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Abstract

The fuzzy file block matching technique (fuzzy match-
ing for short), was first proposed for opportunistic use
of Content Addressable Storage. Fuzzy matching aims
to increase the hit ratio in the content-addressable stor-
age providers, and thus can improve the performance of
underlying distributed file storage systems by potentially
saving significant network bandwidth and reducing file
transmission costs. Fuzzy matching employs shingling
to represent the fuzzy hashing of file blocks for similarity
detection, and error-correcting information to reconstruct
the canonical content of a file block from some similar
blocks. In this paper, we present the implementation de-
tails of fuzzy matching and a very basic evaluation of its
performance. In particular, we show that fuzzy matching
can recover new versions of GNU Emacs source from
older versions.

1 Introduction

Recent work in file systems has shown that the use of
content-addressable storage (CAS) can enhance the per-
formance of distributed file systems, especially in the
wide area [7, 11, 16]. The basic idea of CAS is to de-
scribe files in terms of recipes that enumerate a set of
blocks that make up the file’s contents. Similar files, or
different versions of the same files, may contain blocks in
common. CAS-based file systems can exploit this prop-
erty by requesting remote copies of only those blocks
that are not already present locally, or at least nearby.

Tolia et al. [16] proposed extending this technique by
using fuzzy matching to identify local blocks similar to
a target block, and then using error correcting codes to
correct such a local block to the target. However, Tolia
did not present any experimental data on how well the
idea works in practice, nor any implementation details.

The purposes of this brief paper are to (1) provide an
existence proof of the idea, (2) describe our approach in

enough detail to enable other researchers to extend it, and
(3) make a preliminary evaluation of its performance on
real data. We make no claim here of exhaustive analysis
or experiments. However, our results do show that the
technique has promise, and can be highly beneficial in
the right circumstances. In particular, we evaluate the use
of fuzzy matching to reconstruct later versions of GNU
Emacs source [1] from earlier versions. We also evalu-
ate the performance impact of varying several important
parameters, such as average block size, the number of
subblocks per block and error correcting code rate, etc.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the background of fuzzy matching.
We next describe details of our implementation in Sec-
tion 3. In Section 4 we evaluate the performance of
fuzzy matching and the effect of several parameters. Af-
ter summarizing related work in Section 5, we conclude
and present our future directions in Section 6.

2 Fuzzy Matching

In this section, we describe fuzzy matching and sub-
sidiary techniques in more detail. These techniques in-
clude Rabin fingerprints [14], shingling [3], and error
correcting codes.

A file recipe in a standard CAS system consists of an
ordered list of block signatures. The signatures are gen-
erated from the blocks’ contents through a cryptographi-
cally secure hash, such as SHA-1. Without fuzzy match-
ing, this hash value is sufficient to completely identify
each block needed to reconstruct the file.

Fuzzy matching extends the description of each block
into a specification that includes four pieces of informa-
tion: (a) an exact hash value that matches only the cor-
rect block; (b) a fuzzy hash value that matches blocks
similar to the correct block; (c) fingerprints of a block’s
fixed-length subblocks for identifying them in similar
blocks, and (d) error-correcting information that may
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sometimes recover the correct block, when applied to a
similar block.

Fuzzy matching works as follows: (1) The client sends
the target block’s recipe to its nearby CAS provider
(which may be local). (2) The CAS provider first deter-
mines whether it holds a file block whose hash matches
the exact hash value of the requested block; if so, it re-
turns this block to the client. (3) If the CAS provider
doesn’t hold the correct block, it next uses the block’s
fuzzy hash value to identify any candidate blocks that ap-
proximately match the file block requested by the client.
(4) The CAS provider applies the error-correcting infor-
mation to each such candidate block. If the corrected
block’s hash matches the exact hash value of the re-
quested block, the CAS provider returns the corrected
block to the client. (5) If none of the CAS provider’s can-
didate blocks can be corrected to match the exact hash,
the CAS provider returns a negative result to the client,
which then sends a request to a remote file server [16].

2.1 Rabin Fingerprints and Shingling

Fuzzy matching uses Rabin fingerprints to construct
content-defined data blocks, and to compute shingles for
similarity detection. Fingerprints are short tags for large
objects. The property of fingerprints is that if two fin-
gerprints are different then the corresponding objects are
certainly different. The probability that two different ob-
jects have the same fingerprint is extremely small. For
more information about Rabin fingerprints, please refer
to [14].

