
Transparent Contribution of Memory

James Cipar Mark D. Corner Emery D. Berger∗

Department of Computer Science
University of Massachusetts-Amherst, Amherst, MA 01003

{jcipar, mcorner, emery}@cs.umass.edu

Abstract
A multitude of research and commercial projects have pro-

posed contributory systems that utilize wasted CPU cycles,
idle memory and free disk space found on end-user machines.
These applications include distributed computation such as sig-
nal processing and protein folding, peer-to-peer backup, and
large-scale distributed storage. While users are generally will-
ing to give up unused CPU cycles, the use of memory by
contributory applications deters participation in such systems.
Contributory applications pollute the machine’s memory, forc-
ing user pages to be evicted to disk. This paging can disrupt
user activity for seconds or even minutes.

In this paper, we describe the design and implementation of
an operating system mechanism to support transparent contri-
bution of memory. A transparent memory manager (TMM)
controls memory usage by contributory applications, ensuring
that users will not notice an increase in the miss rate of their
applications. TMM is able to protect user pages such that page
miss overhead is limited to 1.7%, while donating hundreds of
megabytes of memory.

1 Introduction

A host of recent advances in connectivity, software, and
hardware has given rise to contributory systems for do-
nating unused resources to collections of cooperating
hosts. The most prominent examples of deployed sys-
tems of this type are Folding@home and SETI@home,
that donate excess CPU cycles to science. Other exam-
ples include peer-to-peer file sharing applications that en-
able users to donate outgoing bandwidth and storage and
receive bandwidth and storage in return. The research
community has been even more ambitious, proposing

∗This material is based upon work supported by the National
Science Foundation under CAREER Awards CNS-0447877
and CNS-0347339. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

systems that harness idle disk space to provide large-
scale distributed storage [8, 4, 3]. All of these applica-
tions, be they primarily processing or storage, require a
donation of idle memory, since contributory applications
consume memory for mapped files, heap and stack, as
well as the buffer cache.

Users are only willing to participate in such systems
if contribution is transparent to the performance of their
ordinary activities. Unfortunately, contributory applica-
tions are not at all transparent, leading to significant bar-
riers to widespread participation. Contributing process-
ing and storage leads to memory pollution, forcing the
eviction of the user’s pages to disk. The result is that
users who leave their machines for a period of time can
be forced to wait for seconds or even minutes while their
applications and buffer cache are brought back into phys-
ical memory. In this paper, we show that this figure can
grow to as high as 50% degradation after only a five
minute break.

A number of traditional scheduling techniques and
policies, such as proportional shares [10], can prevent
only some kinds of interference from contributory ser-
vices. For instance, if the owner is not actively using
the machine, a contributory service can use all of the re-
sources of the machine. When the user resumes work,
the resources are reallocated to give fewer resources to
the contributory service. However, while the resource al-
location of a network link or processor can be changed in
microseconds, faster than any user can notice, memory
allocation does not work well with the same strategies.
Due to the reliance on relatively slow disks, the memory
manager can take minutes to page while the user waits
for an unacceptable amount of time.

As a solution to this problem we present the trans-
parent memory manager (TMM), which protects opaque
applications from interference by transparent applica-
tions. Opaque applications are those for which the user
is concerned with performance. Typically these will be
all of the applications run for the user’s own benefit on

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 109



their workstation. Such opaque applications may be in-
teractive, batch, or even background applications, but
users prioritize opaque use over contributory applica-
tions. Transparent applications are those which the user
is running to contribute to a shared pool of resources.
TMM ensures that contributed memory is transparent:
opaque performance is identical whether or not the user
contributes memory.

A key feature is that TMM is dynamic: it auto-
matically adjusts the allocation given to opaque and
transparent applications. This is in sharp contrast with
schemes like Resource Containers that statically parti-
tion resources [5]. Such static allocations suffer from two
problems. First, a static allocation will typically waste
resources due to the lack of statistical multiplexing. If
one class is not using the resource, the other class should
be able to use it, and static allocations prevent this. Sec-
ond, it is unclear how users should choose an appropriate
static allocation—as the workload changes, the best allo-
cation changes drastically. Third, the primary concern of
users is the effect that running a service has on the per-
formance of their computers. It is not possible for a user
to determine how that translates into an allocation.

