
Netbus: A Transparent Mechanism for Remote Device Access in Virtualized
Systems

Sanjay Kumar, Sandip Agarwala, Karsten Schwan
College of Computing, Georgia Institute of Technology

{ksanjay, sandip, schwan}@cc.gatech.edu

1 Introduction

Virtual Machine Monitors (VMMs) (e.g., Xen and
VMWare) support the creation and execution of multiple
virtual machines (VMs) on the same platform, and they
enforce the isolation properties necessary to make the un-
derlying shared platform resources appear exclusive to
each VM. Toward these ends, VMMs export virtual in-
stances of physical resources to VMs and they offer se-
cure methods for sharing them. For I/O devices, such
methods include time-sharing, space-sharing, and exclu-
sive use. This paper argues the importance of VMM-
level support for transparent access to remote devices.
By decoupling device locations from the VMs that access
them, we enable device consolidation, flexibility in VM
configurations and seamless VM migration. By enabling
virtual device migration, such support will make it eas-
ier to develop the load balancing methods envisioned for
next generation datacenters. VMM-level support for ac-
cess to remote devices provides completetransparency
in accessing remote vs. local devices, at a level of ab-
straction not visible to guest operating systems. Specif-
ically, since the hypervisors or VMMs that control the
hardware platform already virtualize the platform’s phys-
ical resources, it becomes possible to extend their per-
platform methods for device virtualization intoremoting
methods that make the physical locations of devices en-
tirely transparent to guest operating systems. Toward
this end, this paper briefly describes a new abstraction
termedNetbus, which provides VMs with transparent ac-
cess to remote devices. For full description, please refer
to [1]. To support seamless VM migration, it describes
virtual device migration mechanism built using Netbus,
which not only enables a VM to continuously access its
IO devices, including remotely after migration, but also,
to seamlessly hot-swap devices, to replace remote with
local devices whenever indicated or necessary, without
any noticiable downtime.

Netbus currently targets LAN-centric environments

Client user

kernel

Server

FE

GVM

Device
Netbus

L−BE

SVM

R−BE

SVM

NetworkM1

M2
Add remote device to VM

Figure 1: Netbus Software Architecture

with single administrative domain that offer strong con-
nectivity, high levels of cross-machine network band-
width and low network latency (e.g., datacenters, home
and office LANs etc.). The Netbus architecture utilizes
the underlying device virtualization mechanism of the
VMM to extend the per platform mechanism over the
network.

2 Netbus Software Architecture

The following exposition of Netbus assumes a VMM
using the split device driver stacks (Frontend(FE)-
Backend(BE) communication mechanism), as imple-
mented in paravirtualized Xen VMs. The software ar-
chitecture of Netbus for FE/BE-based VMM implemen-
tations is depicted in Figure 1. To initialize a device, the
Netbus server running in the SVM on host M2 having
the device, exports it (i.e., publishes it) across the net-
work to a designated host or a set of hosts if the device
is to be shared. When a remote device is being added
to guest VM G1 running on host M1, the Netbus client
in SVM establishes a connection with the Netbus server
and executes required authentication and authorization

1



Client user

kernel

Server

FE

GVM

FE

VM Migration

G2

GVM

G1

M2 M1

RBELBE

NetBus
D1

SVM

Network

Add remote device to vm

Figure 2: Virtual Device Migration

actions. When those succeed, client and server both in-
form their respective BEs about this connection informa-
tion and henceforth, all communications between the BE
drivers on both machines are carried out via this one-to-
one connection. The local BE (LBE) makes the virtual
device appear inside guest VM where it gets initialized
by its respective driver. When the FE from the guest
VM accesses the device by making requests to its cor-
responding LBE driver, the LBE forwards this request to
the remote host’s BE (RBE). The RBE then makes the
actual request to the device and returns the response to
the LBE. The LBE in turn returns the response to the
FE. The RBE also provides asynchronous device events
(e.g., interrupts) to the LBE which forwards them to the
FE. This mechanism effectively provides an abstraction
of a network bus over which the FE can interact with a
Remote BE (RBE). While the above description assumes
a para-virtualized FE-BE mechanism for I/O device vir-
tualization, the Netbus architecture itself is not restricted
to such an environment. It can also be applied to a fully-
virtualized case, where software I/O device emulation is
used to provide virtual devices to guest VMs.

3 Using Virtual Device Migration

Netbus enables live VM migration of GVMs, with con-
tinuous access to its devices. This mechanism is termed
asvirtual device migration since logically the virtual de-
vice is also migrated along with the VM. Virtual Device
Migration is depicted in Figure 2. Assume that a guest
VM named G1 is migrating from host machine M1 to
host machine M2, while G1 is accessing a device D1 on
M1. During VM migration, G1 is frozen and the FE-
BE communication is suspended. During this suspen-
sion, BE (RBE) breaks its connection with the FE, but
it does not break its connection with the device. On the
destination host M2, new VM G2 is created, and its OS
pages are filled from the suspended VM G1. G2 uses
G1’s configuration so that it exactly looks like G1. Dur-

ing G2’s creation, however, its configuration is modified
with respect to device D1, so that D1 appears as a remote
device in G2. In this fashion, Netbus ensures the estab-
lishment of a valid communication channel between the
two BEs (LBE and RBE). Next, just before the migrated
VM G2 is un-paused on host M2, its FE establishes a
connection with the local backend (LBE). At this point,
G2 is un-paused and migration completes, and commu-
nication between FE and LBE on M2 resumes. While all
subsequent accesses to device D1 use Netbus, the entire
process of virtual device migration is transparent to the
guest VM.

3.1 Pending IO Transactions

A potential issue for virtual device migration is that there
may be pending IO transactions at the time G1 is sus-
pended. More precisely, there may be pending IO trans-
actions in BE submitted by G1’s FE. By the time these
IO transactions complete, the VM has already migrated
and the BE can’t return the IO results to the FE. To deal
with the problem, the virtual device of the migrating VM
is brought into a state where there are no pending IO op-
erations to the backend driver, termed thequiescent state.
To do this, during the suspend operation, the communi-
cation channel from FE to BE is suspended (but not in the
other direction), so that the FE ceases to make additional
requests to the BE, queuing them instead. In addition,
suspend waits until all pending I/O operations are com-
plete. At this point, the virtual device is in a quiescent
state and can be migrated. During the resume operation
on M2, FE first issues the queued requests to BE before
resuming normal operation.

3.2 Device Hot-Swapping
Device hot-swapping permits a VM to dynamically re-
wire its local/remote device connections while the de-
vice is in operation. This is particularly useful when after
migration, a VM wishes to switch from the remote to a
local device to improve device throughput, remove net-
work dependence or to shutdown the remote host. Trans-
parent hot-swapping, however, requires that a ‘similar’
device be present locally (e.g., a disk with the same con-
tent as the original disk), implying the need to properly
deal with device contents and state. The new device is
brought into the same state as the original device before
switching the LBE connection from the RBE to the local
device, and resuming device operation. For devices like
NICs, frequent hot-swapping is reasonable due to their
small internal states. For disks and similarly state-rich
devices, hot-swapping is likely to remain infrequent.

References

[1] K UMAR , S., AGARWALA , S., AND SCHWAN, K. Netbus: A
Transparent Mechanism for Remote Device Access in Virtualized
Systems. Tech. Rep. GIT-CERCS-07-08, Apr. 2007.

2


