
Efficient Query Subscription Processing for Prospective Search Engines

Utku Irmak ∗ Svilen Mihaylov † Torsten Suel ∗

Samrat Ganguly ‡ Rauf Izmailov ‡

Abstract

Current web search engines are retrospective in that they
limit users to searches against already existing pages.
Prospective search engines, on the other hand, allow
users to upload queries that will be applied to newly dis-
covered pages in the future. Some examples of prospec-
tive search are the subscription features in Google News
and in RSS-based blog search engines.

In this paper, we study the problem of efficiently
processing large numbers of keyword query subscrip-
tions against a stream of newly discovered documents,
and propose several query processing optimizations for
prospective search. Our experimental evaluation shows
that these techniques can improve the throughput of a
well known algorithm by more than a factor of 20, and al-
low matching hundreds or thousands of incoming docu-
ments per second against millions of subscription queries
per node.

1 Introduction

The growth of the world-wide web to a size of billions
of pages, and the emergence of large-scale search en-
gines that allow real-time keyword searches over a large
fraction of these pages, has fundamentally changed the
manner in which we locate and access information. Such
search engines work by downloading pages from the web
and then building a full-text index on the pages. Thus,
they are retrospective in nature, as they allow us only to
search for currently already existing pages – including
many outdated pages. In contrast, prospective search al-
lows a user to upload a query that will then be evaluated
by the search engine against documents encountered in
the future. In essence, the user subscribes to the results
of the query. The user can be notified of new matches in
one of several ways, e.g., via email or an RSS reader.

A naive implementation of a prospective search engine

∗CIS Department, Polytechnic University, Brooklyn, NY 11201.
{uirmak@cis.poly.edu, suel@poly.edu}. The third au-
thor was also partially supported by NSF Awards IDM-0205647 and
CCR-0093400, and the New York State Center for Advanced Technol-
ogy in Telecommunications (CATT) at Polytechnic University.

†CIS Department, University of Pennsylvania, Philadelphia, PA
19104. svilen@seas.upenn.edu.

‡NEC Laboratories America, Inc., Princeton, NJ 08540.
{samrat@nec-labs.com, rauf@nec-labs.com}.

might simply execute all the subscription queries peri-
odically against any newly arrived documents. How-
ever, if the number of subscriptions is very large, this
would result either in a significant delay in identifying
new matches, if we only execute the queries very rarely,
or a significant query processing load for the engine. Fol-
lowing the approach in [11], we essentially reverse the
roles of the documents and the queries. That is, we build
an inverted index on the subscriptions instead of the doc-
uments, and then issue a number of queries into the in-
dex for each newly arriving document. We note, how-
ever, that the two cases are not completely symmetric. In
this paper, we study techniques for optimizing the per-
formance of prospective search engines. A more detailed
version is available from the first author.

Applications of Prospective Search: One of the pop-
ular implementations of prospective search is the News
Alert feature in Google News. It allows users to sub-
scribe to a keyword search, in which case they will be
notified via email of any newly discovered results match-
ing all the terms. Similar services include specialized
search applications created for job or real estate searches.
Prospective search can be performed with the help of
RSS (RSS 2.0: Really Simple Syndication) feeds, which
allow web sites to syndicate their new content at a spec-
ified URL. Thus, a prospective search engine can find
the new content on a site by periodically downloading
the appropriate RSS feed. There are a number of exist-
ing weblog and RSS search engines based on RSS feeds,
including PubSub, Bloglines, Technorati, and Feedster.

Problem Setup: We are given n queries q0 to qn−1,
where each query qi contains si terms (keywords)
ti,0, . . . , ti,si−1. We define T as the union of all the qi,
i.e., the set of terms that occur in at least one query. The
terms in a query may be arranged in some Boolean for-
mula, though we will mainly focus on the AND queries.
Given these queries, we are allowed to precompute ap-
propriate data structures, say, an inverted index.