Another important property of TMM is that it is a
global policy. It considers the behavior of all opaque
applications together when determining the limits, and
limits to total memory use consumed by all transparent
applications. System calls such as madvise can be used
by individual applications to limit their own impact of
system performance, but many transparent applications
running concurrently would have to coordinate their use
of madvise to ensure that their aggregate memory use did
not exceed the limit. Furthermore, the necessary modifi-
cation of application code is contrary to our design goals.

The rest of the paper describes the design in Section 2,
implementation in Section 3, and evaluation in Section 4.
Our evaluation shows that TMM is able to limit the ef-
fect of transparent applications to a 1.7% increase in page
access times while allocating hundreds of megabytes to
transparent applications. An expanded version of this
work, including a mechanism for transparent storage, is
available in a technical report [2].

2 Design

The goal of Transparent Memory Management (TMM)
is to balance memory allocations between classes of ap-
plications. TMM allocates as much memory as it can
to contributory applications, as long as that allocation is
transparent to opaque applications. The insight is that
opaque processes are often not using all of their pages
profitably and can afford to donate some of them to con-
tributory applications. The key is to decide how many
pages to donate and to donate them without interfering

with opaque applications.
Here we provide an overview of TMM: (i) it samples

page accesses with a lightweight method using page ref-
erence bits, (ii) it determines allocations using an approx-
imate Least Recently Used (LRU) histogram of memory
accesses based on the sampled references, (iii) it evicts
opaque pages in an approximate LRU manner to free
memory for transparent applications, (iv) it ages the his-
togram to account for changing workloads, and (v) it fil-
ters out noise in page access to keep the histogram con-
stant even when the user takes a break. We omit the de-
tails of (i) and describe the rest in more detail below.

2.1 Determining Allocations
The key metric in memory allocation is the access time of
virtual memory. As TMM donates memory to transpar-
ent tasks, opaque memory will be paged out, increasing
the access time for opaque pages. Thus TMM determines
the amount of memory to contribute by calculating what
that allocation will do to opaque page access times. The
mean access time (MAT) for a memory page is deter-
mined from the miss ratio (µ), the time to service a miss
(m), and the time to service a hit (h):

MAT = µ · m + (1 − µ) · h. (1)

If the system allows background processes to use
opaque pages, it will increase the miss rate µ of opaque
applications by a factor of β, yielding an increase in
MAT by a factor of:

MAT’
MAT

=
µ · β · m + (1 − µ · β) · h

µ · m + (1 − µ) · h
. (2)

In the case of a page miss, the page must be fetched
from the page’s backing store (either in the file system or
from the virtual memory swap area), which takes a few
milliseconds. On the other hand, a page hit is a simple
memory access, and takes on average just a few tens of
nanoseconds. Because these factors differ by many or-
ders of magnitude, TMM can estimate that the average
page access time is directly proportional to the number
of page misses. Increasing the miss rate by β will make
the ratio in (2) approximately β. This ratio is valid as
long as there are some misses in the system. TMM uses
a value of β = 1.05 by default, assuming that most users
will not notice a 5% degradation in page access times.

2.2 LRU Histogram
Limiting an allocation’s effect to the factor β requires
knowing the relationship between memory allocations
and the miss rate. This relationship can be directly de-
termined using a Least Recently Used (LRU) histogram,

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association110



also known as a page-recency graph [9, 11, 12] or a stack
distance histogram [1]. An LRU histogram allows TMM
to estimate which pages will be in and out of core for any
memory size. Using this histogram, TMM can determine
what the miss rate for opaque processes would be for any
allocation of pages to transparent processes. Building
the histogram depends on sampling page references, and
we use a method based on reference bits [2]. Previous
research shows that these sampling and approximation-
based approaches work well even as many operating sys-
tems use approximations of LRU, such as CLOCK [12],
or 2Q [7].

