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Abstract

Static linking has many advantages over dynamic
linking. It is simple to understand, implement, and
use. It ensures that an executable is self-contained
and does not depend on a particular set of libraries
during execution. As a consequence, the user ex-
ecutes exactly the same executable image as was
tested by the developer, diminishing the risk that
the user’s environment will affect correct behavior.

The major disadvantages of static linking are
increases in the memory required to run an exe-
cutable, network bandwidth to transfer it, and disk
space to store it.

In this paper we describe the Slinky system that
uses digest-based sharing to combine the simplic-
ity of static linking with the space savings of dy-
namic linking: although Slinky executables are
completely self-contained, minimal performance and
disk-space penalties are incurred if two executables
use the same library. We have developed a Slinky

prototype that consists of tools for adding digests
to executables, a slight modification of the Linux
kernel to use those digests to share code pages, and
tools for transferring files between machines based
on digests of their contents. Results show that our
prototype has no measurable performance decrease
relative to dynamic linking, a comparable mem-
ory footprint, a 20% storage space increase, and a
34% increase in the network bandwidth required to
transfer the packages. We believe that Slinky obvi-
ates many of the justifications for dynamic linking,
making static linking a superior technology for soft-
ware organization and distribution.

1 Introduction

Most näıve users’ frustrations with computers can
be summarized by the following two statements: “I
installed this new program and it just didn’t work!”
or “I downloaded a cool new game and suddenly this

other program I’ve been using for months stopped
working!” In many cases these problems can be
traced back to missing, out-of-date, or incompati-
ble dynamic libraries on the user’s computer. While
this problem may occur in any system that supports
dynamically linked libraries, in the Windows com-
munity it is affectionately known as DLL Hell [12].

In this paper we will argue — against conven-
tional wisdom — that in most cases dynamic link-
ing should be abandoned in favor of static linking.
Since static linking ensures that programs are self-
contained, users and developers can be assured that
a program that was compiled, linked, and tested on
the developer’s machine will run unadulterated on
the user’s machine. From a quality assurance and
release management point of view this has tremen-
dous advantages: since a single, self-contained, bi-
nary image is being shipped, little attention must
be made to potential interference with existing soft-
ware on the user’s machine. From a user’s point
of view there is no chance of having to download
additional libraries to make the new program work.

A major argument against static linking is the
size of the resulting executables. We believe that
this will likely be offset by ever-increasing improve-
ments in disk-space, CPU speed, and main mem-
ory size. Nonetheless, this paper will show that the
cost of static linking, in terms of file-system stor-
age, network bandwidth, and run-time memory us-
age, can be largely eliminated through minor mod-
ifications to the operating system kernel and some
system software.

Our basic technique is digest-based sharing, in
which message digests identify identical chunks of
data that can be shared between executables. Di-
gests ensure that a particular chunk of data is only
stored once in memory or on disk, and only trans-
ported once over the network. This sharing happens
without intervention by the software developer or
system administrator; Slinky automatically finds
and shares identical chunks of different executables.
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1.1 Slinky

Slinky is a relatively simple system that provides
the space-saving benefits of dynamic linking with-
out the complexities. There are four components to
Slinky:

1. The slink program creates a statically-linked
executable from one that is dynamically linked.
It does so by linking in the dynamic libraries
on which the program depends, resolving ref-
erences, and performing necessary page align-
ment.

2. The digest program adds SHA-1 digests of the
code pages to the statically-linked executable
produced by slink.

3. A modified Linux kernel shares code pages be-
tween processes based on the digests added by
digest. During a page fault the digest of the
faulting page is used to share an in-memory
copy of the page, if one exists.

4. The ckget program downloads software pack-
ages based on the digests of variable-sized
chunks. Chunk boundaries are computed using
Rabin fingerprints. Each unique chunk is only
downloaded once, greatly reducing the network
bandwidth required to transfer statically-linked
executables.

What is particularly attractive about Slinky is its
simplicity. The slink program consists of 1000 lines
of code, digest 200 lines, the kernel modifications
100 lines, and ckget 100 lines.

1.2 Background

“Linking” refers to combining a program and its li-
braries into a single executable and resolving the
symbolic names of variables and functions into their
resulting addresses. Generally speaking, static link-
ing refers to doing this process at link-time during
program development, and incorporating into each
executable the libraries it needs. Dynamic linking
refers to deferring linking until the executable is ac-
tually run. An executable simply contains refer-
ences to the libraries it uses, rather than copies of
the libraries, dramatically reducing its size. As a
result, only a single copy of each library must be
stored on disk. Dynamic linking also makes it pos-
sible for changes to a library to propagate automat-
ically to the executables that use it, since they will
be linked against the new version of the library the
next time they are run.

Dynamic linking is typically used in conjunction
with shared libraries, which are libraries whose in-
memory images can be shared between multiple pro-
cesses. The combination of dynamic linking and
shared libraries ensures that there is only one copy
of a shared library on disk and in memory, regard-
less of how many executables make use of it.

Dynamic linking is currently the dominant prac-
tice, but this was not always the case. Early
operating systems used static linking. Systems
such as Multics [3] soon introduced dynamic link-
ing as a way of saving storage and memory space,
and increasing flexibility. The resulting complexity
was problematic, and subsequent systems such as
Unix [16] went back to static linking because of its
simplicity. The pendulum has since swung the other
way and dynamic linking has become the standard
practice in Unix and Linux.