After preprocessing the queries, we are presented with
a sequence of documents d0, d1, . . ., where each docu-
ment dj is a set of terms. We assume that dj ⊆ T for all
j; this can be enforced by pruning from dj any terms that
do not occur in any query qi. We process the documents
one by one where for each dj we have to determine all
qi such that dj matches qi. Within our matching system,

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 375

queries are assigned integer query IDs (QID), and docu-
ments are assigned integer document IDs (DID), and all
terms in the queries and documents are replaced by inte-
ger term IDs (TID). The output of the matching process
is a stream of (QID, DID) pairs indicating matches.

While retrospective search engines typically store their
index on disk, we assume that for prospective search, all
the index structures fit into main memory. Tens of mil-
lions of queries can be kept in memory on a single ma-
chine with the currently available memory sizes. In case
of more queries, our results indicate that CPU cycles be-
come a bottleneck before main memory.

Discussion of Query Semantics: Most current search
engines assume AND semantics, where a query matches
any document containing all query terms, in combination
with ranking. As we show, AND queries can be executed
very efficiently in an optimized system for prospec-
tive search; moreover, several other interesting types
of queries can be efficiently reduced to AND queries.
Therefore, we focus on AND queries.

Boolean queries involve a number of terms connected
by AND, OR, and NOT operators. In our framework,
they are executed by converting them to DNF, inserting
each conjunction as a separate AND query, and then re-
moving duplicate matches from the output stream.

In the RSS search scenario, it might be preferable to
restrict the keyword queries to certain fields. It is well
understood that inverted index structures with appropri-
ate extensions can efficiently process many such queries
for retrospective search, and similar extensions are also
possible for prospective search.

Contributions of this Paper:

• We describe the design of a high-performance sub-
scription matching processor based on an inverted
index, with several optimizations based on term fre-
quencies and a Bloom filter structure.

• We study preprocessing schemes that cluster sub-
scriptions into superqueries.

• We evaluate our schemes against a search engine
trace, and detail the performance improvements cre-
ated by our optimizations.

2 The Core Query Processor

In our query processor, TIDs are assigned from 0 to
|T | − 1, and the terms in each query are ordered by
TID; thus we can refer to the first, second, etc., term
in a query. Any incoming documents have already been
preprocessed by parsing out all terms, translating them
into TIDs, and discarding any duplicate terms or terms
that do not occur in any query. It will also be convenient
to assume that QIDs are assigned at random. Note that

we expect additions and deletions of subscriptions to be
handled in an amortized fashion, by periodic rebuilding
of the structures (including updating the assignments of
TIDs and QIDs).

The main data structure used in all our algorithms is an
inverted index, which is also used by retrospective search
engines. However, in our case we index the queries rather
than the documents, as proposed in [11]. The inverted
index consists of |T | inverted lists, one for each unique
term that occurs in the queries. Each list contains one
posting for each query in which the corresponding word
occurs, where a posting consists of the QID and the po-
sition of the term in the query (recall that terms are or-
dered within each query by TID). The QID and position
can usually be stored together in a single 32-bit integer,
and thus each inverted list is a simple integer array.

2.1 A Primitive Matching Algorithm

We now describe the primitive matching algorithm,
which (with some variations) has been studied in a num-
ber of previous works including [8, 11, 9, 7]. The basic
idea is as follows. We initially build the inverted index
from the queries using standard index construction algo-
rithms; see, e.g., [10]. We also reserve space for a hash
table, indexed by QIDs, of some sufficient size. Given an
incoming document consisting of a set of terms, we first
clear the hash table, and then process the terms in the
document in some sequential order. To process a term,
we traverse the corresponding inverted list in the index.
For each posting of the form (QID, position) in this list,
we check if there is already an entry in the hash table for
this QID. If not, we insert such an entry into the hash ta-
ble, with an associated accumulator (counter) set to 1. If
an entry already exists, we increase its accumulator by 1.
This first phase is called the matching phase.

In the second phase (testing phase), we iterate over all
created hash table entries. For every entry, we test if the
final value of the accumulator is equal to the number of
query terms; if so then we output the match between this
query and the document. Note that for Boolean queries
other than AND, we could reserve one bit in the ac-
cumulator for each term in the query, and then instead
of increasing a counter we set the corresponding bit; in
the testing phase we check if the accumulator matches
the query through tests applying appropriate bit masks.
Also, since QIDs are assigned at random, we can use the
QID itself as our hash function for efficiency.

