
Build Buddy For Fun And Profit

Dan Mills
Novell, Inc.

Abstract

We present a build and packaging system called Build
Buddy. The system is comprised of a set of tools for
building and maintaining software packages on mul-
tiple operating systems and architectures.

1 Introduction

Release engineering can be a complex and time-
consuming task. Distribution vendors often employ
multiple people to work full-time on building and
packaging software. Ximian (Now a part of Novell)
was faced with this problem as well, when releasing
Ximian GNOME, a customized version of GNOME
and other add-on applications. Ximian wanted to
reach the widest possible audience, and that meant
releasing on multiple platforms.

As any release engineer is aware of, releasing soft-
ware on multiple platforms requires a good deal of
effort. In addition to the complexities added by hav-
ing different possibly incompatible versions of build
dependencies (required libraries, tools, or other files),
different distributions sometimes use different pack-
aging systems, and even when they dont, they often
have different packaging policies, which, if they are
to be followed, add a new layer of requirements to be
met.

Ximian took a stab at this problem, and created
a collection of tools called Build Buddy to automate
the process of building and packaging software. These
tools allow release engineers to produce packages for
multiple operating systems, verify package corectness,
and submit packages to an external repository (such
as a Red Carpet server). Building can be done at
the push of a button, on a schedule, or continuously.
Release engineers can also create customized build
reports to be as plug-ins, or check job status through
a variety of ways (from a Web UI to log files on disk).

2 Design And Implementation

The basic watchwords of build-buddy are “automa-
tion” and “reproducibility”. Build Buddy’s goal is
to make it possible not only to build complex soft-
ware packages (and test them) with a few simple com-
mands, but to make it possible for developers creating
the package to use the same process as the automatic
world-building engines. Moreover, Build Buddy is de-
signed to abstract the details of the underlying pack-
aging system by encapsulating the build commands
and packaging metadata in an XML file, which gets
translated to the local packaging system of the cur-
rent distribution. In this way, Build Buddy produces
native packages which are installable by users without
requiring any additional package management soft-
ware. This is an important difference over most other
cross-platform build environments: Build Buddy is
designed to produce packages that tightly integrate
into the systems they will ultimately be deployed to.

On a higher level, Build Buddy is responsible for
setting up and enforcing protected build areas called
jails, so a single machine can reliably build multiple
copies or versions of products without stepping on
anyone’s toes by clobbering libraries or falling victim
to version skew of installed dependencies.

On an even higher level, Build Buddy enables the
build and packaging process to take place on a re-
mote machine by providing an XML-RPC interface
to a build daemon that waits for build requests, as
well as a “master” scheduling daemon which is used
to keep track of multiple build nodes and relay a build
request to an appropriate node. There are web and
command-line interfaces for submitting build job re-
quests to the master, as well as the ability to mark a
job to be re-run routinely as a snapshot.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 1

2.1 Packaging System Abstraction

Build Buddy can produce native packages for the fol-
lowing packaging systems1:

• RPM2 (Red Hat, SuSE, Mandrake, and others)

• DPKG3 (Debian)

• SD4 (HP-UX)

To achieve this, we use an XML description of the
packaging metadata that will ultimately be converted
to an RPM spec file, a DPKG debian/rules file, or
an SD psf file. Although the format of all three vary
quite a bit, much of the information is similar. For
those cases when the information needs to be different
per-platform, Build Buddy allows the release engineer
to override chunks of the XML on a per-target basis.

2.1.1 Targetsets

Targetsets are a major feature of the Build Buddy
XML package description file. They allow the writer
to selectively apply chunks of XML to certain plat-
forms, with a very simple syntax. There must be one
targetset, called the “default” targetset, that matches
everything:

<targetset>
<filter>

<i>.*</i>
</filter>

...XML here...

</targetset>

After it, any number of additional targetset sec-
tions may be defined, matching any combination of
targets:

<targetset>
<filter>

<i>suse-91-i586</i>
<i>sles-.*-ppc</i>
<i>fedora</i>

</filter>

...XML here...

</targetset>

When the XML file is read, all matching target-
sets are merged together, thus allowing the release
engineer to place in the default targetset as much in-
formation as is common among different targets, and
adding, removing, or changing those default on spe-
cific sets of operating systems or architectures.