1.3 DLL Hell

Although dynamic linking is the standard practice,
it introduces a host of complexities that static link-
ing does not have. In short, running a dynamically
linked executable depends on having the proper ver-
sions of the proper libraries installed in the proper
locations on the computer. Tools have been devel-
oped to handle this complexity, but users are all too
familiar with the “DLL Hell” [12] that can occur in
ensuring that all library dependencies are met, espe-
cially when different executables depend on different
versions of the same library.

DLL Hell commonly occurred in early versions of
the Windows operating when program installation
caused an older version of a library to replace an
already installed newer one. Programs that relied
on the newer version then stopped working — often
without apparent reason. Unix and newer versions
of Windows fix this problem using complex version-
ing schemes in which the library file name contains
the version number. The numbering scheme typi-
cally allows for distinction between compatible and
incompatible library versions. However, DLL Hell
can still occur if, for example, the user makes a mi-
nor change to a library search PATH variable, or com-
patible library versions turn out not to be. Some-
times programs depend on undocumented features
(or even bugs) in libraries, making it difficult to de-
termine when two versions are compatible. No mat-
ter what the cause, DLL Hell can cause a previously
working program to fail.
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1.4 Anecdotes

It is easy to argue that the “right solution” to the
DLL Hell problem is that “every package maintainer
should just make sure that their package always has
the correct set of dependencies!”, perhaps by using
dependency management tools. However, it appears
that dependency problems still occur even in the
most well-designed package management systems,
such as Debian’s apt [2]. Below we present some
anecdotal evidence of this.

Consider, first, the following instructions from the
Debian quick reference [1] guide:

Package dependency problems may occur

when upgrading in unstable/testing.

Most of the time, this is because a

package that will be upgraded has a

new dependency that isn’t met. These

problems are fixed by using

# apt-get dist-upgrade

If this does not work, then repeat

one of the following until the problem

resolves itself [sic]:

# apt-get upgrade -f

... Some really broken upgrade

scripts may cause persistent trouble.

Most Debian users will install packages from the
unstable distribution, since the stable distribu-
tion is out-of-date.

Similarly, searching Google with the query
"apt-get dependency problem", produces many
hits of the following kind:

igor> I am trying to upgrade my potato

igor> distro to get the latest KDE. after I

igor> type apt-get update && apt-get

igor> upgrade, here is my error message:

igor> ---------------------------------

igor> ...

igor> Sorry, but the following packages

igor> have unmet dependencies:

igor> debianutils: PreDepends: libc6

igor> (>= 2.1.97) but 2.1.3-18 is to

igor> be installed

igor> E: Internal Error, InstallPackages

igor> was called with broken packages!

igor> ----------------------------------

briand> I’m getting everything from the

briand> site you are using and everything

briand> is OK. This is very odd. ...

Ardour is a 200,000 LOC multi-track recording
tool for Linux, which relies on many external li-
braries for everything from GUI to audio format
conversion. Its author, Paul Davis, writes [4]:

I spent a year fielding endless

reports from people about crashes,

strange backtraces and the like before

giving up and switching to static

linking. Dynamic linking just doesn’t

work reliably enough.

I will firmly and publically denounce

any packaging of Ardour that use

dynamic linking to any C++ library

except (and possibly including)

libstdc++.

1.5 Contributions

In general, package maintenance and installation are
difficult problems. A software distribution that ap-
pears to work fine on the package maintainer’s ma-
chine may break for any number of reasons on the
user’s machine. The inherent complexity of dynamic
library versioning coupled with the fact that an in-
stallation package has to work under any number of
operating system versions and on computers with
any number of other packages installed, almost in-
variably invites a visit from Murphy’s famous law.

We have developed a system called Slinky that
combines the advantages of static and dynamic link-
ing without the disadvantages of either. In our sys-
tem, executables are statically linked (and hence
avoid the complexities and frailties of dynamically
linked programs) but can be executed, transported,
and stored as efficiently as their dynamic counter-
parts.

The key insight is that dynamic linking saves
space by explicitly sharing libraries stored in sepa-
rate files, and this introduces much of the complex-
ity. Slinky, instead, relies on implicit sharing of
identical chunks of data, which we call digest-based
sharing. In this scheme chunks of data are identi-
fied by a message digest, which is a cryptographi-
cally secure hash such as SHA-1 [19]. Digest-based
sharing allows Slinky to store a single copy of each
data chunk in memory and on disk, regardless of
how many executables share that data. The digests
are also used to transfer only a single copy of data
across the network. This technique allows Slinky

to approach the space savings of dynamic linking
without the complexity.

The rest of the paper is organized as follows. In
Section 2 we compare static and dynamic linking.
In Section 3 we describe the implementation of the
Slinky system. In Section 4 we show that empiri-
cally our system makes static linking as efficient as
dynamic linking. In Section 5 we discuss related
work. In Section 6, finally, we summarize our re-
sults.
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2 Linking

High-level languages use symbolic names for vari-
ables and functions such as foo and read(). These
symbols must be converted into the low-level ad-
dresses understood by a computer through a process
called linking or link editing [9]. Generally, linking
involves assigning data and instructions locations in
the executable’s address space, determining the re-
sulting addresses for all symbols, and resolving each
symbol reference by replacing it with the symbol’s
address. This process is somewhat complicated by
libraries, which are files containing commonly-used
variables and functions. There are many linking
variations, but they fall into two major categories,
static linking and dynamic linking.

2.1 Static Linking

Static linking is done at link-time, which is dur-
ing program development. The developer specifies
the libraries on which a executable depends, and
where to find them. A tool called the linker uses
this information to find the proper libraries and re-
solve the symbols. The linker produces a static exe-
cutable with no unresolved symbols, making it self-
contained with respect to libraries.

