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Abstract

As technology trends push future microprocessors to-
ward chip multiprocessor designs, operating system net-
work stacks must be parallelized in order to keep pace
with improvements in network bandwidth. There are two
competing strategies for stack parallelization. Message-
parallel network stacks use concurrent threads to carry
out network operations on independent messages (usu-
ally packets), whereas connection-parallel stacks map
operations to groups of connections and permit con-
current processing on independent connection groups.
Connection-parallel stacks can use either locks or threads
to serialize access to connection groups. This paper eval-
uates these parallel stack organizations using a modern
operating system and chip multiprocessor hardware.

Compared to uniprocessor kernels, all parallel stack
organizations incur additional locking overhead, cache
inefficiencies, and scheduling overhead. However, the
organizations balance these limitations differently, lead-
ing to variations in peak performance and connection
scalability. Lock-serialized connection-parallel organi-
zations reduce the locking overhead of message-parallel
organizations by using many connection groups and
eliminate the expensive thread handoff mechanism of
thread-serialized connection-parallel organizations. The
resultant organization outperforms the others, delivering
5.4 Gb/s of TCP throughput for most connection loads
and providing a 126% throughput improvement versus a
uniprocessor for the heaviest connection loads.

1 Introduction

As network bandwidths continue to increase at an expo-
nential pace, the performance of modern network stacks
must keep pace in order to efficiently utilize that band-
width. In the past, exponential gains in microprocessor
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performance have always enabled processing power to
catch up with network bandwidth. However, the com-
plexity of modern uniprocessors will prevent such con-
tinued performance growth. Instead, microprocessors
have begun to provide parallel processing cores to make
up for the loss in performance growth of individual pro-
cessor cores. For network servers to exploit these parallel
processors, scalable parallelizations of the network stack
are needed.

Modern network stacks can exploit either message-
based parallelism or connection-based parallelism. Net-
work stacks that exploit message-based parallelism, such
as Linux and FreeBSD, allow multiple threads to si-
multaneously process different messages from the same
or different connections. Network stacks that ex-
ploit connection-based parallelism, such as Dragonfly-
BSD and Solaris 10 [16], assign each connection to a
group. Threads may then simultaneously process mes-
sages as long as they belong to different connection
groups. The connection-based approach can use either
threads or locks for synchronization, yielding three ma-
jor parallel network stack organizations: message-based
(MsgP), connection-based using threads for synchroniza-
tion (ConnP-T), and connection-based using locks for
synchronization (ConnP-L).

The uniprocessor version of FreeBSD is efficient, but
its performance falls short of saturating available net-
work resources in a modern machine and degrades sig-
nificantly as connections are added. Utilizing 4 cores, the
parallel stack organizations can outperform the unipro-
cessor stack (especially at high connection loads), but
each parallel stack organization incurs higher locking
overhead, reduced cache efficiency, and higher schedul-
ing overhead than the uniprocessor. MsgP outperforms
the uniprocessor for almost all connection loads but
experiences significant locking overhead. In contrast,
ConnP-T has very low locking overhead but incurs sig-
nificant scheduling overhead, leading to reduced perfor-
mance compared to even the uniprocessor kernel for all
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but the heaviest loads. ConnP-L mitigates the locking
overhead of MsgP, by grouping connections so that there
is little global locking, and the scheduling overhead of
ConnP-T, by using the requesting thread for network
processing rather than forwarding the request to another
thread. This results in the best performance of all stacks
considered, delivering stable performance of 5440 Mb/s
for moderate connection loads and providing a 126% im-
provement over the uniprocessor kernel for large connec-
tion loads.

The following section further motivates the need for
parallelized network stacks and discusses prior work.
Section 3 then describes the parallel network stack ar-
chitectures. Section 4 presents and discusses the results.
Finally, Section 5 concludes the paper.

2 Background

Traditionally, uniprocessors have not been able to sat-
urate the network with the introduction of each new
Ethernet bandwidth generation, but exponential gains in
uniprocessor performance have always allowed process-
ing power to catch up with network bandwidth. How-
ever, the complexity of modern uniprocessors has made
it prohibitively expensive to continue to improve proces-
sor performance at the same rate as in the past. Not only
is it difficult to further increase clock frequencies, but it
is also difficult to further improve the efficiency of com-
plex modern uniprocessor architectures.