1There is also IRIX Inst support, though largely unused.
RPM platforms are the only ones supported for bb node.

2http://rpm.org/
3http://debian.org/
4http://software.hp.com/products/SD AT HP/

2.1.2 Macros

Macros are a way of avoiding duplication of infor-
mation. Our XML files make extensive use of these
string replacement macros. Commonly, they are used
to define parts of paths and other useful variables.
For example, the [[prefix]] macro can be set-up to
expand by default to /usr on various Red Hat Linux
OSes, but to /opt/gnome on SuSE Linux OSes. This
way, the command:

./configure --prefix=[[prefix]]

Will cause the software to be configured differently
depending on the target being built on. Moreover,
macros can reference other macros (as long as there
are no recursive definitions), so it is possible to e.g.,
define a [[configure]] macro, which sets the pre-
fix, sysconfdir, localstatedir, and other miscellaneous
settings as desired on each target.

Macros are set in a global configuration file for all
of Build Buddy, but they can be overridden on a per-
module basis. When this is done, other macros that
reference the overridden macro will use the new defi-
nition. So for example, if a module defines:

<macro id="prefix">/opt/myproduct</macro>

The configure macro will correctly configure the
product to run from /opt/myproduct.

2.1.3 Project Organization

Build Buddy was designed to maintain a packages
created from 3rd party sources. For this reason, the
packaging metadata is kept separate from sources
and patches. Each XML build file and its associated
sources, patches, and any auxiliary files is called a
“module”.

In the general case, only a single XML configura-
tion file per module is needed. Occasionally, however,
other files must be provided. For this reason, Build
Buddy projects are organized in CVS with one direc-
tory per module, and all of them are (usually) placed
inside one CVS module.

2.2 Sources And Patches

Build Buddy uses a simple source repository, which
can be set-up locally or remotely (using ssh) with
minimal configuration. Files may be placed in the
repository by using the bb submit tool, which re-
turns a repository handle that may be inserted in
a ximian-build.conf file or used with the bb get
tool to retrieve the file. It is not possible, however, to
remove a file from the repository. When an updated

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association2

version of a file with the same name exists, it is simply
submitted again, and a new handle is produced–but
the old handle is still valid.

The repository can be used to hold patches as well.
These are treated equally by the repository, but they
are used in a <patch> section in the XML packaging
metadata, instead of a <source> section.

There exist several tools in Build Buddy to manage
patches. While Build Buddy’s patch management ca-
pabilities were not designed to supplant a version con-
trol system, it is possible to maintain source changes
completely within Build Buddy. The bb regenerate
tool can generate a new patch by comparing a mod-
ified source tree to a pristine one. It can also regen-
erate a patch if it already exists. For example, if the
sources have the following patches applied:

1. add-french-translation.patch-2

2. fix-autoconf.patch-1

3. fix-bug-51242.patch-1

And the second patch needs to be changed,
it is possible to make those changes and ask
bb regenerate to create a new version of it, even
if it partially overlaps with other patches. The new
patch can then be tested and submitted to the repos-
itory (which will create the fix-autoconf.patch-2
handle).

Build Buddy supports other source acquisition
mechanisms in addition to the simple repository.
HTTP and FTP behave similarly to the standard
repository, but URLs are used instead of a repository
handle.

It is also possible to use CVS or Subversion to ac-
quire sources. In this case, Build Buddy will check-
out the sources and attempt to create a distribution
tarball. This command is configurable via the <dist>
tagin the XML configuration file. If not specified,
it will attempt to run autogen.sh, and make dist.
Once a tarball has been created, it is used as the
source for the rest of the build, and for the source
packages. This practice ensures that a valid source
package is created as part of the build process.

2.3 Basic Build Process

When building a single module, the following steps
are generally taken (see fig. 1):

• Parse the XML build config file.

• Acquire all sources as defined.

• Produce local build/packaging files (e.g., RPM
.spec).

conf

Sources
Patches

CVS BB
Repo

Packages

bb_unpack bb_do bb_lint

Figure 1: The basic build and packaging process

• Build and install to a temporary location.

• Package the built files.

• Test the resulting packages.