A statically-linked executable may be self-
contained, but it contains portions of each library to
which it is linked. For large, popular libraries, such
as the C library, the amount of duplicate content
can be significant. This means that the executables
require more disk storage, memory space, and net-
work bandwidth than if the duplicate content were
eliminated.

Statically linking executables also makes it dif-
ficult to update libraries. A statically-linked exe-
cutable can only take advantage of an updated li-
brary if it is relinked. That means that the devel-
oper must get a new copy of the library, relink the
executable and verify that it works correctly with
the new library, then redistribute it to the users.
These drawbacks with statically-linked executables
led to the development of dynamic linking.

2.2 Dynamic Linking

Dynamic linking solves these problems by deferring
symbol resolution until the executable is run (run-
time), and by using a special library format (called
a dynamic library or shared library) that allows pro-
cesses to share a single copy of a library in memory.
At link-time all the linker does is store the names
of the necessary libraries in the executable. When

the executable runs, a program called a dynamic
linker/loader reads the library names from the ex-
ecutable and finds the proper files using a list of
directories specified by a library search path. Since
the libraries aren’t linked until run-time, the exe-
cutable may run with different library versions than
were used during development. This is useful for
updating a library, because it means the executa-
bles that are linked to that library will use the new
version the next time they are run.

While the “instant update” feature of dynamic
linking appears useful — it allows us to fix a bug in
a library, ship that library, and instantly all executa-
bles will make use of the new version — it can also
have dangerous consequences. There is a high risk of
programs failing in unpredictable ways when a new
version of a library is installed. Even though two
versions of a library may have compatible interfaces
and specifications, programs may depend on undoc-
umented side-effects, underspecified portions of the
interface, or other features of the library, includ-
ing bugs. In addition, if a library bug was known to
the developer he may have devised a “work-around”,
possibly in a way no longer compatible with the bug
fix. In general, it is impossible for a library devel-
oper to determine when two versions are compatible
since the dependencies on the library’s behavior are
not known. We believe that any change to a library
(particularly one that has security implications) re-
quires complete regression tests to be re-run for the
programs that use the library.

Dynamic linking also complicates software re-
moval. Care must be taken to ensure that a dy-
namic library is no longer in use before deleting it,
otherwise executables will mysteriously fail. On the
other hand, deleting executables can leave unused
dynamic libraries scattered around the system. Ei-
ther way, deleting a dynamically-linked executable
isn’t as simple as deleting the executable file itself.

2.3 Code-Sharing Techniques

Systems that use dynamic linking typically share a
single in-memory copy of a dynamic library among
all processes that are linked to it. It may seem triv-
ial to share a single copy, but keep in mind that a
library will itself contain symbol references. Since
each executable is linked and run independently, a
symbol may have a different address in different pro-
cesses, which means that shared library code cannot
contain absolute addresses.

The solution is position-independent code, which
is code that only contains relative addresses. Ab-
solute addresses are stored in a per-process indi-
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rection table. Position-independent code expresses
all addresses as relative offsets from a register. A
dedicated register holds the base address of the in-
direction table, and the code accesses the symbol
addresses stored in the table using a relative off-
set from the base register. The offsets are the same
across all processes, but the registers and indirection
tables are not. Since the code does not contain any
absolute addresses it can be shared between pro-
cesses. This is somewhat complex and inefficient,
but it allows multiple processes to share a single
copy of the library code.

2.4 Package Management

The additional flexibility dynamic linking provides
also introduces a tremendous amount of complexity.
First, in order to run an executable the libraries on
which it depends must be installed in the proper lo-
cations in the dynamic linker/loader’s library search
path. This means that to run an executable a user
needs both the executable and the libraries on which
it depends, and must ensure that the dynamic linker
is configured such that the libraries are on the search
path. Additionally, the versions of those libraries
must be compatible with the version that was used
to develop the executable. If they are not, then the
executable will either fail to run or produce erro-
neous results.

To manage this complexity, package systems such
as RedHat’s rpm [17] and Debian’s dpkg [5] were de-
veloped. A package contains everything necessary
to install an executable or library, including a list of
the packages on which it depends. For an executable
these other packages include the dynamic libraries
it needs. A sophisticated versioning scheme allows
a library package to be updated with a compatible
version. For example, the major number of a li-
brary differentiates incompatible versions, while the
minor number differentiates compatible versions. In
this way a package can express its dependency on a
compatible version of another package. The version-
ing system must also extend to the library names,
so that multiple versions of the same library can
coexist on the same system.

The basic package mechanism expresses inter-
package dependencies, but it does nothing to resolve
those dependencies. Suppose a developer sends a
user a package that depends on another package
that the user does not have. The user is now forced
to ask for the additional package, or search the In-
ternet looking for the needed package. More re-
cently, the user could employ sophisticated tools
such as RedHat’s up2date [21] or Debian’s apt [2]

to fetch and install the desired packages from on-line
repositories.

2.5 Security Issues

Dynamic linking creates potential security holes be-
cause of the dependencies between executables and
the libraries they need. First, an exploit in a dy-
namic library affects every executable that uses that
library. This makes dynamic libraries particularly
good targets for attack. Second, an exploit in the
dynamic linker/loader affects every dynamically-
linked executable. Third, maliciously changing the
library search path can cause the dynamic linker-
loader to load a subverted library. Fourth, when us-
ing a package tool such as up2date or apt, care must
be taken to ensure the authenticity and integrity of
the downloaded packages. These potential security
holes must be weighed against the oft-stated benefit
that dynamic linking allows for swift propagation of
security fixes.