In an LRU histogram H , the value at position x repre-
sents the number of accesses to position x of the queue.
Thus

∑x
i=0[H(x)] is the number of accesses to all posi-

tions of the histogram up to and including x. This value
is approximately equal to the number of page hits that
would have occurred in a system that had a memory size
of x pages. Subtracting this value from the total number
of accesses in the workload gives the number of misses
for that memory size. It is important to note that the LRU
histogram contains all of the virtual pages in the system.
With only the physical pages, it would not be able to pre-
dict what the miss rate would be given more memory
pages. A sample cumulative histogram and memory al-
location is shown in Figure 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

LRU Position (MB)

H
it

R
at

e

--
--

--
--

--
--

--
--

>

Allocation to 
Transparent Processes

<------------------
Allocation to 

Opaque Processes

Figure 1: This figure demonstrates a sample histogram
and allocation. In this case, the user has a working set
size of approximately 390MB and can afford to donate
the rest of the physical memory.

2.3 Page Eviction
When applications allocate pages, the operating system
will first determine if there are free pages. If there are, it
simply hands them to the process, regardless of the lim-
its determined from the histograms—there is no reason
to deny use of free pages. However, when free pages
run low, the OS will force the eviction of other pages
from the system and must choose between transparent
and opaque pages. The choice depends on the limits de-

termined by the factor β, and the current allocation of
pages in the system. If both opaque and transparent ap-
plications are above their limits, or both are below their
limits, it favors opaque applications and evicts transpar-
ent pages. Otherwise it will evict from whichever class
is above its limit.

2.4 Aging the Histogram
We age the histogram over time using an exponentially
weighted moving average. TMM keeps two histograms:
a permanent histogram that TMM computes limits from,
and a temporary histogram that records only the most re-
cent activity. After some amount of time t, we first divide
the temporary histogram by the total number of accesses
which happened in that aging period so that the values
represent hit to miss ratios. We then add the temporary
data into the permanent histogram using an exponential
weighted moving average function and then recompute
the cumulative histogram. We adopt a common value
α = 1

16 and adjust the time t to match this.
The difficult part lies in tuning t. If TMM is not agile

enough (too stable), rapid increases in opaque working
set sizes will not be captured by the histogram, transpar-
ent applications will be allocated too many pages, and
opaque page access times will suffer. If TMM is not
stable enough (too agile), infrequently-used opaque ap-
plications will not register in the histogram and may be
paged out.

To deal with this, we adopt a policy that is robust but
favors opaque pages. Normally, t is set to 10 minutes
for stability. This value is large enough that applications
used in the last day or two bear enough significance in
the histogram to force the memory limit to not page them
out. However, to remain agile, the system must move the
limit in response to unusually high miss rates. If TMM
notices that the page misses have violated the stated goal,
it adopts a more agile approach, using the most recent
sample as the temporary histogram and immediately av-
eraging it with the stable one. This policy has the disad-
vantage of stealing pages from transparent applications
based on transient opaque use, but it is required to favor
opaque applications over transparent ones.

2.5 Dealing with Noise
The goal in aging the histogram is to detect phase shifts
in user activity over time. When the user is not ac-
tively using the machine, the histogram should remain
static, directing TMM to preserve the opaque pages in the
cache. However, we have observed that even when not
actively using the machine, our Linux installation still in-
curs many page references from opaque applications. If
left long enough, TMM misinterprets these accesses as

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 111



shifts in user behavior and will change the allocation of
pages to opaque applications. As there are only a small
number of these pages, when the user is not using the
system, it appears that the working set has very high lo-
cality. TMM will act improperly, allowing transparent
allocations to consume a large number of pages in the
system.