To further increase performance despite these chal-
lenges, industry has turned to single chip multiproces-
sors (CMPs) [12]. IBM, Sun, AMD, and Intel have all
released dual-core processors [2, 15, 4, 8, 9]. Sun’s Nia-
gara is perhaps the most aggressive example, with 8 cores
on a single chip, each capable of executing four threads
of control [7, 10]. However, a CMP trades uniproces-
sor performance for additional processing cores, which
should collectively deliver higher performance on paral-
lel workloads. Therefore, the network stack will have to
be parallelized extensively in order to saturate the net-
work with modern microprocessors.

While modern operating systems exploit parallelism
by allowing multiple threads to carry out network oper-
ations concurrently in the kernel, supporting this paral-
lelism comes with significant cost [1, 3, 11, 13, 18]. For
example, uniprocessor Linux kernels deliver 20% bet-
ter end-to-end throughput over 10 Gigabit Ethernet than
multiprocessor kernels [3].

In the mid-1990s, two forms of network process-
ing parallelism were extensively examined: message-
oriented and connection-oriented parallelism. Using
message-oriented parallelism, messages (or packets)
may be processed simultaneously by separate threads,
even if those messages belong to the same connec-

tion. Using connection-oriented parallelism, messages
are grouped according to connection, allowing concur-
rent processing of messages belonging to different con-
nections.

Nahum et al. first examined message-oriented par-
allelism within the user-space x-kernel utilizing a sim-
ulated network device on an SGI Challenge multipro-
cessor [11]. This study found that finer grained lock-
ing around connection state variables generally degrades
performance by introducing additional overhead and
does not result in significant improvements in speedup.
Rather, coarser-grained locking (with just one lock pro-
tecting all TCP state) performed best. They further-
more found that careful attention had to be paid to thread
scheduling and lock acquisition ordering on the inbound
path to ensure that received packets were not reordered
during processing.

Yates et al. later examined a connection-oriented par-
allel implementation of the x-kernel, also utilizing a sim-
ulated network device and running on an SGI Chal-
lenge [18]. They found that increasing the number of
threads to match the number of connections yielded the
best results, even far beyond the number of physical pro-
cessors. They proposed using as many threads as were
supported by the system, which was limited to 384 at
that time.

Schmidt and Suda compared message-oriented and
connection-oriented network stacks in a modified version
of SunOS utilizing a real network interface [14]. They
found that with just a few connections, a connection-
parallel stack outperforms a message-parallel one. How-
ever, they note that context switching increases sig-
nificantly as connections (and processors) are added
to the connection-parallel scheme, and that synchro-
nization cost heavily affects the efficiency with which
each scheme operates (especially the message-parallel
scheme).

Synchronization and context-switch costs have
changed dramatically in recent years. The gap between
memory system and processing performance has become
much greater, vastly increasing synchronization cost
in terms of lost execution cycles and exacerbating the
cost of context switches as thread state is swapped in
memory. Both the need to close gap between Ethernet
bandwidth and microprocessor performance and the vast
changes in the architectural characteristics that shaped
prior parallel network stack analyses motivate a fresh
examination of parallel network stack architectures on
modern parallel hardware.

3 Parallel Network Stack Architectures

Despite the conclusions of the 1990s, no solid consen-
sus exists among among modern operating system devel-
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opers regarding efficient, scalable parallel network stack
design. Current versions of FreeBSD and Linux incor-
porate variations of message parallelism within their net-
work stacks. Conversely, the network stack within So-
laris 10 incorporates a variation of connection-based par-
allelism [16], as does DragonflyBSD. Willmann et al.
present a detailed description of parallel network stack
organizations, and a brief overview follows [17].

3.1 Message-based Parallelism (MsgP)

Message-based parallel (MsgP) network stacks, such as
FreeBSD, allow multiple threads to operate within the
network stack simultaneously and permit these various
threads to process messages independently. Two types of
threads may perform network processing: one or more
application threads and one or more inbound protocol
threads. When an application thread makes a system call,
that calling thread context is “borrowed” to carry out the
requested service within the kernel. When the network
interface card (NIC) interrupts the host, the NIC’s asso-
ciated inbound protocol thread services the NIC and pro-
cesses received packets “up” through the network stack.

Given these concurrent application and inbound pro-
tocol threads, FreeBSD utilizes fine-grained locking
around shared kernel structures to ensure proper mes-
sage ordering and connection state consistency. As a
thread attempts to send or receive a message on a con-
nection, it must acquire various locks when accessing
shared connection state, such as the global connection
hashtable lock (for looking up TCP connections) and per-
connection locks (for both socket state and TCP state).
This locking organization enables concurrent processing
of different messages on the same connection.