2.2 Optimizations for Primitive Algorithm

Exploiting Position Information and Term Frequen-
cies: One problem with the primitive algorithm is that it

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association376

creates an entry in the hash table for any query that con-
tains at least one of the terms. This results in a larger
hash table that in turn slows down the algorithm, due to
additional work that is performed but also due to result-
ing cache misses during hash lookups.

To decrease the size of the hash table, we first exploit
the fact that we are focusing on AND queries. Recall that
each index posting contains (QID, position) pairs. Thus,
if we are processing a posting with a non-zero position,
then this means that the term is not the term with the
lowest TID in the query. Suppose we process the terms
in the incoming document in sorted order, from lowest
to highest TID. This means that for a posting with non-
zero position, either there already exists a hash entry for
the query, or the document does not contain any of the
query terms with lower TID, and thus the query does not
match. So we create a hash entry whenever the posi-
tion in the posting is zero, and only update existing hash
entries otherwise. As we will see, this results in signif-
icantly smaller hash table sizes. A further reduction is
achieved by simply assigning TIDs to terms in order of
frequency, that is, we assign TID 0 to the term that occurs
the least frequent in the set of queries, and TID |T | − 1

to the most frequent term. This means that an accumula-
tor is only created for those queries where the incoming
document contains the least frequent term in the query.

To implement this efficiently, we split each inverted list
into two parts, a smaller list containing only postings
with positions equal to zero, and the rest of the list. We
then perform two passes over the terms in the incoming
document, the first pass generates the hash entries, and
the second pass updates the existing entries. This simpli-
fies the critical inner loop over the postings and also al-
lows us to quickly determine the optimal hash table size
for each incoming document, by summing up the lengths
of the first parts of the inverted lists involved.

Bloom Filters: As a result of the previous set of op-
timizations, hash entries are only created initially, and
most of the time is spent afterwards on lookups to check
for existing entries. Moreover, most of these checks
are negative, i.e., the corresponding entry does not ex-
ist. In order to speed up these checks, we propose to
use a Bloom filter [2, 3], which is a probabilistic space-
efficient method for testing set membership.

We use a Bloom filter in addition to the hash table. In
the matching phase, when hash entries are created, we
also set the corresponding bits in the Bloom filter; the
overhead for this is fairly low. In the testing phase, we
first perform a lookup into the Bloom filter to see if there
might be a hash entry for the current QID. If the answer is
negative, we immediately continue with the next posting;
otherwise, we perform a lookup into the hash table.

Use of a Bloom filter has two advantages. The Bloom

filter structure is small and thus gives better cache behav-
ior, and the innermost loop of our matching algorithm is
also further simplified. We experimented with different
settings for the size of the Bloom filter and the number
of hash functions; our results indicate that a single hash
function (trivial Bloom filter) performs best.

Partitioning the Queries: We note that the hash table
and Bloom filter sizes increase linearly with the number
of query subscriptions, and thus eventually grow beyond
the L1 or L2 cache sizes. This leads to our next opti-
mization. Instead of creating a single index, we partition
the queries into a number p of subsets and build an index
on each subset. In other words, we partition the index
into p smaller indexes. An incoming document is then
processed by performing the matching sequentially with
each of the index partitions. While this does not decrease
the number of postings traversed, or the locality for index
accesses, it means that the hash table and Bloom filter
sizes that we need are decreased by a factor of p.

2.3 Experimental Evaluation

Since we were unable to find any large publicly avail-
able query subscription logs, we decided to use Excite
search engine query logs, collected in 1999. We note that
query subscriptions in a prospective engine would likely
be different in certain ways from standard retrospective
queries; in particular, we would not expect as many ex-
tremely broad queries. For this reason, we will also look
at how performance changes with query selectivity, by
looking at different subsets of the query logs. To be used
as incoming documents, we selected 10, 000 web pages
at random from a large crawl of over 120 million pages
from Fall 2001.