Shingling was proposed by Broder et al. to determine
the syntactic similarity of web pages [3]. They view each
web page as a sequence of words, and a contiguous sub-
sequence contained in the web page is called a shingle.
Fingerprints of shingles are computed using sliding win-
dow to efficiently create a shingling vector for a web
page. Instead of comparing entire documents, they use
shingling vectors to measure the resemblance and con-
tainment of documents in a large collection of web pages.
Shingling is also called super-fingerprint in REBL [8].
Fuzzy matching selects the s smallest fingerprints among
the shingling vector to form a shingleprint, and stores it
in the block recipe as the fuzzy hash value of a block.

2.2 Error Correcting Codes

The essence of fuzzy matching is to store enough error-
correcting information to recover the original data from
similar blocks. Therefore, we give a brief introduction
of Error Correcting Code (ECC) in this subsection. An
error correcting code is a code which constructs data sig-
nals conforming to specific rules, such that errors in the
received signal can be automatically detected and cor-

rected. There are two important subclasses of error cor-
rection: Forward Error Correction (FEC) and Backward
Error Correction (BEC). In the following, we will focus
on FEC which is suitable for fuzzy matching. FEC is
accomplished by adding redundancy to data bits using
a predetermined algorithm. The two main categories of
FEC are block coding and convolutional coding.

A (n, k) block code contains sequences of n symbols.
Each sequence of length n is a code word or code block,
and contains k information digits. The remaining n − k
digits are called redundant digits. Here, the code rate
is defined as the ratio R = k/n. Examples of block
codes include (7, 4) and (11, 7) Hamming code which
can correct single-bit errors and detect double-bit errors;
(23, 12) and (11, 6) Golay code which can correct 3 and
2 errors, respectively; (255, 223) and (65535, 65503)
Reed-Solomon code which can correct 16 errors and 32
erasures (errors whose locations are known in advance).
Fore more detailed information about Error-Correction
Coding, we refer the interested reader to [4, 10]. In
our implementation, we use a (255, 223) Reed-Solomon
code for its higher code rate and error-correction capabil-
ity. Evaluating the performance of other error correcting
codes is part of our future work.

3 Implementation Details

Our implementation of fuzzy matching has two main
building blocks: recipe creation and file block recon-
struction. In the following, we describe the details of
these two parts, respectively.

3.1 Constructing File Recipes

The first step of constructing file recipes is to divide a file
into variable-length content-defined blocks using Rabin
fingerprints. Content-defined chunking (CDC) has been
used in LBFS [11], Pastiche [5] and TAPER [7]. CDC
sets block boundaries based on file contents, rather than
on position within a file. Therefore, insertions and dele-
tions can only affect the surrounding blocks and not the
entire file. A sliding window is used to evaluate a finger-
print of the preceding w bytes at each point in the file.
A point is considered to be a boundary of a data block
if its 64-bit Rabin fingerprint matches a predetermined
marker value. Rabin fingerprints are chosen because they
are efficient to compute on a sliding window over a file.
The number of bits in a Rabin fingerprint that are used
to match the marker determines the expected block size.
For example, if the low-order l bits are used, the expected
block size will be 2l.

After a file is divided into variable-length blocks, a
shingleprint is computed for each block. Define a shin-
gle to be a sequence of m contiguous bytes in a block.

2
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There are totally B−m+1 overlapping shingles in a B-
byte block. We again use Rabin fingerprints to compute
a hash of each shingle in the block. These fingerprints
are then sampled to compute a shingleprint of the block.
We employ Mins sampling [3] which selects the set of
s fingerprints with the smallest values to represent the
approximate content of a block. Two blocks are similar
if they share in common t (similarity threshold) out of s
values in the shingleprint. Note that bloom filters could
also be utilized for similarity detection [7]. In the future,
we plan to compare these two approaches associated with
fuzzy matching to understand the relative detection per-
formance.