Note that the inbound thread configuration described
is not the FreeBSD 7 default. Normally parallel driver
threads service each NIC and then hand off inbound
packets to a single worker thread. That worker thread
then processes the received packets “up” through the net-
work stack. The default configuration limits the perfor-
mance of MsgP, so is not considered in this paper. The
thread-per-NIC model also differs from the message-
parallel organization described by Nahum et al. [11],
which used many more worker threads than interfaces.
Such an organization requires a sophisticated scheme to
ensure these worker threads do not reorder inbound pack-
ets, hence it is also not considered.

3.2 Connection-based Parallelism (ConnP)

To compare connection parallelism in the same frame-
work as message parallelism, FreeBSD 7 was modified
to support two variants of connection-based parallelism
(ConnP) that differ in how they serialize TCP/IP pro-

cessing within a connection. The first variant assigns
each connection to a protocol processing thread (ConnP-
T), and the second assigns each connection to a lock
(ConnP-L).

3.2.1 Thread Serialization (ConnP-T)

Connection-based parallelism using threads utilizes sev-
eral kernel threads dedicated to protocol processing, each
of which is assigned a subset of the system’s connections.
At each entry point into the TCP/IP protocol stack, a re-
quest for service is enqueued for the appropriate protocol
thread based on the TCP connection. Later, the protocol
threads, which only carry out TCP/IP processing and are
bound to a specific CPU, dequeue requests and process
them appropriately. Because connections are uniquely
and persistently assigned to a specific protocol thread,
no per-connection state locking is required. These proto-
col threads implement both synchronous operations, for
applications that require a return code, and asynchronous
operations, for drivers that simply enqueue packets and
then continue servicing the NIC.

The connection-based parallel stack uniquely maps a
packet or socket request to a specific protocol thread by
hashing the 4-tuple of remote IP address, remote port
number, local IP address, and local port number. When
the entire tuple is not yet defined (e.g., prior to port as-
signment during a listen() call), the corresponding
operation executes on protocol thread 0 and may later
migrate to another thread when the tuple becomes fully
defined.

3.2.2 Lock Serialization (ConnP-L)

Connection-based parallelism using locks also separates
connections into groups, but each group is protected by
a single lock, rather than only being processed by a
single thread. As in connection-based parallelism us-
ing threads, application threads entering the kernel for
network service and driver threads passing up received
packets both classify each request to a particular connec-
tion group. However, application threads then acquire
the lock for the group associated with the given connec-
tion and then carry out the request with private access to
any group-wide structures (including connection state).
For inbound packet processing, the driver thread clas-
sifies each inbound packet to a specific group, acquires
the group lock associated with the packet, and then pro-
cesses the packet “up” through the network stack. As in
the MsgP case, there is one inbound protocol thread for
each NIC, but the number of groups may far exceed the
number of threads.

This implementation of connection-oriented paral-
lelism is similar to Solaris 10, which permits a network
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Figure 1: Aggregate network throughput.

operation to either be carried out directly after acquisi-
tion of a group lock or to be passed on to a worker thread
for later processing. ConnP-L is more rigidly defined;
application and inbound protocol threads always acquire
exclusive control of the group lock.

4 Evaluation

The three competing parallelization strategies are im-
plemented within the 2006-03-27 repository version of
the FreeBSD 7 operating system for comparison on a 4-
way SMP AMD Opteron system. The system consists
of a Tyan S2885 motherboard, two dual-core Opteron
275 processors, two 1 GB PC2700 DIMMs per proces-
sor (one per memory channel), and three dual-port In-
tel PRO/1000-MT Gigabit Ethernet network interfaces
spread across the motherboard’s PCI-X bus segments.
Data is transferred between the 4-way Opteron system
and three client systems. The clients never limit the net-
work performance of any experiment.

Each network stack organization is evaluated using a
custom multithreaded, event-driven TCP/IP microbench-
mark that distributes traffic across a configurable number
of connections and uses zero-copy I/O. This benchmark
manages connections using as many threads as there are
processors. All experiments use the standard 1500-byte
maximum transmission unit, and sending and receiving
socket buffers are 256 KB each.

