
DR-TCP: Downloadable and Reconfigurable TCP

Jae-Hyun Hwang, Jin-Hee Choi, Se-Won Kim, Chuck Yoo
Department of Computer Science and Engineering, Korea University

{jhhwang, jhchoi, swkim, hxy}@os.korea.ac.kr

Abstract

DR-TCP is a new TCP implementation structure that focuses on reconfigurability and extensibility. To make TCP
reconfigurable, we re-implement Reno based on a state machine model so that reconfiguration can be done by just
modifying state transition table. As a result, DR-TCP can support dynamic reconfiguration without loss of connec-
tivity and its overhead is very low. It can also support binary-level protocol upgrade for extensibility by download-
ing a new TCP variant which the system does not have. This scheme is more suitable for mobile hand-held devices
than existing source-level solution since not requiring compilation environment. To demonstrate the effectiveness,
dynamic reconfiguration is performed over Internet, which successfully converts TCP Reno to Westwood at runtime.

1. Introduction

Advances in communication technology allow a vari-
ety of new network environments and services avail-
able very rapidly. Appearance of various network envi-
ronments tends to enable a user with a mobile terminal
to access among different network simultaneously.
However, since new network environment affects per-
formance of communication protocols, terminal sys-
tems should provide adaptation schemes for the proto-
cols in order to keep the protocol performance high. A
possible solution is to make the protocol reconfigurable
to be adapted to current network environment. Unfor-
tunately, most existing network systems are monolithic
implementation impossible to support reconfiguration.
The purpose of our research is to propose a new TCP

implementation model and show how TCP can be par-
tially reconfigured based on the model. We name the
implementation DR-TCP, which is the abbreviation for
Downloadable and Reconfigurable TCP. A main use-
fulness of DR-TCP is its dynamic nature in which TCP
functionalities can be replaced and/or extended without
stopping TCP operation. In other words, DR-TCP is
operational while reconfiguration (or an upgrade) is in
progress, which can make the kernel non-stopping.
Another usefulness of DR-TCP is for devices where a
compiling environment (for upgrade) is not expected.
One example is mobile phone, and compiling is not
something that a mobile phone is supposed to do.

2. Structure of DR-TCP

It is well-known that the finite state machine can spec-
ify theoretically how TCP on one machine interacts
with TCP on another [1]. Based on the state machine
model, we re-structure TCP Reno so that each function

unit is encapsulated by a state machine (e.g. Closed,
Listen, Established, etc). A key advantage of applying
state machine model to the functions of TCP is that the
inter-dependency among TCP functions can be simpli-
fied. In other words, most functions share many data
structures, which make dynamic reconfiguration ex-
tremely difficult. By using state machine, each function
of TCP is clearly isolated from the other functions so
that interface between states is clear and consistent.

2.1. Making TCP Reconfigurable

DR-TCP consists of one framework and several state

machines. The framework contains state transition table,
TCP global data such as TCB (Transmission Control
Block), and active state indicator. State transition table
is a hash table that has a pair of current state, event as a
key and next state as a value. Active state indicator
keeps track of the pointer of current state machine.
Each state machine has an uniform execution interface,
start(), and it performs incoming or outgoing packet
processing. To help understanding of DR-TCP process-
ing, let us consider three-way handshaking for exam-
ple: when an user application tries to open a session
actively, the framework invokes first start() function of
Closed state machine that is pointed by active state in-
dicator. Closed state machine, then, creates and sends a
SYN packet generating SYN_SENT event. At the end
of the function, current state is transited to Syn_sent by
the transition table.
Since TCP functions are represented several inde-

pendent state machines, partial reconfiguration can be
done easily at runtime. The key idea is to modify state
transition table. That is, if there is new ‘Established’
state for a TCP variant, all next state pointers that indi-
cate old Established state in transition table should be

change to point new one in order to reconfigure Reno
into the new variant. This simple method leads our im-
plementation to support dynamic reconfiguration with-
out loss of connectivity. Note that reconfiguration can
be performed with replacing only a few state machines,
not whole states since most TCP variants are different
from Reno in terms of a few specific functions such as
congestion control. Therefore, its reconfiguration over-
head is very low.
 To show the effectiveness of the proposed scheme,