Build Buddy executes as many steps as possible
from within the packaging system’s environment. For
example, on RPM systems, the build commands are
executed through RPM. This helps ensure the source
package will be valid and usable by third parties.
However, when the packaging system does not sup-
port a certain step, Build Buddy performs it directly.
For example, the SD system does not have a con-
cept of a source package and simply expects binaries
as its input files. In this case, Build Buddy emu-
lates the RPM behavior by executing the build com-
mands directly, and creating an additional package
with sources.

2.4 Verifying Package Correctness

Even the best of packagers is bound to make a mis-
take sometime. To catch as many errors as we can
before letting a package out the door, Build Buddy
has a tool called bb lint, which can be thought of
as a unit testing framework, but restricted to pack-
aging policy/metadata. It is possible to easily create
new tests to be run either globally or for a particular
module, or to disable a check for a particular module.
Examples of existing tests include:

• Whether all files the module installs have been
packaged.

• Whether there are any files in the package that
are not owned by a system user (such as ‘root’,
etc).

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 3

• Whether all packages have a “group” defined.

Some lint tests are designed to be run before the
package has been built, such as the “group” check.
Others, require the packages to be created, such as
the test for non-packaged files. Tests can be flagged
as errors, or warnings.

2.5 Building Large Products

In addition to the ability to build a single module on
many operating systems, Build Buddy can also help
manage the complexities of a large product with inter-
dependent modules. It is possible to create another
XML file called a product file, which describes the
build-dependencies of all the modules involved. Then,
one can use the bb build tool to perform arbitrary
operations (operations can be defined via plug-ins) on
any subset of the module graph. For example, given
the modules:

• glib

• gtk+ (depends on glib)

• nautilus (depends on gtk+)

• tcpdump

It is possible to request a rebuild of glib and
everything that has a dependency on it (gtk+ and
nautilus, but not tcpdump).

Due to the flexible operations, however, it is also
possible to perform many other tasks that span mul-
tiple modules through bb build. Examples include
creating a HP-UX PSF file for a Bundle (a collec-
tion of products), running only specific portions of
the build process (such as bb lint by itself), or cus-
tom operations, such as unpacking a module and de-
termining if it contains a certain source file or not.

Custom operations do require some programming
and knowledge of certain Build Buddy data struc-
tures, but care has been taken to keep them easy
to create and deploy. It is also possible to create a
’task’, a sequence of operations that can then be con-
veniently invoked by a single name. For example, the
default operation bb build runs is ’build’, which is a
task that unpacks, builds, runs bb lint, and cleans
up the built tree. Thus, to execute the default se-
quence and add something at the end, the user can
specify “build,oper” as the operation.

Upon encountering an error, bb build can stop all
operations on the current module as well as modules
that depend on it. This is the defautl behavior. The
user can also specify more or less lenient behavior,

that is, to attempt to build dependent modules, or to
halt immediately on error.
bb build allows all output (including the output

of the build process itself) to be sent to a file. This
can be combined with home-grown scripts to inte-
grate Build Buddy into a build process without using
the XML-RPC Build Buddy daemons.

2.6 Jails

Jails are extensively used in Build Buddy. A jail im-
age is essentially a tarball of an entire distribution,
plus some metadata. When a jail image is unpacked,
the chroot system call is used to enter the jail, so the
build node is protected to some degree from the build,
and vice-versa. However, as anyone familiar with ch-
root is aware, chroot does not provide a great deal
of insulation–a number of things are shared, such as
the process table, etc. Still, as a poor man’s VM, it
is excellent.

Build Buddy keeps arbitrary XML metadata asso-
ciated with the jail image and with unpacked jails.
Metadata currently used include hints to the node
to control automatic deletion of old jails, informa-
tion about the jail’s owner, information about mount
points that Build Buddy will automatically mount
(such as /proc), etc. Since the metadata is arbitrary
and easily parseable, external tools can tag jails, for
example, for archival.

When the remote interface (Web UI / XML-RPC)
is being used, it is possible to specify via XPath
queries certain values to be met in the to-be-used jail.
This makes it possible, for example, to deploy a spe-
cialized jail to be used for certain build jobs.

2.7 XML-RPC Interface

The components described so far operate on one or
more modules, on a single machine or jail. Build
Buddy also includes a set of networking components
designed to automate the build process and manage a
“build farm”. In this set-up there is one “master” and
many build “nodes”. Each node registers itself with
the master, which keeps track of them, and serves as
a scheduler to distribute build requests, as well as a
centralized point to collect logging information.