We removed stop words and duplicate queries from the
query trace, and also converted all the terms to lower
case. We also removed queries that contained more than
32 terms; there were only 43 such queries out of a total of
1, 077, 958 distinct queries. Some statistics on the query
logs, documents, and resulting inverted index lookups is
as follows: There are 271, 167 unique terms in the query
log, and each query contains about 3.4 terms on average.
The number of postings in the index is 3, 633, 970. Each
incoming document contains about 144 distinct terms
that also occur in the queries. For each document, our
algorithms will visit about 200, 000 postings, or about
1, 400 postings per inverted list that is traversed. Of those
postings, only about 6, 630 have position zero if we as-
sign TIDs according to term frequencies.

To experiment with numbers of queries beyond the size
of the query log, we replicated the queries several times
according to a multiplier between 1 and 14, for a max-
imum size of about 15 million queries. We note that

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 377

the core query processor does not exploit similarities be-
tween different queries, and thus we believe that this
scaling approach is justified. Later, in Section 3, we
will incorporate clustering techniques into our system
that exploit such similarities; for this reason we will not
use a multiplier in the later evaluation of the clustering
schemes, which limits us to smaller input sizes.

In the experiments, we report the running times of the
various optimizations when matching different numbers
of queries against 10, 000 incoming documents. The ex-
periments are performed on a machine with a 3.0 Ghz
Pentium4 processor with 16 KB L1 and 2 MB L2 cache,
under a Linux 2.6.12-Gentoo-r10 environment. We used
the gcc compiler with Pentium4 optimizations. We also
used the vtune performance tools to analyze program
behavior such as cache hit ratio etc. In the charts, we sep-
arately show the times spent on the matching and testing
phases. Note that the matching phase includes all in-
verted index traversals and the creation and maintenance
of the accumulators, while the testing phase merely iter-
ates over the created accumulators to identify matches.

Figure 2.1: Running times of the various algorithm op-
timizations for different numbers of queries.

In Figure 2.1, we show the time spent by four versions
of our query processor: (i) the primitive one, (ii) with
optimization for AND and assignment of TIDs by fre-
quency, (iii) with Bloom filter, and (iv) with index parti-
tioning with optimal choice of the number of partitions.
We show total running times in seconds for matching
10, 000 documents against the queries with multipliers
of 1, 4, and 14. At first glance, running times are roughly
linear in the number of queries. More exactly, they are
slightly more than linear for the first three algorithms,
due to the increased sizes of the hash table and Bloom
filter structures resulting in more cache misses, while the
best algorithm (iv) remains linear by increasing the num-
ber of partitions.

As discussed, many Excite queries may have much
larger result sizes than typical subscription queries would
have. To examine possible relationships between match-
ing performance and query selectivities, we partitioned
our queries into quintiles according to selectivity. To
do so, we matched all queries against a larger collection

of around 144, 000 documents (disjoint from the set of
10, 000 we used for testing), and counted the number of
matches of each query. We then partitioned queries into
five subsets, from the 20% with the fewest number of
matches to the 20% with the most. In the Figure 2.2, we
show how the running times of the algorithms change
as we go from queries with very few results (leftmost
4 bars) to queries with very many results (rightmost 4

bars). Not surprisingly, queries with many matches are
more costly. (Since we use a multiplier of 1, the parti-
tioning does not seem to give any benefits in the figure.)

Figure 2.2: Running times versus query selectivities for
the various algorithms, with multiplier 1.

To illustrate the benefits of index partitioning, we per-
formed additional runs on a machine with 512 KB in-
stead of 2 MB of L2 cache. As shown in Figure 2.3, in-
dex partitioning resulted in a gain by about a factor of 4

for the largest query set. On the 2 MB machine, a similar
effect is expected for larger query multipliers.

Figure 2.3: Benefit of best possible index partitioning on
a machine with smaller L2 cache.