The last step is to generate error-correcting informa-
tion for each block. As mentioned above, we choose
the (255, 223) Reed-Solomon code for its high code rate.
Here, suppose a file block is equally divided into seven
subblocks (because the ratio between the number of in-
formation digits and that of erasures which can be cor-
rected is about 7). To identify these subblocks, the Rabin
fingerprint of each subblock is first stored in the block
recipe. Then another subblock is constructed to keep
the error-correcting information. To do so, each sub-
block is further divided into several 31-byte pieces. The
first seven pieces of each subblock are packed together
to form a 217-byte data chunk. After padding with 6
null bytes, we get a 223-byte chunk and use the (255,
223) Reed-Solomon Code to compute the 32-byte error-
correcting information. Finally this 32-byte data piece
is put at its corresponding position in the ECC subblock.
The same method is used to process other data pieces in
each subblock to construct the ECC subblock for the en-
tire data block. This procedure is also demonstrated in
Figure 1.

3.2 Recovering from Similar File Blocks

Assume that a CAS provider has identified a candidate
block by finding a shingleprint match of the target and
candidate blocks. We use the example in Figure 1 to
illustrate how the provider can then recover the target
block from the candidate. Compared with the target
block, the candidate block contains an deletion in the
3rd subblock. Suppose there are 1024 bytes in each sub-

Candidate

Target

RS Code

Figure 1: Generating ECC subblock and recovering a
block from a similar block

block. The CAS provider computes the Rabin fingerprint
for each contiguous 1024-byte subblock of the candidate
block, and identifies those subblocks whose Rabin fin-
gerprints match those provided by the client. In this case,
the CAS provider can find out 6 unchanged subblocks:
1, 2, 4, 5, 6 and 7. These subblock correspondences
between the two blocks are shown by vertical arrows in
Figure 1. Thereafter, using the error-correcting subblock,
the CAS provider can overcome the “erasure” (the miss-
ing 3rd subblock) of the modified subblock, to form the
target block. As a final check, the CAS provider com-
putes the exact hash over the entire corrected block, and
compares it with the exact hash of the target block.

3.3 ECC Subblock Formation Schemes

As mentioned above, each content-defined block is fur-
ther divided into seven subblocks for generating the ECC
subblocks. This approach can only correct from candi-
date blocks with modifications to a single subblock. In-
creasing the number of subblocks can potentially allow
more changes to be corrected by separating their error
correction information. Therefore, we also propose two
other approaches, Separate Selection and Grouped Selec-
tion, to dividing each block into b = 7i (for some small
non-negative integer i) subblocks. For example, when
b = 14, Separate selection generates a single ECC sub-
block for subblocks 0, 2, 4, 6, 8, 10 and 12, and another
one for subblocks 1, 3, 5, 7, 9, 11 and 13. Grouped selec-
tion creates a ECC subblock for the first seven subblocks,
and another one for the last seven subblocks.

4 Performance Evaluation

This section provides a performance evaluation of fuzzy
matching using five different releases of Emacs source:
emacs-21.4, emacs-21.3, emacs-21.2, emacs-21.1 and
emacs-20.7. We study the effect of several parameters on
the performance of fuzzy matching, investigating primar-
ily along two dimensions: the size of file recipes (over-
head) and the probability that a file in the new release
can be recovered from those in the adjacent old version
(effectiveness).

4.1 Parameter Study

Fuzzy matching’s performance depends on several pa-
rameters: the sliding window size w, the average block
size 2l, the sliding window size for shingling m, the num-
ber of shingles in a shingleprint s, similarity threshold t,
and the number of subblocks per block b. Our default
values are: w = 48, 2l = 4, 096, s = 10, t = 8, m = 12
and b = 7.
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Sliding Window Sizes
12B 24B 48B 96B

21.3→21.4 9 9 9 10
21.2→21.3 243 243 246 237
21.1→21.2 185 179 175 182
20.7→21.1 142 134 143 133

Table 1: Number of recovered files for various sliding
window sizes for CDC.

4.1.1 Sliding Window Size for Content-Defined
Chunking

The size of the sliding window can determine how effec-
tive the chunking algorithm is in defining block bound-
aries similarly, despite intervening edits. Table 1 shows a
sampling of our results for the number of recovered files
versus different window sizes. The recovered files are
files that can be corrected from their similar (not exactly
identical) old versions. The reason for the small numbers
in the first row is that there are only 10 different files be-
tween emacs-21.3 and emacs-21.4. The results change
little, showing that the chunking mechanism is relatively
insensitive to the window size.