To avoid this, TMM filters its page samples. To de-
cide whether or not to age the histogram after an aging
period of t seconds, we only consider the opaque page
accesses that have touched the LRU queue at a point far-
ther than 10% of the total. If there were more than ten
such accesses per second, we age the histogram. This
policy also implies that we need to guarantee a minimum
of 10% of the system’s memory to opaque application,
a reasonable assumption. We found that the idle opaque
activity rarely touches pages beyond the 10% threshold.
We observed that with filtering, TMM never ages the his-
togram during periods of disuse.

3 Implementation

TMM requires a number of kernel modifications as well
as several user-space tools 1. Inside the kernel, we imple-
mented tracing methods that periodically mark pages as
unreferenced, and then later test them for MMU-marked
references. The list of page references and recent evic-
tions are passed through a /dev interface. A user space
tool written in C++ reads these values and tracks the LRU
queue. This tool computes the transparent and opaque
limits and passes the limits back into the kernel through
a /sys interface.

Additionally, we have augmented the Linux evic-
tion policy kernel with our LRU-directed policy which
enforces memory limits. Another user-space tool,
maketransparent, allows users to mark processes
as transparent. All pages that the transparent processes
use are then limited using TMM. Pages that are shared
between opaque and transparent pages are marked as
opaque pages, but to ignore noise caused by transparent
process access, hits to those pages are not traced.

4 Evaluation

In evaluating TMM, we sought to answer the following
questions: (i) How well does TMM prevent transpar-
ent processes from paging opaque memory out, and how
does TMM’s dynamic technique compare to static allo-
cation? (ii) What is the transient performance of TMM?
(iii) What is the overhead in using TMM?

The primary function of TMM is to ensure that con-
tributory processes that use memory do not interfere with
the user’s applications. To show TMM’s benefits, we

simulate typical user behavior: we use several applica-
tions, take a coffee break for five minutes, and return to
using similar applications. During the coffee break, the
machines runs a contributory application. As a contrib-
utory application, we use a program called POV-Ray, a
widely-used distributed rendering application. The ren-
dering benchmark we used with POV-Ray caused it to
have a working set size greater than the physical mem-
ory on our test platform. Most contributory applica-
tions do not use memory this aggressively; POV-Ray
could be considered a ”worst-case” contributory appli-
cation. For this experiment, we compare five systems
with three different sets of opaque applications. The
five systems are as follows: vanilla Linux, TMM with
three different static allocations for opaque applications
(25%, 50%, 75% of the physical memory), and TMM
using its histogram-based limiting method. For vanilla
Linux, we present results with and without the contribu-
tory application. The three different sets of applications
represent different user activities with different working
set sizes: Small (Mozilla), Medium (Mozilla, OpenOf-
fice, and KView), and Large (Gnuplot with very large
data set). We track the average and maximum number
of page misses per second recorded in the first minute
after the user comes back from break and present the re-
sults in Figures 2 and 3. Note that we rebooted between
each trial, and we only monitored page misses incurred
by opaque processes.

0

50

100

150

200

250

Small Medium Large

Working Set

Fa
ul

ts
/s

ec
on

d

Linux w/o Contribution
Linux w/ Contribution
TMM
25% Static Opaque
50% Static Opaque
75% Static Opaque

Figure 2: This figure shows the average page faults/sec
in the first minute after resuming work. TMM performs
much better than an unmodified system, and better than
static limits, except for a very high static limit.

The first thing to note is that with a vanilla Linux
kernel, the system running the contributory application
performs very poorly, incurring as many as 190 page
faults/sec on average. Assuming that the application is
page fault limited, and given an average miss latency of
2.5ms, these faults cause a 50% slow down in the ex-
ecution of the application. Qualitatively, we have ob-
served that this is highly disruptive to the user. Second,

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association112



0

50

100

150

200

250

300

350

400

450

500

Small Medium Large

Working Set

M
is

se
s/

Se
co

nd

Linux w/o Contribution
Linux w/ Contribution
TMM
25% Static Opaque
50% Static Opaque
75% Static Opaque

Figure 3: This figure shows the maximum page faults/sec
in the first minute after resuming work. Short term viola-
tions of the target 5% slowdown are possible, but TMM
performs better than unmodified and static systems.

for each static limit, there is a workload that performs
worse than TMM, except for the 75% limit. In that case,
the static limit performs well. However, we could have
easily constructed a working set size larger than 75%,
and TMM would have produced far fewer page misses
than the static allocations.

