
Mortar: Towards Million-Node Data Stream Management

Dionysios Logothetis and Kenneth Yocum

University of California, San Diego

1 Introduction

Compute federations represent a global pool of well-
provisioned sensors, continuously emitting system
and application-specific data streams, that can be
queried for distributed debugging, application con-
trol, anomaly detection, measurement and data sam-
pling. Such queries may involve thousands of stream
sources distributed across the wide area, implying
that node and network failures will be common. This
has recently been referred to as the “Internet-Scale
Sensing” problem [1].

This poster presents Mortar, a distributed stream
processor for building very large, failure resilient
queries across thousands of data streams. Mortar’s
design is driven by the vision of Internet-scale data
stream management targeting scale, failure resilience
and ease of use. Its primary components are an intu-
itive, stream-oriented language in which users specify
queries, a scalable in-network operator platform, and
a failure-resilient data model.

2 Design

Contrary to other large-scale query processors that
support only snapshot queries, Mortar is a stream
processor; it operates on sliding time or tuple-based
windows of values. Users create continuous queries
using the Mortar Stream Language (MSL). A user
may write an MSL statement to specify the data
sources and attributes of interest, the operator type,
and the destination of the resulting stream. In MSL,
a data source may be a sensor or even the resulting
stream of another query, allowing the composition of
multiple MSL statements to build complex queries.
To support automated actions in system monitor-
ing, MSL also provides triggers, user-defined call-
backs that execute when specific conditions occur.
Figure 1 shows how we can query a Wi-Fi location
service for the position of a specific MAC address us-
ing only three MSL statements. Select operators fil-
ter MAC frames with a specific address locally at the
Wi-Fi sensors, while the TopK operator collects the
”loudest” frames. The TriLat operator takes these

Figure 1: The MSL query used for locating a wireless

device across the Jigsaw wireless sensor infrastructure.

samples and computes a coordinate position based
on simple trilateration.

Mortar builds upon an in-network processing plat-
form that allows the creation of scalable query trees
to reduce processing and network load. The runtime
compiles an MSL statement to a set of peering oper-
ators, across which it establishes physical dataflows.
Operators process raw data from sensors and existing
streams to produce end results.

Mortar provides best-effort consistency. It does not
attempt to salvage data that were in flight during
failures. However, its data model allows the user to
reason about result quality in terms of completeness
and staleness. Mortar annotates tuples with a com-
pleteness metric, the percentage of nodes in the sys-
tem that contributed to a specific window of values.
Furthermore, Mortar keeps track of the time that tu-
ples spend in the system and annotates results with
an age. Its configurable internal stream management
policies can balance result staleness and complete-
ness, dynamically adjusting to network conditions.
In-network operators buffer intermediate results and
emit them based on dynamic timeouts that depend
on the observed network latencies.

Mortar tries to provide high-quality answers even in
the face of persistent, numerous network or node
failures. Its goal is to ensure that operator results
capture all constituent data that were reachable dur-
ing the operator’s processing window. Unlike other
approaches [2, 3, 4], Mortar proposes dynamic tu-
ple striping, a multipath routing scheme that dy-
namically stripes streams around obstructive net-
work conditions or failures. A physical tree planner
creates multiple physical query trees, improving re-

1



0 50 100 150 200 250
0

250

500

Time (sec)

R
es

ul
t

 

 

Completeness
live nodes

Figure 2: Query performance during rolling failures of

10,20,30, and 40% of 520 nodes.

sult completeness by increasing path diversity. Our
experiments show that this technique can improve
result completeness by more than 50% compared to
existing techniques. Even when 40% of the nodes
fail, results include values from almost all live nodes.

Dynamic striping is based on time-division data par-

titioning, a scheme that allows a high-degree of rout-
ing freedom. Operators partition data across time,
unlike previous approaches that partition data based
on its content [3]. In contrast to previous mulitpath-
routing approaches, this scheme is independent of
the operator type and the data content.

Mortar’s failure-resilient data model exists in con-
junction with a physical tree planner that, by clus-
tering network coordinates [5], builds network-aware
trees. The planning algorithm allows the query root
to return the majority of the data quickly, while it
reduces the load on the network. A key challenge is
to build sibling trees that retain the majority of the
clustering of the primary tree while providing node
and path diversity. These are competing demands,
large changes to the primary will create a less effi-
cient tree. Mortar’s planning algorithm does a good
job maintaining both properties.

3 Evaluation and future work

Using our prototype we evaluate Mortar’s failure
resilience on a local-area emulation testbed using
queries that source orders of magnitude more nodes
than recently published work on existing systems.
Figure 2 shows the impact of transient “rolling”
failures on result completeness in a network of 520
nodes. In this experiment, we subsequently discon-
nect and reconnect 10, 20, 30 and 40% of all nodes
in the system. Even for 40% failures, results include
88% of the remaining live nodes. Further, evaluating
Mortar’s physical planner on an Internet-like topol-
ogy, we observe that the average peer-to-root latency
improves by 40% to 50% compared to a random tree.

To validate our stream abstraction, we build a Wi-Fi
location service that continuously reports the physi-

Figure 3: The position of a Wi-Fi user circling the hall-

ways of the UCSD Computer Science department. Dia-

monds represent query results, octagons Wi-Fi sensors.

cal location of mobile devices in a wireless network.
We use traces from an existing monitoring infrastruc-
ture of 183 sniffers in a large office building. Figure 3
shows the resulting coordinates of the query in Fig-
ure 1 plotted on the actual floor map.

Our current Java prototype implements MSL with
a variety of operators, dynamic tuple striping, and
physical tree planning. Current efforts include a
fault-tolerant query installation and recovery mecha-
nism, and the design of stream management policies
that incorporate user requirements on result stale-
ness and completeness. Furthermore, Mortar’s cur-
rent time-division data partitioning depends on clock
synchronization, an assumption that we seek to elim-
inate. Finally, we have deployed Mortar on Planet-
lab, quering slice statistics, while we plan to deploy it
on the UCSD Computer Science department Wi-Fi
sensor infrastructure.

References

[1] R. N. Murty et al. Towards a dependable architecture
for Internet-scale sensing. In HotDep’06.

[2] M. Balazinska et al. Fault-tolerance in the Bore-
alis distributed stream processing system. In SIG-

MOD’05.

[3] M. A. Shah et al. Highly available, fault tolerant,
parallel dataflows. In SIGMOD’04.

[4] S. Madden et al. TAG: a tiny aggregation service for
ad-hoc sensor networks. In OSDI’02.

[5] F. Dabek et al. Vivaldi: A decentralized network
coordinate system. In SIGCOMM’04.