we observed reconfiguration process from Reno to
Westwood [3], one of TCP variants, over Internet. State
machines that we have to reconfigure are only three:
Established, Retransmit, and Fast-retransmit. In West-
wood operation, Established state adds bandwidth esti-
mation function to the basic facility, and Retransmit
and Fast-retransmit states replace the original ssthresh
calculation mechanism with new one based on the
bandwidth estimation. Through this experiment, we
confirm that DR-TCP is reconfigured into Westwood in
runtime tracing cwnd size and ssthresh value, and the
reconfiguration processing time is about 5ms.

2.3. Making TCP Extensible

Making TCP extensible is another main goal of DR-

TCP. We consider TCP extensibility by downloading
new TCP variants which an end-host does not have for
new network environment. For the TCP update solution
using mobile code, P. Patel et al. are already proposed
Self-spreading Transport Protocol (STP), which is a
protocol upgrade framework that downloads the entire
protocol source code [2]. However, STP only supports
source-level update requiring code compilation. This
method would not be practical to hand-held devices
since they usually do not have development environ-
ment for compiling the protocol source code. On the
other hand, DR-TCP supports binary-level protocol
downloading update, so it can reconfigure new protocol
code immediately after downloading and loading the
code into memory neither requiring compiling the code,
restarting the application nor rebooting the system. This
approach can also reduce downloading cost since the
downloading code is much smaller than STP.
To actually support binary-level reconfiguration (or

update) with the downloaded code (i.e. state machines),
two system level supports are needed. One thing is a
memory allocator to keep track of the memory address
of state machines. Our allocator simply use block
header algorithm, and, to identify the object type of
allocated area, we only add a simple field to the formal
block header. Using this identifier, DR-TCP is able to
find the proper transition table of its framework. The
other thing is reconfiguration loader that dynamically

rearranges the symbols of the binary code. For instance,
let us consider the case that the downloaded state ma-
chine references DR-TCP’s tcpsend() function in the
example of TCP Westwood. The reconfiguration loader
loads the state machines into suitable memory area, and
it rearranges the unresolved references. Based on
proper equations, call parameter of functions and sym-
bol address of variables can be rearranged.
Compared with STP, the total upgrade time of DR-

TCP is significantly short. Actually, the compiling time
of STP is about 87% of total upgrade overhead while
DR-TCP does not have the overhead for compilation.
This means that DR-TCP has two advantages: 1) re-
duce upgrade overhead significantly and 2) require no
compiler (i.e. our solution is suitable to be deployed in
mobile devices).

3. Conclusion

In this paper, we re-structure TCP Reno to enable re-
configuration of its partial functions at runtime. DR-
TCP can also easily download each function of TCP,
and the reconfiguration loader enables to dynamically
update the functions. Through the experiment of recon-
figuring TCP Reno into Westwood, we confirm that
DR-TCP not only dramatically reduces the size of
downloadable protocol functions but also makes proto-
col reconfiguration extremely simple.
DR-TCP is a result of our effort to make reconfigur-

able protocol stack. Perceiving that almost every proto-
col can be modeled as state machine, we apply the
model to TCP implementation. Currently, DR-TCP is
implemented in user-level using raw socket interface
for the sake of convenience of testing and debugging1,
and porting to Linux kernel 2.6 is in progress.

Reference

[1] D. E. Comer, D. L. Stevens, "Internetworking with
TCP/IP Vol II: Design, Implementation, and Inter-
nals – Third Edition," Prentice-Hall, Inc., 1999.

[2] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack, "Upgrading Transport Protocols using Un-
trusted Mobile Code," In Proceedings of the 19th
ACM SOSP, Oct. 1993.

[3] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla,
"Adaptive Bandwidth Share Estimation in TCP
Westwood," In Proceedings of IEEE Globecom,
Nov. 2002.

1 The user-level source code of DR-TCP is available from
http://os.korea.ac.kr/network/dr-tcp.tar.gz.