4.1.2 Average Block Size

Table 2 summarizes the number of recovered files for
different average block sizes. Larger blocks can in-
crease the size of subblock which will potentially make
changes occur in one subblock rather than span several
subblocks. Therefore, they can improve the probabil-
ity that a block can be recovered from a similar block.
Moreover, larger blocks require less overhead to track
the exact hash value and numerous shingleprints and fin-
gerprints per file which is also verified by our experiment
results (not shown here for space limitation). In addition,
larger blocks also decrease the number of comparisons.
The possible reason for the exception in the last row of
Table 2 is that changing average block size may also alter
the block and subblock boundaries which will sometimes
reduce the file recovery probability.

Average Block Sizes
0.5K 1K 2K 4K 8K 16K

21.3→21.4 9 9 9 9 9 9
21.2→21.3 224 231 251 246 246 245
21.1→21.2 152 154 163 175 186 191
20.7→21.1 151 151 148 143 144 140

Table 2: Number of files that can be recovered from sim-
ilar files for various average block sizes.

Similarity Thresholds
0 2 4 6 8 10

21.3→21.4 9 9 9 9 9 6
21.2→21.3 248 247 246 246 246 205
21.1→21.2 180 179 178 178 175 132
20.7→21.1 147 147 147 147 143 100

Table 3: Number of recovered files for different similar-
ity thresholds.

4.1.3 Sliding Window Size for Shingling

This sliding window size is, in fact, the shingle size. A
shingle should be large enough to create many possi-
ble substrings, which minimizes spurious matches, and
small enough to prevent small modifications from affect-
ing many shingles. Common values in past studies have
ranged from four to twenty bytes [8]. Our experimental
results (omitted for space) indicate that shingling win-
dow size does not significantly affect the performance of
fuzzy matching.

4.1.4 Similarity Threshold

Shingling is used to identify candidate blocks. The sim-
ilarity threshold is the number of fingerprints in a shin-
gleprint that must match to declare two blocks similar.
Table 3 reports the number of recovered files for differ-
ent similarity thresholds. The last three rows illustrate
that reducing similarity thresholds can slightly increase
the number of recovered files. The reason is that lower
thresholds lead to the identification of more candidate
blocks. However, larger candidate sets lead to more com-
putational overhead. Given that the number of recovered
files is nearly identical for all but the last column, setting
the threshold near, but not equal to the number of shin-
gles in the shingleprint, seems to be a good compromise.

4.1.5 Number of Subblocks per Block

Figure 2 and Figure 3 present the number of recovered
files with differing numbers of subblocks, for grouped
selection and separate selection, respectively. Using
small subblocks allows the algorithms to tolerate more
errors (modifications) because there is another ECC sub-
block for each seven subblocks in the block. One draw-
back is that a single error, which may have been con-
tained in a single large subblock, can span several small
subblocks. With grouped selection, neighboring sub-
blocks are usually corrected by a single ECC subblock.
Recall that ECC subblocks can only correct a single
faulty subblock, so errors spanning consecutive sub-
blocks usually result in a correction failure for grouped
selection. Separate selection does a better job in this case

4
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Figure 2: Number of recovered files for different number
of subblocks using grouped selection
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Figure 3: Number of recovered files for different number
of subblocks using separate selection

because neighboring subblocks are always protected by
different ECC subblocks. In either case, recipe size in-
creases linearly with the number of subblocks.

4.2 Recovering One File from All Files

The above experiment only attempts to recover a file
from older versions with the same path names. For exam-
ple, file emacs-21.4/src/coding.c is compared
with emacs-21.3/src/coding.c. We would like
to answer the following, more general, question: given a
target file F and a corpus of files S, with what probability
can we find another file F

′
in S which is similar enough

to F ? That is, given the error-correcting information of
F , we can reconstruct F from F

′
. We randomly selected

100 files from emacs-21.3 and attempted to recover each
from the set of all files in emacs-21.2, excepting the file
with the same path name. Using separate selection with
28 subblocks, we were only able to recover a single file
in its entirety.