Figure 1 depicts the aggregate throughput across all
connections when executing the parallel TCP benchmark
utilizing various configurations of FreeBSD 7. “UP” is
the uniprocessor version of the FreeBSD kernel running
on a single core of the Opteron server; all other kernel
configurations use all 4 cores. “MsgP” is the multipro-
cessor MsgP kernel described in Section 3.1. MsgP uses
a lock per connection. “ConnP-T(4)” is the multipro-

OS Type 6 conns 192 conns 16384 conns

MsgP 89 100 100
ConnP-L(4) 60 56 52
ConnP-L(8) 51 30 26
ConnP-L(16) 49 18 14
ConnP-L(32) 41 10 7
ConnP-L(64) 37 6 4
ConnP-L(128) 33 5 2

Table 1: Percentage of lock acquisitions for global
TCP/IP locks that do not succeed immediately.

cessor ConnP-T kernel described in Section 3.2.1, using
4 kernel protocol threads for TCP/IP stack processing
that are each pinned to a different core. “ConnP-L(128)”
is the multiprocessor ConnP-L kernel described in Sec-
tion 3.2.2. ConnP-L(128) divides the connections among
128 locks within the TCP/IP stack.

The figure shows that the uniprocessor kernel per-
forms well with a small number of connections, achiev-
ing a bandwidth of 4034 Mb/s with only 6 connec-
tions. However, total bandwidth decreases as the num-
ber of connections increases. MsgP achieves 82% of
the uniprocessor bandwidth at 6 connections but quickly
ramps up to 4630 Mb/s, holding steady through 768 con-
nections and then decreasing to 3403 Mb/s with 16384
connections. ConnP-T(4) achieves close to its peak
bandwidth of 3123 Mb/s with 6 connections and pro-
vides approximately steady bandwidth as the number of
connections increase. Finally, the ConnP-L(128) curve
is shaped similar to that of MsgP, but its performance is
larger in magnitude and always outperforms the unipro-
cessor kernel. ConnP-L(128) delivers steady perfor-
mance around 5440 Mb/s for 96–768 connections and
then gradually decreases to 4747 Mb/s with 16384 con-
nections. This peak performance is roughly the peak
TCP throughput deliverable by the three dual-port Gi-
gabit NICs.

Figure 1 shows that using 4 cores, ConnP-L(128) and
MsgP outperform the uniprocessor FreeBSD 7 kernel for
almost all connection loads. However, the speedup is
significantly less than ideal and is limited by (1) locking
overhead, (2) cache efficiency, and (3) scheduling over-
head. The following subsections will explain how these
issues affect the parallel implementations of the network
stack.

4.1 Locking Overhead

Both lock latency and contention are significant sources
of overhead within parallelized network stacks. Within
the network stack, there are both global and individual
locks. Global locks protect hash tables that are used to
access individual connections, and individual locks pro-
tect only one connection. A thread must acquire a global
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Figure 2: Aggregate network throughput for ConnP-L as
the number of locks is varied.

lock to look up and access an individual lock. Dur-
ing contention for these global locks, other threads are
blocked from entering the associated portion of the net-
work stack, limiting parallelism.

Table 1 depicts global TCP/IP lock contention, mea-
sured as the percentage of lock acquisitions that do not
immediately succeed because another thread holds the
lock. ConnP-T is omitted from the table because it elim-
inates global TCP/IP locking completely. The MsgP net-
work stack experiences significant contention for global
TCP/IP locks. The Connection Hashtable lock
protecting individual Connection locks is particularly
problematic. Lock profiling shows that contention for
Connection locks decreases with additional connec-
tions, but that the cost for contention for these locks
increases because as the system load increases, they
are held longer. Hence, when a Connection lock is
contended (usually between the kernel’s inbound pro-
tocol thread and an application’s sending thread), a
thread blocks longer holding the global Connection
Hashtable lock, preventing other threads from mak-
ing progress.

Whereas the MsgP stack relies on repeated acquisition
of the Connection Hashtable and Connection
locks, ConnP-L stacks can also become bottlenecked if a
single connection group becomes highly contended. Ta-
ble 1 shows the contention for the Network Group
locks for ConnP-L stacks as the number of network
groups is varied. Though ConnP-L(4)’s Network
Group lock contention is high at over 50% for all con-
nection loads, increasing the number of groups to 128
reduces contention from 52% to just 2% for the heavi-
est load. Figure 2 shows the effect that increasing the
number of network groups has on aggregate through-
put. As is suggested by reduced Network Group lock
contention, throughput generally increases as groups are
added, although with diminishing returns.