3 Optimizations using Query Clustering

In this section, we study clustering techniques to obtain
additional performance benefits. We note that clustering
of subscriptions has been previously studied, e.g., in [8],
but in the context of more structured queries. Our sim-
ple approach for clustering subscriptions is as follows.
In a preprocessing step, we cluster all queries into artifi-
cial superqueries of up to a certain size, such that every

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association378

query is contained in a superquery and shares the same
least frequent term with a superquery (and thus with all
other queries in the cluster). Then we present these su-
perqueries to the query processor, which indexes them
and performs matching exactly as before. Thus the re-
sulting improvements are orthogonal to the earlier tech-
niques. The only changes to the core subscription pro-
cessor are as follows: (i) During matching, we set appro-
priate bits in the accumulators for each update instead
of counting, and (ii) in the testing phase we need to test
each query that is contained in a superquery that has an
accumulator. To do this test, we create a simple structure
for each superquery during preprocessing that contains a
list of the QIDs of the contained queries, plus for each
QID a bit mask that can be used to test the superquery
accumulator for this subquery.

We now discuss briefly how clustering impacts the cost
of matching. Consider any two queries (or superqueries)
that share the same least frequent term. Note that by
combining these two queries into one superquery, we
are guaranteed to decrease the size of the index by at
least one posting. Moreover, the number of hash entries
created and accumulator updates performed during the
matching phase will never increase but may often de-
crease as a result of combining the two queries. On the
other hand, we need at least one bit per term in the super-
query for the accumulator, and a very large superquery
would result in higher costs for both testing and hash ta-
ble accesses. However, this effect is not easy to capture
with a formal cost model for clustering. Instead, we will
impose an upper bound b on the size of each superquery,
and try to minimize index size under this constraint. In
general, this problem is still intractable, and we will fo-
cus on some heuristics.

3.1 Greedy Algorithms for Clustering

All the algorithms we present in this subsection follow
the clustering approach discussed above. They start out
by initially grouping all queries into pools based on their
least frequent terms, and then separately build super-
queries within each pool. Note that if we use index par-
titioning, we should make sure to assign all queries in a
pool to the same partition.

Random Selection: The simplest approach starts with
the empty superquery and then repeatedly picks an arbi-
trary query from the pool and merges it into the super-
query, as long as the resulting superquery has at most
b = 32 terms (apart from the least frequent term). If the
result has more than b terms, then we write out the old
superquery and start a new one.

Alphabetical Ordering: We first sort all queries in the
pool in reverse alphabetical order - recall that the terms

in each query are sorted by frequency and thus we sort
according to most common, second most common, etc.
terms. We then consider queries in sorted order as we
construct superqueries, rather than in arbitrary order.

Overlap Ratio: The third greedy algorithm builds su-
perqueries by checking all remaining queries in the pool
to find the one with the best match, i.e., a query that has
a lot of terms in common with the current superquery.

3.2 Experimental Evaluation

We cannot use the multiplier method of Section 2.3 in the
evaluation of the proposed clustering algorithms since
they exploit the similarities among the queries in the
collection. In order to obtain at least a slightly larger
collection of queries, we combined the Excite queries
with another set of queries from the AltaVista search en-
gine. The combined set contains 3, 069, 916 queries and
922, 699 unique terms. The number of postings in the re-
sulting index is 9, 239, 690. We first compare the perfor-
mance of the proposed clustering algorithms in Table 3.1
when b is set to 32 terms. The best algorithm from the
previous section is shown on the last row. Even the most
naive clustering algorithm gives significant benefits, and
the algorithm based on overlap outperforms all others.

Matching Testing Total

Random 16.83 1.35 18.18
Alphabetical 14.42 1.34 15.76
Overlap 13.71 1.34 15.05
Best non-clustered 33.28 6.34 39.62

Table 3.1: Running time of the clustering algorithms on
the combined query set (in seconds).

In Table 3.2, we show the number of superqueries cre-
ated by each clustering algorithm, the number of postings
in the resulting inverting index, and the number of ac-
cumulators created during the matching process. As we
see, clustering decreases the number of index postings by
about 40%, but the number of accumulators created dur-
ing the matches is reduced by a factor of up to 20. This is
because clustering is most effective for large query pools
that have a significant number of queries with the same
least common query term that can be combined.

(Super) queries Postings Accumulators

Random 957366 6089165 8870966
Alphabetical 948417 5784684 7670446
Overlap 939779 5522510 6543883

Best 3069916 9239690 130691462

Table 3.2: Comparison of the clustering algorithms and
the best algorithm.