3 Slinky

Slinky is a system that uses message digests to
share data between executables, rather than explic-
itly sharing libraries. Chunks of data are identified
by their digest, and Slinky stores a single copy of
each chunk in memory and disk. Slinky uses SHA-
1 [19] to compute digests. SHA-1 is a hash algorithm
that produces a 160-bit value from a chunk of data.
SHA-1 is cryptographically secure, meaning (among
other things) that although it is relatively easy to
compute the hash of a chunk of data, it is computa-
tionally infeasible to compute a chunk of data that
has a given hash. There are no known instances of
two chunks of data having the same SHA-1 hash,
and no known method of creating two chunks that
have the same hash. This means that for all prac-
tical purposes chunks of data with the same SHA-
1 hash are identical. Although there is some con-
troversy surrounding the use of digests to identify
data [7], it is generally accepted that a properly-
designed digest function such as SHA-1 has a negli-
gible chance of hashing two different chunks to the
same value. It is much more likely that a hardware
or software failure will corrupt a chunk’s content.

Depending on one’s level of paranoia with respect
to the possibility of hash collisions, different hashing
algorithms could be used. The increased costs come
in both time and space and depend on the size of
the hash (128 bits for MD5; 160 bits for SHA-1;
256, 384, or 512 bits for newer members of the SHA
family) and the number of rounds and complexity
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x.c

main () {

}

#include <stdio>

   print("\n");

printf(){}

libc.so

SYMBOLS

scanf(){}

main () {

}

#include <stdio>

y.c

   scanf();
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slink

libc.so

SYMBOLS

call scanf

run

libc.so

SYMBOLS

y

call scanf

SYMBOLS

call scanf digest

gcc,ld

call printf

SYMBOLS
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libc.so

SYMBOLS

call printf
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SYMBOLS

x

run

gcc,ld

y y

xx

page

0x66
0x77p3

p4

page

p2
0x55p1
0x66

SHA−1

SHA−1

page

PROCESS TABLE

PAGE CACHE

p1 p2/p4 p3

GLOBAL DIGEST TABLE

Figure 1: Sharing memory pages based on digest. Only one copy of each page exists in memory (page
cache). The per-process digest table contains the page digests of the process, and is initialized from a table
in the executable. The global digest table contains the digest of every page in memory.

of computation. Schneier [18, p. 456] shows, for
example, that MD5 is roughly 2.3 times faster than
SHA-1, while SHA-1 is less prone to collisions due
to its larger hash-size.

Digests allow Slinky to store a single copy of
each chunk in memory and on disk. In addition,
when transferring an executable over the network
only those chunks that do not already exist on the
receiving end need be sent. The use of digests al-
lows Slinky to share data between executables effi-
ciently, without introducing the complexities of dy-
namic linking. In addition, Slinky avoids the secu-
rity holes endemic to dynamic linking.

The following sections describe how Slinky uses
digests to share data in memory and on disk, as well
as to reduce the amount of data required to trans-
fer an executable over the network. We developed a
Slinky prototype that uses digests to share mem-
ory pages and eliminate redundant network trans-
fers. Sharing disk space based on digest is currently
work-in-progress; we describe how Slinky will pro-

vide that functionality, although it has not yet been
implemented.

3.1 Sharing Memory Pages

Slinky shares pages between processes by comput-
ing the digest of each code page, and sharing pages
that have the same digest. If a process modifies a
page, then the page’s digest changes, and the page
can no longer be shared with other processes using
the old version of the page. One way to support this
is to share the pages copy-on-write. When a pro-
cess modifies a page it gets its own copy. Slinky

employs the simpler approach of only sharing read-
only code pages. Slinky assumes that data pages
are likely to be written, and therefore unlikely to be
shared anyway.

The current Slinky prototype is Linux-based,
and consists of three components that allow pro-
cesses to share pages based on digests. The first is
a linker called slink that converts a dynamically-
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linked executable into a statically-linked executable.
The second is a tool called digest that computes
the digest of each code page in an executable. The
digests are stored in special sections in the exe-
cutable. The third component is a set of Linux
kernel modifications that allow processes to share
pages with identical digests.

Figure 1 illustrates how Slinky functions. A
source file x.c that makes use of the C library is
compiled into a dynamically-linked executable file
x. Our program slink links x with the dynamic
library libc.so, copying its contents into x. The
digest program adds a new ELF section that maps
pages to their digests. The process is repeated for
a second example program y.c. When x is run its
pages will be loaded, along with their digests. When
y is run, page p4 will not be loaded since a page
with the same digest already exists (page p2 from
x’s copy of libc.so).

3.1.1 Slink

Shared libraries require position-independent code
to allow sharing of code pages between processes.
Slinky also requires position-independent code be-
cause static linking may cause the same library
to appear at different addresses in different exe-
cutables. Therefore, Slinky must statically link
executables with shared libraries, since those li-
braries contain position-independent code and tra-
ditional static libraries do not. Slink is a program
that does just that — it converts a dynamically-
linked executable into a statically-linked executable
by linking in the shared libraries on which the
dynamically-linked executable depends. The re-
sulting executable is statically linked, but contains
position-independent code from the shared libraries.
Slink consists of about 830 lines of C and 160 lines
of shell script.

The input to slink is a dynamically-linked ex-
ecutable in ELF format [10]. Slink uses the
prelink [13] tool to find the libraries on which the
executable depends, organize them in the process’s
address space, and resolve symbols. Slink then
combines the prelinked executable and its libraries
into a statically-linked ELF file, aligning addresses
properly, performing some relocations that prelink
cannot do, and removing data structures related to
dynamic linking that are no longer needed.