OS Type 6 conns 192 conns 16384 conns

UP 1.83 4.08 18.49
MsgP 37.29 28.39 40.45
ConnP-T(4) 52.25 50.38 51.39
ConnP-L(128) 28.91 26.18 40.36

Table 2: L2 Data cache misses per KB of transmitted
data.

OS Type 6 conns 192 conns 16384 conns

UP 481.77 440.20 422.84
MsgP 2904.09 1818.22 2448.10
ConnP-T(4) 3487.66 3602.37 4535.38
ConnP-L(128) 2135.26 923.93 1063.65

Table 3: Cycles of scheduler overhead per KB of trans-
mitted data.

4.2 Cache Behavior

Table 2 shows the number of L2 data cache misses per
KB of payload data transmitted, effectively normalizing
cache hierarchy efficiency to network bandwidth. The
uniprocessor kernel incurs very few cache misses rela-
tive to the multiprocessor configurations because of the
lack of migration. As connections are added, the associ-
ated increase in connection state stresses the cache and
directly results in increased cache misses [5, 6].

The parallel network stacks incur significantly more
cache misses per KB of transmitted data because of data
migration and lock accesses. Surprisingly, ConnP-T(4)
incurs the most cache misses despite each thread being
pinned to a specific processor. While thread pinning
can improve locality by eliminating migration of con-
nection metadata, frequently updated socket metadata is
still shared between the application and protocol threads,
which leads to data migration and a higher cache miss
rate.

4.3 Scheduler Overhead

The ConnP-T kernel trades the locking overhead of the
ConnP-L and MsgP kernels for scheduling overhead.
Network operations for a particular connection must be
scheduled onto the appropriate protocol thread. Figure 1
showed that this results in stable, but low total bandwidth
as connections scale for ConnP-T. Conversely, ConnP-L
minimizes lock contention with additional groups and re-
duces scheduling overhead since messages are not trans-
ferred to protocol threads. This results in consistently
better performance than the other parallel organizations.

Table 3 shows scheduler overhead normalized to net-
work bandwidth, measured in cycles spent managing the
scheduler and scheduler synchronization per KB of pay-
load data transmitted. Though MsgP experiences less
scheduling overhead as the number of connections in-
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crease and threads aggregate more work, locking over-
head within the threads quickly negate the scheduler ad-
vantage. In contrast, the scheduler overhead of ConnP-T
remains high, corresponding to relatively low bandwidth.
This highlights that ConnP-T’s thread-based serialization
requires efficient inter-thread communication to be ef-
fective. In contrast, ConnP-L exhibits stable scheduler
overhead that is much lower than ConnP-T and MsgP,
contributing to its higher throughput. ConnP-L does not
require a thread handoff mechanism and its low lock
contention compared to MsgP results in fewer context
switches from threads waiting for locks.

5 Conclusions

Network performance is increasingly important in all
types of modern computer systems. Furthermore, archi-
tectural trends are pushing future microprocessors away
from uniprocessor designs and toward architectures that
incorporate multiple processing cores and/or thread con-
texts per chip. This trend necessitates the parallelization
of the operating system’s network stack. This paper eval-
uates message-based and connection-based parallelism
within the network stack of a modern operating system.
Further results and analysis are available in a technical
report [17].

The uniprocessor version of the FreeBSD operating
system performs quite well, but its performance degrades
as additional connections are added. Though the MsgP,
ConnP-T, and ConnP-L parallel network stacks can out-
perform the uniprocessor when using 4 cores, none of
these organizations approach perfect speedup. This is
caused by the higher locking overhead, poor cache effi-
ciency, and high scheduling overhead of the parallel or-
ganizations. While MsgP can outperform a uniprocessor
by 31% on average and by 62% for the heaviest connec-
tion loads, the enormous locking overhead incurred by
such an approach limits its performance and prevents it
from saturating available network resources. In contrast,
ConnP-T eliminates intrastack locking completely by us-
ing thread serialization but incurs significant scheduling
overhead that limits its performance to less than that of
the uniprocessor kernel for all but the heaviest connec-
tion loads. ConnP-L mitigates the locking overhead of
MsgP, by grouping connections to reduce global locking,
and the scheduling overhead of ConnP-T, by using the re-
questing thread for network processing rather than invok-
ing a network protocol thread. This results in good per-
formance across a wide range of connections, delivering
5440 Mb/s for moderate connection loads and achieving
a 126% improvement over the uniprocessor kernel when
handling large connection loads.
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