Next, we investigated if there are benefits in allowing

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 379

larger superqueries with up to 64, 96, and 128 terms. We
observed that there is a slight benefit in allowing up to
64 terms, but for 96 and 128 terms any further gains are
lost to additional testing time. We also tried to improve
the greedy approach based on overlap by looking further
ahead at the next 2 and 3 sets that can be added, as op-
posed to a strictly one step at a time approach. However,
we did not observe any measurable gains, indicating that
maybe the overlap approach is already close to optimal.
We ran the clustering algorithms on the different selectiv-
ity ranges, introduced in Section 2.3, which showed that
again queries with many results are more expensive to
match (we omit the figures due to space limitations). Fi-
nally, we summarize our results by showing the through-
put rates in documents per second obtained by our vari-
ous matching algorithms in Figure 3.1, on the Excite set
and the combined set of Excite and AltaVista queries.
We see that overall, throughput increases by more than a
factor of 20 when all techniques are combined.

Figure 3.1: Number of documents processed per second
for Excite and for the combined query set. (In overlap-
sq2, the superqueries can have up to 64 terms, using two
unsigned integers.)

4 Related Work

Our work is most closely related to the SIFT project in
[11], which also focuses on keyword queries and uses
an inverted index structure on the queries. In SIFT, the
emphasis is on ranked queries and the queries are repre-
sented in the vector space model using OR semantics.
Thus, users can specify term weights and a relevance
threshold (e.g., cosine measure) that are then used in
identifying matching documents.

A main memory algorithm for matching events against
subscriptions is proposed in [8], where an event is an
attribute/value pair, and a subscription is a conjunction
of (attribute, comparison operator, constant) predicates.

The proposed algorithm also employs a clustering ap-
proach. The created clusters have access predicates,
where an access predicate is defined as a conjunction of
equality predicates. In our approach, we create clusters
with new artificial superqueries. The scenario we con-
sider is different, as the terms in the queries as well as
the content of the incoming documents are keywords.

Another body of related work is in the area of content-
based networking and publish/subscribe communication
systems [1, 6]. In this model, subscribers specify their in-
terests by conjunctive predicates, while sources publish
their messages as a set of attribute/value pairs. The goal
is to efficiently identify and route messages to the inter-
ested subscribers [5, 4]. The forwarding algorithms used
by the routing nodes are related to our query processing
algorithm; see [7]. Previous related work exists in the
database literature about triggers and continuous queries;
in stream processing and XML filtering systems.

5 Acknowledgments

We thank the anonymous Usenix reviewers and our shep-
herd John Reumann for their comments and insights.

References

[1] R. Baldoni, M. Contenti, and A. Virgillito. The evolution of pub-
lish/subscribe communication systems. In Future Directions of
Distributed Computing, volume 2584 of LNCS. Springer, 2003.

[2] B. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[3] A. Broder and M. Mitzenmacher. Network applications of bloom
filters: A survey. In Proc. of the 40th Annual Allerton Conf. on
Communication, Control, and Computing, pages 636–646, 2002.

[4] F. Cao and J. P. Singh. Efficient event routing in content-based
publish-subscribe service networks. In Proc. of IEEE Infocom
Conf., 2004.

[5] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing
scheme for content-based networking. In Proc. of IEEE Infocom
Conf., 2004.

[6] A. Carzaniga and A. L. Wolf. Content-based networking: A new
communication infrastructure. In NSF Workshop on an Infras-
tructure for Mobile and Wireless Systems, 2001.

[7] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. In Proc. of ACM Sigcomm, 2003.

[8] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha. Filtering algorithms and implementation for very fast
publish/subscribe systems. In Proc. of ACM Sigmod Conf., 2001.

[9] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching
for web-based publish/subscribe systems. In Conf. on Coopera-
tive Information Systems, 2000.

[10] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann, second edition, 1999.

[11] T. W. Yan and H. Garcia-Molina. The SIFT information dis-
semination system. ACM Transactions on Database Systems,
24(4):529–565, 1999.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association380