Although position-independent code is necessary
for sharing library pages between executables, it is
not sufficient. If the same library is linked into dif-
ferent executables at different page alignments, the
page contents will differ and therefore cannot be

shared. Fortunately, the page alignment is speci-
fied in the library ELF file, ensuring that all copies
of the library are linked with the same alignment.

3.1.2 Digest

Digest is a tool that takes the output from slink

and inserts the digests for each code page. For every
executable read-only ELF segment, digest com-
putes the SHA-1 hash of each page in that segment
and stores them in a new ELF section. This sec-
tion is indexed by page offset within the associated
segment, and is used by the kernel to share pages
between processes. A Linux page is 4KB, and the
digest is 20 bytes, so the digests introduce an over-
head of 20/4096 or less than 0.5% per code page.
Digest consists of about 200 lines of C code.

3.1.3 Kernel Modifications

Slinky requires kernel modifications so that the
loader and page fault handler make use of the di-
gests inserted by digest to share pages between
processes. These modifications consist of about 100
lines of C. When a program is loaded, the loader
reads the digests from the file and inserts them in
a per-process digest table (PDT) that maps page
number to digest. This table is used during a page
fault to determine the digest of the faulting page.

We also modified the Linux 2.4.21 kernel to main-
tain a global digest table (GDT) that contains the
digest of every code page currently in memory. The
GDT is used during a page fault to determine if
there is already a copy of the faulting page in mem-
ory. If not, the page is read into memory from disk
and an entry added to the GDT. Otherwise the ref-
erence count for the page is simply incremented.
The page table for the process is then updated to
refer to the page, and the process resumes execu-
tion. When a process exits the reference count for
each of its in-memory pages is decremented; a page
is removed from the GDT when its reference count
drops to zero.

3.1.4 Security

Slinky shares pages based on the digests stored
in executables, so the system correctness and se-
curity depend on those digests being correct. A
malicious user could modify a digest or a page so
that the digest no longer corresponds to the page’s
contents, potentially causing executables to use the
wrong pages. Slinky avoids this problem by veri-
fying the digest of each text page when it is brought
into memory and before it is added to the GDT.
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This slows down the the handling of page faults that
result in a page being read from disk, but we show
in Section 4.1.2 that this overhead is negligible when
compared to the cost of the disk access. Once a page
is added to the GDT, Slinky relies on the memory
protection hardware to ensure that processes cannot
modify the read-only text page.

Figure 2 shows pseudo-code for the modified page
fault handler that is responsible for searching the
GDT for desired pages, and adding missing pages
to the GDT when they are read from disk.

3.2 Sharing Disk Space

Digests can also reduce the disk space required to
store statically-linked executables. One option is to
store data based on the per-page digests stored in
the executable. Although this will reduce the space
required, it is possible to do better. This is because
the digests only refer to the executable’s code pages,
and the virtual memory system requires those pages
be fixed-size and aligned within the file. Additional
sharing is possible if arbitrary-size chunks of un-
aligned data are considered.

Slinky shares disk space between executables by
breaking them into variable-size chunks using Ra-
bin’s fingerprinting algorithm [15], and then com-
puting the digests of the chunks. Only one copy
of each unique chunk is stored on disk. The tech-
nique is based on that used in the Low-Bandwidth
File system (LBFS) [11]. A small window is moved
across the data and the Rabin fingerprint of the
window is computed. If the low-order N bits of
the fingerprint match a pre-defined value, a chunk
boundary is declared. The sliding window technique
ensures that the effects of insertions or deletions are
localized. If, for example, one file differs from an-
other only by missing some bytes at the beginning,
the sliding window approach will synchronize the
chunks for the identical parts of the file. Alterna-
tively, if fixed-size blocks were used, the first block
of each file would not have the same hash due to the
missing bytes, and the mismatch would propagate
through the entire file.

Slinky uses the same 48-byte window as LBFS as
this was found to produce good results. Slinky also
uses the same 13 low-order bits of the fingerprint
to determine block boundaries, which results in an
8KB average block size. The minimum block size
is 2KB and the maximum is 64KB. Using the same
parameters as LBFS allows us to build on LBFS’s
results.

The Slinky prototype contains tools for break-
ing files into chunks, computing chunk digests, and

comparing digests between files. It does not yet use
the digests to share disk space between executables.
We intend to extend Slinky so that executables
share chunks based on digest, but that work is in
progress. The current tools allow Slinky’s space
requirements to be compared to dynamic libraries,
as described in Section 4.

3.3 Reducing Network Bandwidth

The final piece of the puzzle is to reduce the
amount of network bandwidth required to transport
statically-linked executables. Digests can also be
used for this purpose. The general idea is to only
transfer those chunks that the destination does not
already have. This is the basic idea behind LBFS,
and Slinky uses a similar mechanism. Suppose we
want to transfer an executable from X to Y over the
network. First, X breaks the executable into chunks
and computes the digests of the chunks. X then
sends the list of digests to Y. Y compares the pro-
vided list with the digests of chunks that it already
has, and responds with a list of missing digests. X
then sends the missing chunks to Y.

We developed a tool called ckget that transfers
files across the network based on chunks. Contin-
uing the above example, each file on X has an as-
sociated chunk file containing the chunk digests for
the file. X and Y also maintain individual chunk
databases that indicate the location of each chunk
within their file systems. To transfer a file, Y runs
ckget URL, which uses the URL to contact X. X
responds with the corresponding chunk file. ckget

cross-references the chunks listed in the file with the
contents of its chunk database to determine which
chunks it lacks. It then contacts X to get the missing
chunks, and reconstitutes the file from its chunks.
ckget then adds the new chunks to Y’s chunk data-
base.

