
The Difference Engine

Geoffey Lefebvre, Brendan Cully, Dutch Meyer, Gitika Aggarwal,
Gang Peng, Mike Feeley, Norm Hutchinson

University of British Columbia

Andrew Warfield
University of British Columbia / XenSource

1 Introduction

All systems are a product of their histories. Events over
time shape the state of OS and application software both for
good and bad; while users make forward progress on pro-
ductive work, bugs and malicious software may destabilize
and corrupt their efforts. The notion of considering system
state as mutable through time has been the subject of many
recent projects. As examples, efforts have considered re-
playing slight permutations of recent events to recover from
timing-related crashes[5], revisiting historical systemstates
to identify the introduction of configuration errors[6], and
rewinding execution to assist in debugging[2].

In all of these examples, revisiting—and in some cases
even modifying—history allows the exploration of a sys-
tem’s state space of which the “current” incarnation is but
one instance. We believe that there is broad benefit in pro-
viding general techniques to allow the more thorough ex-
ploration and analysis of the execution states of a given sys-
tem. We are developing a tool to assist this exploration,
which we have dubbed theDifference Engine.

The difference engine is primarily concerned with under-
standing thedivergence between alternate states of a given
system. For example, we may choose to create an alter-
nate instance of a desktop OS in which a malicious net-
work packet had never arrived, but for which the remainder
of history had proceeded identically. The engine allows the
controlled creation, and thorough analysis, of such diver-
gence. It exploits the ability of virtual machines (VMs) to
be check-pointed, rolled back and replayed to create alter-
nate but plausible new outcomes. This set of outcomes,
each represented by an independent VM instance, can be
viewed as parallel universes where history occurred in sub-
tly different ways.

In the case of the malicious packet just mentioned, the
engine allows us to consider a large number of alternate
universes that might result as a consequence of the packet’s
delivery being prevented, and to build insight into the spe-
cific mutations that its arrival induced.

The operation of the difference engine involves two

phases, generational and analytical. In the generational
stage, the difference engine allows thereplay of logged
external events to a historical version of a virtual ma-
chine. Replay is intentionally non-deterministic, and may
be parametrized as to modify the stream of events that are
delivered. In the second,analysis stage, the engine pro-
vides tools to assist with semantic comparisons between the
resulting alternate states. These two stages are illustrated in
Figure 1.

We are currently developing the difference engine as a
tool based on the Xen virtual machine monitor. To date, we
have had to grapple with two fundamental challenges: non-
determinism of replay, and system semantics. These is-
sues are closely related and introduce interesting obstacles
in both the replay and analysis stages. Non-determinism
is clearly necessary in order for replay to explore alternate
states, but it demands that the replay support be tolerant of
externally visible permutations of a system that impact the
event log. Similarly, presenting a meaningful understand-
ing of the divergence between a set of alternate instances
requires sufficient semantic comprehension of a systems
state as to recognize and summarize its differences.

We now discuss some specific challenges that non-
determinism and semantics present in the replay and analy-
sis stages and then provides an overview of some example
applications. Broadly speaking, we believe that the differ-
ence engine represents a broadly useful tool for assisting
in the exploration of “What if...” questions for large and
complex software systems.

2 Replay

The challenge in replaying network traffic is dealing with
non-determinism, both intentional and inherent. Inten-
tional nondeterminism is caused through modifications (i.e.
through reordering or otherwise altering the log of exter-
nal events) to the replayed system in an attempt to guide
the replaying instance to an alternate state. Inherent non-
determinism results from within the system itself. Exam-
ples include both explicit calls to sources of entropy, for

1



Figure 1: The Difference Engine

instance the use of random number generator to obtain ini-
tial TCP sequence numbers, and implicit sources such as
memory races due to scheduling artifacts. In all of these
cases non-determinism results in subtle (and not-so-subtle)
permutions to a system’s state that may make replay diffi-
cult: In the example of TCP sequence numbers for instance,
simply replaying a log of traffic will be ineffective as con-
nections simply do not succeed to the replaying host.

There are two ways of dealing with this non-
determinism. First, it can be handled by the replay tool.
By maintaining a richer understanding of the semantics of
traffic being delivered to a replayed system, network traf-
fic may be modified to mimic the behavior of live exter-
nal clients. For example, our replay tool supports rewrit-
ing TCP headers to handle randomly chosen initial se-
quence number and comprehends TCP stream semantics
sufficiently to tolerate alternate payload segmentations.

More generally dealing with non-determinism during re-
play requires the replay component to be extensible in order
to handle the application and protocol semantics. Our cur-
rent implementation is built using Click[3] which allows to
easily add custom elements to handle the semantics of dif-
ferent protocols. We are also actively integrating protocol
parser generated with binpac[4] into click elements to facil-
itate the construction of custom protocol replay handlers.

In order to address inherent non-determinism, we plan
to use a technique that we have dubbedparadeterminism:
we modify systems to become intentionally more determin-
istic. Library and operating system code will be altered to
log the result of important non-deterministic events and use
this log on replay[1].

3 Analysis

The goal of the analysis phase is to provide a useful sum-
mary of divergence. We aim to summarize the difference
between hundreds of alternate replayed instances. The
need to bridge the semantic gap represents a formidable
challenge here. However, the degree of understanding
varies with the type of state exploration being performed.
We have implemented prototypes for both block- and file
system-level differencing and plan to provide hooks for ad-
ditional analysis “plug-ins”.

The block-level analyzer compares mappings between
files and blocks across divergent instances. This allows us
to evaluate things such as block placements strategies, and
to understand differences in how storage systems age.

File level semantics allow us to, for example, identify the
set of files that were only modified in a specific subset of
replays. This type of analysis can provide forensic insight
in understanding the damage caused by an intrusion.

4 Applications

An interesting application of the difference engine is to an-
swer the question what would my system look like if a spe-
cific intrusion never occurred. By rolling back to a check-
point prior to the intrusion and replaying forward all input
minus the packet that actually triggered the intrusion, the
difference engine would create a “clean” version of the in-
fected system. Using these different versions of the world,
file level state analysis can provide insight on the extent of
the damage done by the intrusion but also on the potential
modification needed to be applied to the clean system in
order for the latter to replace the original infected version.

References

[1] Jim Gray. Notes on data base operating systems. InOperating
Systems, An Advanced Course, pages 393–481, 1978.

[2] S. King, G. Dunlap, and P. Chen. Debugging operating sys-
tems with time-traveling virtual machines. InUsenix ATC,
2005.

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router.ACM Transactions on
Computer Systems, 18(3):263–297, August 2000.

[4] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac:
a yacc for writing application protocol parsers. InIMC ’06,
pages 289–300, New York, NY, USA, 2006.

[5] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating
bugs as allergies—a safe method to survive software failures.
In SOSP ’05, 2005.

[6] A. Whitaker, R. Cox, and S. Gribble. Configuration debug-
ging as search: Finding the needle in the haystack, 2004.

2


