme in
this paper provides resistance to phishing, to keystroke-

5

2007 USENIX Annual Technical ConferenceUSENIX Association 373

Q0 · · · Q3

Figure 1: One of the possible set of challenges Q0 to Q3 that could be created for the last column of Table 1. The challenge words
are presented in random order and in the form of CAPTCHAs for added security against sophisticated key-loggers. In the absence
of such concerns the challenges can be displayed as text images in alphabetical order.

logging, to shoulder surfing as well as to dictionary at-
tacks.

[14] presents a method that cleverly uses CAPTCHAs
for assuring that an automated adversary will need more
than a pre-determined amount of time to break a pass-
word through repeated login attempts.

6 Conclusion

We presented a password authentication system that is
suitable for use in input-constrained environments, and
that has many security and password-mnemonic advan-
tages over existing keyboard-based schemes. Because of
its compatibility with existing systems (to which it can
act as a front-end), it can be used in an intermittent fash-
ion alongside these existing systems: A user may pre-
fer to use the normal keyboard entry most of the time
(e.g., at home and in the office) but occasionally switch
to using our system in certain situations, such as when
the user fears the presence of shoulder-surfers or surveil-
lance cameras, or has a temporary wrist injury that pre-
vents the use of a keyboard, etc.

7 Acknowledgements

Portions of this work were supported by Grants IIS-
0325345 and CNS-0627488 from the National Science
Foundation, and by sponsors of the Center for Educa-
tion and Research in Information Assurance and Secu-
rity. The authors would like to thank the four anonymous
reviewers for their helpful feedback and suggestions.

References

[1] Information technology accessibility and workforce-division,
section 508: The road to accessibility, 1998.

[2] Australian banker’s association inc., guiding principles for acces-
sible authentication, Accessed on 4 December 2006.

[3] W3c mobile web initiative, Accessed on January 10, 2006.

[4] W3c web accessibilty initiative, Accessed on January 10, 2006.

[5] BBC-NEWS. Most websites failing disabled, Published on
2006/12/05.

[6] BROWN, C. Assistive technology computers and persons with
disabilities. ACM Communications (1992).

[7] COPESTAKE, A. Applying natural language processing tech-
niques to speech prostheses. In Working Notes of the 1996 AAAI
Fall Symposium on Developing Assistive Technology for People
with Disabilities (1996).

[8] DAVIS, D., MONROSE, F., AND REITER, M. K. On user choice
in graphical password schemes. In 13th USENIX Security Sym-
posium (2004).

[9] DORFMAN, R. The detection of defective members of large pop-
ulations. The Annals of Mathematical Statistics (1943).

[10] GRAUMAN, K., BETKE, M., LOMBARDI, J., GIPS, J., AND

BRADSKI, G. Communication via eye blinks and eyebrow raises:
video-based human-computer interfaces. Universal Access in the
Information Society (2003).

[11] JEYARAMAN, S., AND TOPKARA, U. Have the cake and eat it
too – infusing usability into text-password based authentication
systems. In 21st Annual Computer Security Applications Confer-
ence (2005).

[12] MANBER, U. A simple scheme to make passwords based on one-
way functions much harder to crack. Computers and Security
(1996).

[13] MANKOFF, J., DEY, A., BATRA, U., AND MOORE, M. Web
accessibility for low bandwidth input. In 5th International ACM
Conference on Assistive Technologies (2002).

[14] PINKAS, B., AND SANDER, T. Securing passwords against
dictionary attacks. In ACM Computer and Security Conference
(2002).

[15] THORPE, J., VAN OORSCHOT, P. C., AND SOMAYAJI, A. Pass-
thoughts: Authenticating with our minds. In Workshop on New
Security Paradigms (2005).

[16] TOPKARA, U., ATALLAH, M. J., AND TOPKARA, M. Pass-
words decay, words endure: Secure and re-usable multiple pass-
word mnemonics. In ACM Symposium on Applied Computing
(2007).

[17] TOPKARA, U., TOPKARA, M., AND ATALLAH, M. J. Pass-
words for everyone: Secure mnemonic-based accessible authen-
tication. Tech. Rep. CSD TR #07-008, Purdue University, 2007.

[18] TREWIN, S. Physical usability and the mobile web. In Interna-
tional Cross-disciplinary Workshop on Web Accessibility (2006).

[19] VAUGHAN, T., HEETDERKS, W., TREJO, L., RYMER, W.,
WEINRICH, M., MOORE, M., KUBLER, A., DOBKIN, B., BIR-
BAUMER, N., DONCHIN, E., WOLPAW, E., AND WOLPAW, J.
Brain-computer interface technology: a review of the second in-
ternational meeting. IEEE Transactions on Neural Systems and
Rehabilitation Engineering (2003).

[20] YAN, J., BLACKWELL, A., ANDERSON, R., AND GRANT, A.
Password memorability and security: Empirical results. IEEE
Security and Privacy (2004).

6
2007 USENIX Annual Technical Conference USENIX Association374