Figure 3 illustrates this process. The client issues
the command ckget x-1.1.deb to download ver-
sion 1.1 of the x application. ckget retrieves the
chunk file x-1.1.ck from the proper server. The
chunk file indicates that two chunks (A and B) are
the same as in version 1.0 and already exist lo-
cally in x-1.0.deb, but a new chunk E needs to be
downloaded from the server. ckget gets this chunk
and then reconstitutes x-1.1.deb from x-1.0.deb

and the downloaded chunk E. ckget updates the
client’s ChunkDB to indicate that chunk E now exists
in x-1.1.deb. Should the user subsequently down-
load y-2.3.deb only chunk D will be retrieved.
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� �

// f i l emap nopage i s c a l l e d when the page i s not
// recorded in the page t a b l e e n t r i e s o f the proces s
func f i l emap nopage (vm, addres s ){

i f ( page i s in the page cache ) return page
i f ( page i s from a s l i n ky binary ) {

get d i g e s t o f page from PDT
use d i g e s t to search GDT

i f ( matching d i g e s t i s found ) return page
}
//page not in memory
read page from di sk
i f ( page i s from a s l i n ky binary ) {

v e r i f y page d i g e s t
add page to GDT

}
return page

}
� �

Figure 2: Page fault handler. The page’s digest is used to search the GDT. If the page is not found it is
read from disk, its digest verified, and an entry added to the GDT.
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Figure 3: Overview of how Slinky uses ckget to download a software package. Point A© shows the server
with two packages x-1.1.deb and y-2.3.deb. The chunk database maps SHA-1 digests of chunks in these
packages to the locations of the chunks. At point B© the client has download of x-1.1 by issuing the
command ckget x-1.1.deb. At C© x’s chunk-file is downloaded. At D© chunks A and B are retrieved from
a previous version of x. At E© chunk E has to be fetched from the server and its SHA-1 digest added to the
client’s ChunkDB. If the client subsequently downloads package y-2.3.deb, only chunk D will be transfered.
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4 Evaluation

We performed several experiments on the Slinky

prototype to evaluate the performance of statically-
linked executables vs. dynamically-linked executa-
bles, as well as the space required to store them.

4.1 Performance

We performed several experiments to compare the
performance of Slinky with that of a standard
dynamically-linked Linux system. First, we mea-
sured the elapsed time to build the Linux kernel us-
ing make. This is representative of Slinky’s perfor-
mance on real-world workloads. Second, we timed
page fault handling in both an unmodified Linux
kernel and a kernel modified to support Slinky ex-
ecutables. Slinky’s CPU overhead is confined to
page fault handling, so these timings allow extrap-
olation of the worst-case overhead for Slinky when
running executables whose performance is limited
by page fault performance. Third, we measured the
number of page faults when running a variety of ex-
ecutables in both systems. This not only provides
information on Slinky’s effect on the page fault
rate, but also information on the memory footprint
of Slinky executables.

All experiments were performed on a system with
a 2.4 GHz Intel Pentium 4 CPU, 1GB of memory,
and a Western Digital WD800BB-53CAA1 80GB
disk drive. The kernel was Linux 2.4.21, and the
Linux distribution was the “unstable” Debian dis-
tribution. The machine was a desktop workstation
used for operating system development, so it had a
representative set of software development and GUI
applications installed. For the Slinky results all
executables used in the tests were created using the
slink and digest tools.

4.1.1 Elapsed Time

Our macro-benchmark consisted of measuring the
elapsed time to build the Linux 2.4.19 kernel and
several standard drivers. The benchmark was run
four times on both the Slinky and the standard
system. There is no statistically-significant differ-
ence in performance. The average elapsed time for
the standard system was 139.32 ± 0.12 seconds vs.
139.00 ± 0.35 seconds for Slinky.

4.1.2 Page Fault Handling

We also measured the time required by Slinky to
handle page faults. When a page is not found in
the page cache Slinky looks for it in the GDT, and

when a page is read in from disk Slinky verifies its
digest and adds it to the GDT. Both of these cases
increase the page fault overhead. In practice, how-
ever, the overhead is minimal. For page faults that
require a disk read, Slinky adds 44.58 microsec-
onds for a total of 3259.55 microseconds per fault,
or 1.3%. Page faults that hit in the GDT required
0.95 microseconds. For comparison, page faults that
hit in the page cache required 0.82 microseconds.

4.1.3 Memory Footprint

Table 1 shows the results of running several exe-
cutables on a Slinky system and a standard sys-
tem and measuring the number of page faults. For
Slinky page faults are classified into those for which
the page was found in the page cache or read from
disk (Other), vs. those for which the page was
found in the GDT (GDT). For the standard sys-
tem page faults are classified into those for shared
libraries (Library) and those for the executable it-
self (Other). Slinky adds overhead to both kinds
of faults, as described in the previous section. Ta-
ble 1(a) shows the results of running make with an
empty GDT. The Slinky version of make gener-
ated 95 page faults, compared with 173 faults for
the dynamic version. Table 1(b) shows running sev-
eral commands in sequence starting with an empty
GDT. Three conclusions can be drawn from these
results. First, for our workloads Slinky executa-
bles suffer about 60-80 fewer page faults than their
dynamically-linked counterparts. These additional
page faults are caused by the dynamic linker, which
is not run for the Slinky executables.

Second, make suffers 95 non-GDT page faults
when it is run with an empty GDT, but only 36
non-GDT faults after several other executables have
added pages to the GDT. The remaining 59 faults
were handled by the GDT. This shows that pages
can effectively be shared by digest, without resort-
ing to shared libraries.