Most importantly, the performance of TMM is com-
parable to the performance of the vanilla Linux sys-
tem without contribution. The largest number of av-
erage page faults that TMM incurs is for the medium
size working set, at 6.8 page faults/sec. By the same
calculation used above, this faulting rate causes a 1.7%
slow down in the opaque applications, well within our
goal of 5%. This demonstrates TMM’s ability to do-
nate memory transparently. The few pages that TMM
does evict could be recovered by making Linux’s page
eviction more LRU-like. As shown in Figure 3, short-
term violations of our goal are possible—TMM statis-
tically guarantees average performance over long peri-
ods. Nonetheless, TMM provides better short-term per-
formance than the static limits (except 75%), and much
better performance than unmodified Linux. For the large
working set, even Linux without contribution does incur
some page faults.

To measure the actual amount of memory that TMM
donates to transparent applications, we ran the interactive
phase of our benchmarks, waited for the limit to stabilize,
and recorded the transparent limits. We also recorded
the amount of memory donated under the static limits.
The static limits apply to the limit on opaque memory
and thus transparent memory contribution also depends
on consumption by the operating system, thus a single
static limit donates slightly different amounts of memory
under different workloads. The results are presented in
Figure 4.

When comparing the amount of memory donated by
each system, we show that TMM is conservative in the

0

50

100

150

200

250

300

350

Small Medium Large

Working Set

M
em

or
y

L
im

it
(M

B
)

TMM

Static-25%

Static-50%

Static-75%

Figure 4: This figure shows the amount of memory in
MB donated to transparent processes.

amount of memory it donates, favoring opaque page per-
formance over producing a tight limit. Nonetheless, by
considering both Figures 2 and 4, the results show that
there is a working set for which the static limits fail to
both preserve performance and contribute the maximum
amount of memory. TMM succeeds in achieving both of
these goals for every working set.

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Time (s)

Si
ze

(M
B

)
Opaque Limit

Opaque Size

Transparent Limit

Transparent Size

Figure 5: This figure shows a sample timeline of limits
and utilization of the TMM system.

The next experiment demonstrates how TMM behaves
over time. We conduct an experiment similar to the pre-
vious one and graph the memory use and memory limits
that TMM sets. A timeline is shown in Figure 5. At the
beginning of the timeline, the set of opaque processes
is using 320 MB of memory and there are no transpar-
ent applications in the system. TMM has set a limit for
both opaque and transparent processes, but as there is
no memory pressure in the system, the memory man-
ager lets opaque processes use more memory than the
limit. Note that at this time, the sum of the transparent
and opaque limits is far less than the physical memory
of the machine (512 MB), the rest of the memory is in
free pages. At 30 seconds we start a transparent process
that quickly consumes a large amount of the free mem-
ory. TMM now sees a larger pool to divide and increases
the transparent limit. TMM does not adjust the opaque
limit as the user has not changed behavior and does not

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 113



need any more memory than the limit allows. The trans-
parent process is now causing memory pressure in the
system, forcing pages out. The number of opaque pages
is over its limit so it loses them to the evictor. The graph
exhibits some steady state error. We have tracked this to
the zoned memory system that Linux uses, something we
will correct in a redesigned evictor.

Lastly, it is important to note the CPU and memory
overhead of TMM. TMM consumes approximately 6%
of the CPU during startup and less than 2% once it has
established an accurate LRU queue. This CPU time is
primarily due to running TMM in user space requiring
many user-kernel crossings to exchange page references
and limits. TMM uses approximately 64MB of mem-
ory. This large memory overhead is due to duplicating
the kernel’s LRU list in user-space, another straightfor-
ward optimization. A kernel implementation of TMM
will reduce both of these overheads significantly.