The current XML-RPC interface does not allow for
full bb build usage remotely. Instead, build requests
specify each module to be built, in order. There are,
however, plans to improve on this point by extending
the XML-RPC interface.

The structure of the Build Buddy networked dae-
mons is as follows (see fig. 2):

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association4

UserOther Clients

CVS
• Sources

BB Repository
• Sources
• Patches

Master

XML-RPC

WebUI

Logging Scheduling
Authorization

Authentication

Node

X
M

L-
R

P
C

Node

X
M

L-
R

P
C

Node

X
M

L-
R

P
C

DB Files/Packages

Jail 1: suse-91-i586

Jail 2: sles-9-i586

Jail 3: redhat-80-i386

��

� �
Build

Figure 2: The networked build farm

The master is the main user-visible machine. Its
purpose is to monitor the nodes, collect information
about builds, and provide a single point of contact
for the system. As such, it runs various daemons,
including a web server, a database, and several Build
Buddy services.

These services are:

• The logger is responsible for collecting all logging
output from the jobs and storing it on-disk.

• The master is responsible for the scheduling of
jobs, and for presenting a unified XML-RPC in-
terface for all the available nodes.

• The authserver is responsible for user authenti-
cation, and also for authorizing or denying any
requests from users.

• The snapshotter is an optional service to run
saved jobs marked by users to be executed au-
tomatically on a regular basis.

The node is an individual machine which can build
software upon request. Jails only need to run one
background process, the bb node daemon itself.

The actual build, which runs inside a jail, uses CVS
to acquire the ximian-build.conf files. The sources

to be built are defined in those files, and can point to
external CVS, HTTP, FTP servers, or a Build Buddy
file repository.

The build can also specify build dependencies,
which are installed using the Red Carpet utility.

2.8 Remote Build Process

When a build request is submitted via the XML-RPC
interface, the following steps take place:

1. The build master schedules the job to a node,
taking into account the architecture requested,
number of running jobs on each node, free HD
space, etc.

2. The node searches for an available build jail
for the requested os-version-arch (which Build
Buddy calls a “target”). If none are available,
a new one is unpacked.

3. Red Carpet is set-up inside the jail, to provide a
method of installing build dependencies.

4. The XML build configuration files are checked
out of CVS.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 5

5. For each module to be built, these steps are per-
formed:

(a) Build dependencies are installed if needed.
(b) The sources of the module are obtained

from the tarball repository, or from
CVS/Subversion.

(c) bb lint is run to check the XML metadata.
(d) A spec file is generated for RPM. 5

(e) The software is built and packaged as per
the spec file.

(f) The resulting packages are synced over to
the master (to avoid having to set-up a
shared filesystem between the nodes and the
master, rsync is used).

(g) The resulting packages are tested for pack-
aging errors with a second bb lint run.

(h) The resulting packages are installed inside
the jail (which is necessary, since they can
provide a build dependency for a later mod-
ule).

6. Finally, if all went well, the packages are option-
ally submitted to a Red Carpet server, so that
users can get at them, and so they can be used
as build dependencies for other build jobs.

2.8.1 Logging

Throughout the entire process above, the status of
the job, including up-to-the-minute process output
logs can be seen via the Build Buddy Web UI. Nodes
collect process output, and relay it to the master
via a specialized XML-RPC daemon, which writes
it to disk6. Reporting modules called “logstyles” are
also available for snapshot jobs. Logstyles are event-
based, and are highly customizable. Currently avail-
able logstyles include support for email reports (both
text and HTML), and RSS.

2.8.2 Job Submission

There are three7 interfaces to submit a build job to
the master. One is a command-line interface called

5The node does not currently support Debian, HP-UX, or
Solaris, even though the lower-level tools do.

6Previous Build Buddy versions used NFS to do this work,
but it made the system harder to deploy, and was not more
reliable than the current method.

7Actually, there are two more. One is an Emacs Lisp pro-
gram to submit the XML config currently being edited for
building, but it has not kept up with the latest XML-RPC
interface changes. The other is a plugin for the Eclipse IDE
to integrate with a Build Buddy installation at Novell Forge,
which due to its Novell Forge-specific nature is not bundled
with Build Buddy

bb client. The second is also a command-line utility,
but it is designed to run on the master, for snapshot
(recurrent) jobs, that is the bb snapshot tool. The
last method is the web interface. The web interface
allows users to specify job information and save it to
a database on the master. They can then submit the
job, or they can mark it for snapshotting (which gets
picked up by bb snapshot when it runs).