Third, the memory footprints for the Slinky ex-
ecutables are comparable to those for shared li-
braries. The dynamically-linked version of make

caused 31 faults to pages not in shared libraries.
In comparison, the Slinky version caused 36 faults
when run after several other commands. There-
fore, the Slinky version required 5 more non-shared
pages, or 16% more. As more pages are added to the
GDT we expect the number for Slinky to drop to
31. This effect can be seen for gcc, which caused 20
page faults in both the Slinky and dynamic ver-
sions, so that both versions had exactly the same
memory footprint.
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Execution Slinky Dynamic

Workload GDT Other Sum Library Other Sum

1> make 0 95 95 142 31 173

(a) First workload

Execution Slinky Dynamic

Workload GDT Other Sum Library Other Sum

1> ls 0 79 79 151 14 165
2> cat 29 3 31 89 3 92
3> gcc 32 20 52 93 20 113
4> make 59 36 95 142 31 173

(b) Second workload

Table 1: The number of page faults generated for two experimental workloads, running Slinky vs.
dynamically-linked executables. The first workload consists of running make; the second of running a
sequence of commands culminating with make. For Slinky the GDT column is faults for which the page
was found in the GDT, Other is faults that either hit in the page cache or required a disk access, and Sum
is the total faults. For Dynamic, the Library column is faults for pages in shared libraries, Other is faults
to the executable itself, and Sum is the total.

4.2 Storage Space

Table 2(a) shows the space required to store
dynamically-linked executables vs. statically-
linked. These numbers were collected on the “un-
stable” Debian distribution. The Dynamic column
shows the space required to store the dynamically-
linked ELF executables in the given directories, plus
the dynamic libraries on which they depend. Each
dynamic library is only counted once. The All row is
the union of the directories in the other rows, hence
its value is not the sum of the other rows (since li-
braries are shared between rows). The Slinky col-
umn shows the space required to store the statically-
linked executables, and Ratio shows the ratio of the
static and dynamic sizes. The static executables
are much larger than their dynamic counterparts
because they include images of all the libraries they
use.

Table 2(b) shows the amount of space required
to store the dynamic and static executables if they
are broken into variable-size chunks and only one
copy of each unique chunk is stored. The dynamic
executables show a modest improvement over the
numbers in the previous table due to commonality
in the files. The static executables, however, show a
tremendous reduction in the amount of space. Most
of the extra space in Table 2(a) was due to dupli-
cate libraries; the chunk-and-digest technique is able
to share these chunks between executables. The
Slinky space requirements are reasonable – across

all directories Slinky consumes 20% more space
than dynamic linking. Slinky requires 306MB to
store the executables instead of 252MB, or 54MB
more. This is a very small fraction of a modern disk
drive. Nonetheless, we believe that further reduc-
tions are possible. The current chunking algorithm
does not take into account the internal structure of
an ELF file. We believe that this structure can be
exploited to improve chunk sharing between files,
but we have not yet experimented with this.

4.3 Network Bandwidth

The third component of Slinky is reducing the
amount of network bandwidth required to trans-
fer static executables. Slinky accomplishes this by
breaking the files into chunks, digesting the chunks,
and transferring each unique chunk only once. Ta-
ble 3 shows the results of our experiments with
downloading Debian packages containing static vs.
dynamic executables. We performed these experi-
ments by writing a tool that takes a standard De-
bian package containing a dynamic executable (e.g.
emacs), unpacks it, statically-links the executable
using the slink tool, then repacks the package. We
then downloaded the packages using ckget (Sec-
tion 3.3). The Dynamic numbers in the table show
the size of the dynamic packages (Size) and the num-
ber of bytes transferred when they are downloaded
(Xfer). The packages were from the Debian “unsta-
ble” distribution.
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Directory Slinky Dynamic Ratio

/bin 90.0 7.1 12.7
/sbin 123.1 5.5 22.2
/usr/bin 2945.8 219.6 13.4
/usr/sbin 244.5 25.1 9.7
/usr/X11R6/bin 396.4 37.3 10.6

All 3799.9 264.3 14.4

(a) Storage space required for statically- and
dynamically-linked executables.

Directory Slinky Dynamic Ratio

/bin 7.0 7.0 1.0
/sbin 6.0 5.2 1.2
/usr/bin 251.6 208.9 1.2
/usr/sbin 26.3 25.0 1.0
/usr/X11R6/bin 43.0 36.2 1.2

All 305.9 251.9 1.2

(b) Storage space required for chunked executa-
bles.

Table 2: Storage space evaluation. All sizes are in MB.

The Slinky numbers show that although the
statically-linked packages are quite large, only a
fraction of them need to be transferred when the
packages are downloaded. The chunk database is
initially empty on the receiving machine, represent-
ing a worst-case scenario for Slinky as the dy-
namic packages already have their dependent li-
braries installed. The first package downloaded
(emacs) transfers 11.9MB for the static package vs.
8.6MB for the dynamic, an increase of 39%. This
is because the static package includes all of its de-
pendent libraries. Note that the transfer size of
11.9MB for emacs is less than the 19.3MB size of
the package; this is due to redundant chunks within
the package. Subsequent static packages download
fewer bytes than the package size because many
chunks have already been downloaded. For xutils
only 1.0MB of the 13.6MB package must be down-
loaded. Overall, the static packages required 34%
more bytes to download than the comparable dy-
namic packages. This represents the worst-case situ-
ation for Slinky as the chunk database was initially
empty whereas the shared libraries on which the dy-
namic packages depend were already installed.