5 Related Work

The CacheCOW system [6] generally defines the prob-
lem of providing QoS in a buffer cache. CacheCOW con-
tains some elements of TMM, including providing dif-
ferent hit rates to different classes of applications, but
targets Internet servers in a theoretic and simulation con-
text. CacheCOW does not address many of the practical
issues in using, gathering, and aging LRU histograms.

Resource Containers provide static allocations to re-
sources such as physical memory [5] to prevent interfer-
ence between different classes of applications. However,
such static allocations are inherently ineffective and do
not determine what to set the allocations to. We have
shown in our evaluation the benefits of using a dynamic
scheme, such as TMM, over static allocations. It is possi-
ble to adjust these limits at runtime, and therefore would
be possible to use the memory tracing and LRU analy-
sis techniques of TMM to adjust resource container lim-
its, or to dynamically adjust other systems which control
memory use.

LRU histograms [12], or page recency-reference
graphs [11, 9], are useful in many contexts such as mem-
ory allocation and virtual memory compression and are
essential to TMM. Some optimizations to gathering his-
tograms have been implemented that rely on page protec-
tion but lower the overhead to 7-10% [13]. In this paper,
we use an adapted form of tracing that avoids the over-
head of handling relatively expensive page faults [2].

6 Conclusions

In this paper we present an OS mechanism, the Transpar-
ent Memory Manager (TMM), for supporting transparent
contribution of memory. This system prevents contribu-

tory applications from interfering with the performance
of a user’s applications, while maximizing the benefits
of harnessing idle resources. TMM protects the user’s
pages from unwarranted eviction and limits the impact
on the performance of user applications to less than 5%,
while donating hundreds of megabytes of idle memory.

Notes
1 Downloadable from: http://prisms.cs.umass.edu/software.html

References
[1] G. Almasi, C. Cascaval, and D. A. Padua. Calculating stack dis-

tances efficiently. In The International Symposium on Memory
Management (ISMM 2002), Berlin, Germany, June 2002.

[2] J. Cipar, M. D. Corner, and E. D. Berger. Transparent contribution
of storage and memory. Technical Report 06-05, University of
Massachusetts-Amherst, Amerst, MA, January 2006.

[3] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pas-
tiche: making backup cheap and easy. SIGOPS Oper. Syst. Rev.,
36(SI):285–298, 2002.

[4] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Mor-
ris, and Ion Stoica. Wide-area cooperative storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada, Oc-
tober 2001.

[5] P. Druschel G. Banga and J. C. Mogul. Resource containers: A
new facility for resource management in server systems. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, Louisiana, February 1999.

[6] P. Goyal, D. Jadav, D. Modha, and R. Tewari. Cachecow: Qos
for storage system caches. In International Workshop on Quality
of Service (IWQoS), Monterey, CA, June 2003.

[7] Theodore Johnson and Dennis Shasha. 2Q: a low overhead high
performance buffer management replacement algorithm. In Pro-
ceedings of the Twentieth International Conference on Very Large
Databases, pages 439–450, Santiago, Chile, 1994.

[8] A. Rowstron and P. Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In
Proceedings of the 18th SOSP (SOSP ’01), Chateau Lake Louise,
Banff, Canada, October 2001.

[9] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. The EELRU
adaptive replacement algorithm. Performance Evaluation, 53(2),
July 2003.

[10] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexi-
ble proportional-share resource management. In Proceedings of
the 1st USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Monterey, CA, November 1994.

[11] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for
compressed caching in virtual memory systems. In Proceedings
of The 1999 USENIX Annual Technical Conference, pages 101–
116, Monterey, CA, June 1999.

[12] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
Automatic heap sizing: Taking real memory into account. In
Proceedings of the Third International Symposium on Memory
Management (ISMM), Vancouver, October 2004.

[13] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar. Dynamically tracking miss-ratio-curve for mem-
ory management. In The Proceedings of the Eleventh Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’04), October 2004.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association114