3 Example Usage

The following is a working example of an XML build
configuration file to build and package the ‘Error’ Perl
module:

<?xml version="1.0" ?>
<!DOCTYPE module SYSTEM "helix-build.dtd">

<module>
<targetset>

<filter>
<i>.*</i>

</filter>

<rcsid>$ Id: $</rcsid>
<name>Error</name>

<version>0.15</version>
<rev>1</rev>
<serial>1</serial>

<psdata id="copyright">Artistic</psdata>
<psdata id="url">http://www.cpan.org/</psdata>

<source>
<i>Error-0.15.tar.gz-1</i>

</source>

<build id="default">
<prepare>[[perlprepare]]</prepare>
<compile>[[perlmake]]</compile>
<install>[[perlinstall]]</install>

<package id="default">
<name>perl-Error</name>
<psdata id="group">Development/Perl</psdata>

<files>
<i>[[perlmoddir]]</i>
<i>[[usrmandir]]/man*/*</i>

</files>
<docs>

<i>README</i>
</docs>

<description>
<h>Error extension for Perl5</h>
<p>This package provides a perl module.</p>

</description>
</package>

</build>
</targetset>

</module>

The above configuration file is placed in CVS, as
described in the “Project Organization” section. To
use the scripts directly, the conf is checked out on
the build machine, and the various scripts (such as
bb build, bb do, etc) are executed. The release en-

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association6

Figure 3: Job Submission

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 7

Figure 4: Recent Jobs (shortened list)

gineer can then use the resulting packages however is
desired.

When using the WebUI, a new job is created for
perl-Error (see fig. 3). The job includes information
on where to check out the configuration file from, and
which operating systems/platforms to build it on, as
well as a Red Carpet server and channel to submit it
to.

Since the configuration file specifies a tarball in the
<source> tag (to be retrieved out of the Build Buddy
file repository), this module will likely not be run as a
snapshot. We can, however, update the configuration
file stored in CVS at any time, increase the version
as appropriate, and simply re-submit the job to build
the new packages.

Once a job is submitted, it will appear under the
“recent jobs” list (see fig. 4). The user can click on
the job id to bring up job details (see fig. 5). From
this page, it is possible to view individial log files, as
well as download any generated packages, by clicking
on them.

4 Future Plans

Although a great deal of effort has been spent on
Build Buddy, there is still much that can be done.
Aside from minor improvements in all areas, the
biggest projects currently under consideration are a
flexible way to keep track of a project’s modules in
the WebUI, and a redesign of the packaging system
abstraction XML to allow for new platform support
andd additional features.

4.1 WebUI Improvements

The WebUI is currently limited to a rigid definition
of a build job, and has no definition of a project from
which jobs can be derived. In reality, projects with
multiple components will want to keep track of all

the components without associating them to a “saved
job”, and be able to produce jobs based on the project
data with less set-up than is currently needed.

To accomplish this, a logical container of modules
can be created (the project), and the UI can be mod-
ified to allow build queries which allow the release
engineer to make use of the bb build command re-
motely.

4.2 Expanded Platform Support

Build Buddy’s most unique feature is its ability to
produce native packages on a wide range of platforms.
Currently, this is restricted to UNIX-like operating
systems, but there is no reason why this should con-
tinue to be the case. A research prototype exists that
is able to build MSI packages on Microsoft Windows.
This presents some interesting challenges, due to the
differences between RPM, Dpkg, or SD, and Win-
dows’ MSI, but they still have enough in common
that it is possible to use a single configuration file for
all.

The Windows prototype is written in C#, and a
new XML abstraction format was designed, both to
add data only useful to MSI packaging, as well as to
fix other long-standing problems or annoyances with
the current XML format being used in production
systems.

The MSI format is particularly different in its rich
set of metadata for arbitrary files or folders. RPM
and Dpkg do not generally require much additional
metadata for files and folders. Flags for configuration
files, documentation, permissions, or the like are suffi-
cient in most cases, and several of these are mutually
exclusive, making representation simpler.