5 Related Work

Slinky is unique in its use of digests to share data
in memory, across the network, and on disk. Other
systems have used digests or simple hashing to share
data in some, but not all, of these areas. Wald-
spurger [22] describes a system called ESX Server
that uses content-based page sharing to reduce the
amount of memory required to run virtual machines
on a virtual machine monitor. A background pro-
cess scans the pages of physical memory and com-
putes a simple hash of each page. Pages that have
the same hash are compared, and identical pages are

Installation Slinky Dynamic

Workload Size Xfer Size Xfer

1> ckget emacs 19.3 11.9 8.6 8.6
2> ckget vim 5.4 4.2 3.6 3.6
3> ckget xmms 5.7 2.8 1.9 1.9
4> ckget xterm 2.4 0.9 0.5 0.5
5> ckget xutils 13.6 1.0 0.67 0.67
6> ckget xchat 0.5 0.5 0.5 0.5

Total 46.9 21.2 15.8 15.8

Table 3: Network bandwidth required to download
Slinky and dynamic Debian packages. The dy-
namic packages are the standard Debian packages;
the Slinky packages are chunked before compres-
sion. The Slinky numbers include the packages’
chunk files. All sizes are in MB.

shared copy-on-write. This allows the virtual ma-
chine monitor to share pages between virtual ma-
chines without any modification to the code the vir-
tual machines run, or any understanding by the vir-
tual machine monitor of the virtual machines it is
running. Although both ESX Server and Slinky

share pages implicitly, the mechanisms for doing
so are very different. ESX Server finds identical
pages in a lazy fashion, searching the pool of ex-
isting pages for identical copies. This allows ESX
Server to reduce the memory footprint without re-
quiring digests as does Slinky. However, hashing
is not collision-free, so ESX server must compare
pages when two hash to the same value. In con-
trast, Slinky avoids creating duplicate copies of a
page in the first place. Digests avoid having to com-
pare pages with the same hash. Slinky also shares
only read-only pages, avoiding the need for a copy-
on-write mechanism.

Slinky’s scheme for breaking a file into variable-
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sized chunks using Rabin fingerprints is based on
that of the Low-Bandwidth Network File Sys-
tem [11]. LBFS uses this scheme to reduce the
amount of data required to transfer a file over the
network, by sharing chunks of the file with other
files already on the recipient (most notably previ-
ous versions of the same file). LBFS does not use
digests to share pages in memory, nor does it use
the chunking scheme to save space on disk. In-
stead, files are stored in a regular UNIX file system
with an additional database that maps SHA-1 val-
ues to (file,offset,length) tuples to find the particular
chunk.

The rsync [20] algorithm updates a file across a
network. The recipient has an older version of the
file, and computes the digests of fixed-size blocks.
These digests are sent to the sender, who computes
the digests of all overlapping fixed-size blocks. The
sender then sends only those parts of the file that do
not correspond to blocks already on the recipient.

Venti [14] uses SHA-1 hashes of fixed size blocks
to store data in an archival storage system. Only
one copy of each unique block need be stored,
greatly reducing the storage requirements. Venti is
block-based, and does not provide higher-level ab-
stractions.

SFS-RO [6] is a read-only network file system that
uses digests to provide secure file access. Entire files
are named by their digest, and directories consist of
(name, digest) pairs. File systems are named by
the public key that corresponds to the private key
used to sign the root digest. In this way files can be
accessed securely from untrusted servers. SFS-RO
differs from Slinky in that it computes digests for
entire files, and does not explicitly use the digests
to reduce the amount of space required to store the
data.

There are numerous tools to reduce the complex-
ity of dynamic linking and shared libraries. Linux
package systems such as rpm [17] and dpkg [5] were
developed in part to deal with the dependencies
between programs and libraries. Tools such as
apt [2], up2date [21], and yum [23] download and
install packages, and handle package dependencies
by downloading and installing additional packages
as necessary. In the Windows world, .NET pro-
vides facilities for avoiding DLL Hell [12]. The .NET
framework provides an assembly abstraction that is
similar to packages in Linux. Assemblies can either
be private or shared, the former being the common
case. Private assemblies allow applications to install
the assemblies they need, independent of any assem-
blies already existing on the system. The net effect
is for dynamically-linked executables to be shipped

with the dynamic libraries they need, and for each
executable to have its own copy of its libraries. This
obviously negates many of the purported advantages
of shared libraries. Sharing and network transport
is done at the level of assemblies, without any pro-
visions for sharing content between assemblies.

Software configuration management tools such as
Vesta [8] automatically discover dependencies be-
tween components and ensure consistency between
builds. Such tools are indispensable to manage large
software projects. However, they do not help with
the DLL Hell problem that stems from inconsisten-
cies arising on a user’s machine as the result of in-
stalling binaries and libraries from a multitude of
sources.

6 Conclusion

Static linking is the simplest way of combining sep-
arately compiled programs and libraries into an
executable. A program and its libraries are sim-
ply merged into one file, and dependencies between
them resolved. Distributing a statically linked pro-
gram is also trivial — simply ship it to the user’s ma-
chine where he can run it, regardless of what other
programs and libraries are stored on his machine.

In this paper we have shown that the disadvan-
tages associated with static linking (extra disk and
memory space incurred by multiple programs link-
ing against the same library, extra network transfer
bandwidth being wasted during transport of the ex-
ecutables) can be largely eliminated. Our Slinky

system achieves this efficiency by use of digest-based
sharing. Relative to dynamic linking, Slinky has
no measurable performance decrease, a comparable
memory footprint, a storage space increase of 20%,
and a network bandwidth increase of 34%. We are
confident that additional tuning will improve these
numbers. Slinky thus makes it feasible to replace
complicated dynamic linking with simple static link-
ing.
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