R # R S % B # E #
21.3→21.4 9 18.00 99.81 10 1
21.2→21.3 296 17.92 58.08 2345 1678
21.1→21.2 243 17.98 62.11 2187 1525
20.7→21.1 213 13.85 7.39 4002 3523

Table 4: Summary of more detailed experiment results.

4.3 Similarity of Blocks in Different Files

The above experiment was performed at the level of com-
plete files. We carried out a similar experiment at the
block level, attempting to recover 100 random blocks
from emacs-21.3 from the set of blocks contained in
emacs-21.2, again excepting only blocks from the same
file. We were only able to recover two such blocks.

4.4 More Detailed Experiment Results

Table. 4 shows more detailed results for separate selec-
tion with the following parameters: w = 48, 2l =
16, 384, t = 8, m = 12 and b = 28. ‘R #’ is the
number of files successfully recovered. The second col-
umn shows that the average sizes of the fuzzy file recipes
are less than or equal to 18% of the full file sizes in all
cases. ‘S %’ is the size percentage of recovered files plus
unchanged files, and hence is an indication of potential
savings. The fourth column shows the total number of
blocks in the unrecoverable files, and the fifth column
shows the number of unrecoverable blocks. For example,
a single unrecoverable block is preventing a 10-block file
from being recovered in the emacs-21.4 distribution.

5 Related Work

Fuzzy matching utilizes SHA-1 hash of a block’s con-
tents as the exact hash value. The use of content-hash
to uniquely identify blocks (compare-by-hash) has been
widely explored previously. For example, a unique hash
of a block’s contents is used as the block identifier for
read and write operations in Venti [13]. Pastiche also
employs content-hash to find redundant data across ver-
sions of files for backup [5].

Finding similar data blocks has also been extensively
studied. Policroniades and Pratt evaluate three tech-
niques for discovering identical pieces of data: whole
file content hashing, fixed size blocking, and a chunking
strategy [12]. Kulkarni et al. propose a scheme, called
Redundancy Elimination at the Block Level (REBL), for
storage reduction [8]. REBL uses super-fingerprints to
reduce the data needed to identify similar blocks. TA-
PER [7] provides a content-based similarity detection
technique which uses Bloom filters [2] to identify sim-
ilar files.

5
2007 USENIX Annual Technical ConferenceUSENIX Association 203



In conjunction with conventional compression and
caching, the Low Bandwidth File System (LBFS) [11]
takes advantage of commonality between distinct files
and successive versions of the same file in the context
of a distributed file system. Lee et al. describe a tech-
nique, called operation-based update propagation, for ef-
ficiently transmitting updates to large files that have been
modified on a weakly connected client of a distributed
file system [9]. They also use error correcting codes to
correct short replacements in similar blocks.

6 Conclusions

In this paper we describe the design, implementation,
and performance of a fuzzy file block matching scheme.
The main advantage of fuzzy file recipes is in saving net-
work bandwidth as, for purposes of a wide-area file sys-
tem, we can treat CPU cycles and disk space as effec-
tively being free. If we accept the percentages shown in
Table 4, the average file recipe size is about 18% of the
size of the corresponding file. Hence, approximately one
in five of recipes transmitted across the network must be
“useful” (prevent a subsequent download of the corre-
sponding file) in order for the system overall to reduce
network bandwidth.

Our results anecdotally show that fuzzy file recipes
are seldom able to find matches among random blocks.
Instead, the utility of this approach would seem to lie
in finding and exploiting commonality among different
versions of the same files. For example, the distributer
of a new version of the GNU Emacs source might pre-
process files, identifying those files that can be recreated
from one or more earlier versions of the source. Only
those files would be included as fuzzy file recipes; the
others would be distributed as either patches or complete
copies. Though explicit patches would generally take
less space than fuzzy file recipes, patches are only useful
if the recipient has the exact version referenced by the
patch. In the absence of complete information, fuzzy file
recipes would be preferable.

Fuzzy file recipes would also be useful for versioning
file systems [15]. Such systems are becoming more com-
mon as increasing disk capacities remove the incentive to
destroy old file versions. In future work, we plan to ex-
pand our data set, try other error correcting codes, and
experiment with more parameter combinations. Finally,
we plan to integrate fuzzy matching into an existing dis-
tributed file system, such as MoteFS [6].
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