The XML format implemented in the prototype has
been designed to allow for arbitrary metadata for any
resource (file, directory, or other) to be added at any
later date. This is done by substituting the current
file lists, which are simple strings, with a richer XML
representation. At the same time, since string substi-
tutions (Build Buddy macros) will not be useful for
file lists, methods were added to produce the same
results, while avoiding the need to be verbose.

4.3 Build Node Imaging

There are certain types of builds or platforms for
which it would be best to completely convert a node
to a different distribution, rather than use a Build
Buddy jail. Some distributions make use of specific
kernel features, for example, which prevent them from
working properly in a chrooted environment. A so-
lution to this problem is to use a technique generally

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association8

Figure 5: Job Details

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 9

known as “imaging”. This technique uses disk images
and network booting to achieve the equivalent of a
full re-install of the operating system. Build Buddy
could leverage this technology to augment or replace
the current Jail system.

5 Related Work

Build Buddy is not the only project with the ability to
build software and package it. One such tool is Maven
(http://maven.apache.org/). Maven is a Java-based
tool to help manage and build projects. It stores in-
formation about your project, from the names of de-
velopers to lists of dependencies, in an XML format,
which it can then use in a variety of ways.

Another tool is SCons (http://www.scons.org/).
SCons is a make, autoconf, and automake replace-
ment, written in python. As with the tools it replaces,
it is designed to precisely track the build process in
detail, as well as build dependencies.

The biggest difference between Build Buddy and
the above projects is that they concentrate on the
build step, while Build Buddy’s emphasis is actually
on the packaging. It is possible to write scripts using
any of the above tools to package software, but it
would be a custom, per-project solution.

All of the above tools provide much greater detail
and control over the specifics of the build process–
that is, they solve problems such as: Which files need
to be built before others? Exactly what commands
need to be run to compile each file? Build Buddy, on
the other hand, limits itself to invoking other tools
to perform this work. In other words, although Build
Buddy orchestrates the build process at a macro level,
it invokes tools such as make, automake, or maven to
achieve the specific build steps.

In this sense, Build Buddy is able to leverage the
advantages of all of the above tools. Software authors
are able to use Maven, SCons, make, etc. and simply
invoke those tools from Build Buddy as needed. Build
Buddy then focuses on the cross-distribution software
packaging. Indeed, many software modules at Novell
which are built using Build Buddy use make, auto-
conf, automake, or maven.

The disadvantage of this approach is that software
authors who wish to use Build Buddy must use a com-
bination of tools, rather than a single one, to perform
the full build and packaging set of tasks. On the other
hand, release engineers who integrate software from
disparate places will find the Build Buddy’s ability to
adapt to any build tool highly desirable.

6 Summary

After more than four years of development, Build
Buddy useful for a wide range of packaging tasks. By
using all of its components, an experienced packager
can develop and maintain large collections of packages
for a number of distributions at the same time. At
the same time, relatively novice packagers or develop-
ers, can use Build Buddy to make one-off packages,
or maintain small sets of software with a minimum
amount of training.

Build Buddy is licensed under the GNU GPL.
Source code and additional documentation available
at http://build-buddy.org/. We hope that you find it
useful.

Acknowledgments

Many thanks to the original Build Buddy author,
Mike Whitson, as well as Peter Teichman, Dave
Camp, and other contributors. Thanks also to all
Build Buddy users who have supported the project
and helped shape it into what it is today. Last but not
least, thanks to Nat Friedman and Miguel de Icaza,
and other leaders at Ximian who had the foresight to
invest in the project.

References

[BNS+00] Edward C. Bailey, Paul Nasrat, Matthias
Saou, Ville Skyttä. Maximum RPM,
2000.

[JS98] Ian Jackson, Christian Schwarz. Debian
Policy Manual, 1998.

[QR+01] Daniel Quinlan, Paul Russell, Filesys-
tem Hierarchy Standard Group. Filesys-
tem Hierarchy Standard 2.2, 2001.

[HP01] Hewlett-Packard Company. Software Dis-
tributor Administration Guide for HP-
UX 11i, June 2001.

[ASF] Apache Software Foundation. Maven
Project, http://maven.apache.org/.

[SF] The SCons Foundation. SCons Project,
http://www.scons.org/.

[FSF] The Free Software Foundation. GNU
Autoconf and GNU Automake,
http://www.gnu.org/.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association10

