
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Making RCU Safe for Deep Sub-Millisecond Response Realtime
Applications

Dipankar Sarma
Linux Technology Center
IBM Software Lab, India
dipankar@in.ibm.com

Paul E. McKenney
Linux Technology Center and Storage Software Architecture

IBM Corporation
Beaverton, OR 97006

Paul.McKenney@us.ibm.com

http://www.rdrop.com/users/paulmck

Abstract

Linux
TM

has long been used for soft realtime applica-
tions. More recent work is preparing Linux for more
aggressive realtime use, with scheduling latencies in the
small number of hundreds of microseconds (that is right,
microseconds, not milliseconds). The current Linux 2.6
RCU implementation both helps and hurts. It helps by
removing locks, thus reducing latency in general, but
hurts by causing large numbers of RCU callbacks to
be invoked all at once at the end of the grace period.
This batching of callback invocation improves through-
put, but unacceptably degrades realtime response for the
more discerning realtime applications.

This paper describes modifications to RCU that
greatly reduce its effect on scheduling latency, without
significantly degrading performance for non-realtime
Linux servers. Although these modifications appear to
prevent RCU from interfering with realtime scheduling,
other Linux kernel components are still problematic. We
are therefore working on tools to help identify the re-
maining problematic components and to definitively de-
termine whether RCU is still an issue. In any case, to the
best of our knowledge, this is the first time that anything
resembling RCU has been modified to accommodate the
needs of realtime applications.

1 Introduction
Tests of realtime response on the Linux 2.6 kernel
found unacceptable scheduling latency, in part due to
the batching of callbacks used in the RCU implementa-
tion. This batching is essential to good performance on
non-realtime servers, since the larger the batch, the more
callbacks the overhead of detecting an RCU grace period
may be amortized over. However, because these call-
backs run in a tasklet that runs at softirq level, callback
processing cannot be preempted. Since heavy loads can
result in well over a thousand RCU callbacks per grace
period, RCU’s contribution to scheduling latency can ap-
proach 500 microseconds, which far exceeds the amount

that can be tolerated by some classes of realtime appli-
cations. Furthermore, extreme denial-of-service work-
loads have been observed to generate more than 30,000
RCU callbacks in a single grace period, which would re-
sult in a correspondingly greater degradation of schedul-
ing latency. This situation motivated some modifications
to RCU, with the goal of eliminating RCU’s contribution
to the excessive scheduling latency.

This paper presents some background on RCU in Sec-
tion 2, describes the problem that was causing exces-
sive scheduling latency in Section 3, discusses three pro-
posed solutions in Section 4, and evaluates the three so-
lutions in Section 5.

2 RCU Background
RCU is a reader-writer synchronization mechanism that
takes asymmetric distribution of synchronization over-
head to its logical extreme: read-side critical sections in-
cur zero synchronization overhead, containing no locks,
no atomic instructions, and, on most architectures, no
memory-barrier instructions. RCU therefore achieves
near-ideal performance for read-only workloads on most
architectures. Write-side critical sections must there-
fore incur substantial synchronization overhead, defer-
ring destruction and maintaining multiple versions of
data structures in order to accommodate the read-side
critical sections. In addition, writers must use some syn-
chronization mechanism, such as locking, to provide for
orderly updates. Readers must somehow inform writers
when they finish so that writers can determine when it is
safe to complete destructive operations.

In the Linux 2.6 kernel, RCU signals writers by non-
atomically incrementing a local counter in the context-
switch code. If this is a given CPU’s first such increment
for the current grace period, then the CPU clears its bit
from a global bitmask. If it is the last CPU to clear its
bit, then the end of the grace period has been reached,
and RCU callbacks may safely be invoked.

The actual implementation is more heavily optimized
than is described here. More details are available else-



where [ACMS03, MSA
�

02, McK03]. The performance
benefits of RCU in the Linux kernel are also well docu-
mented [MAK

�

01, LSS02, MSS04, McK04], and bene-
fits of RCU and of similar synchronization techniques in
other environments have been published as well [KL80,
ML84, Pug90, MS98, GKAS99, Sei03, SAH

�

03].

3 RCU Scheduling Latency Problem
The amlat test program runs a realtime task that sched-
ules itself to run at a specific time. The amlat test pro-
gram then measures how much the actual time is delayed
from that specified.

In one test of a small configuration under heavy load,
1,660 callbacks were queued to be executed at the end of
a single grace period, resulting in a scheduling latency of
711 microseconds on a single-CPU 2.4GHz x86 system.
This far exceeds the goal of 250 microseconds.

The heavy load consisted of filesystem and network-
ing operations, which resulted in large numbers of RCU
callbacks being scheduled from the dcache and IP route
cache subsystems.

Note that RCU callbacks are executed in the con-
text of a tasklet, which runs either in interrupt con-
text or in the context of the “ksoftirqd” kernel-daemon
process. However, do softirq(), which actu-
ally invokes the rcu process callbacks() func-
tion, uses a combination of local irq save() and
local bh disable(), which has the effect of dis-
abling preemption across the invocation of all RCU call-
backs, even when running in ksoftirqd context.

Large numbers of RCU callbacks can therefore de-
grade realtime scheduling latency, as shown in Figure 1.
In this figure, two CPUs go through a grace period while
scheduling RCU callbacks. Each CPU’s set of RCU
callbacks is executed from rcu do batch() in softirq
context after the end of the grace period, which directly
increases the realtime scheduling latency, as shown in
the lower right portion of the figure. This situation raises
the question of what might be done to mitigate this la-
tency increase, thereby preventing degradation of real-
time response.

4 RCU Scheduling Latency Solutions
One could also imagine solving this problem by going
back to traditional locking primitives, but this would im-
pose unacceptable performance degradation and scaling
limitations on Linux servers. We therefore resolved to
solve the scheduling-latency problem in such a way that
RCU could be used in realtime environments.

Thus far, we are investigating three solutions to this
problem:

1. Providing per-CPU kernel daemons to process
RCU callbacks when there are too many to process

c
a
l
l
_
r
c
u
(
)

c
a
l
l
_
r
c
u
(
)

s
o
f
t
i
r
q

s
o
f
t
i
r
q

CPU 1CPU 0

G
ra

ce
 P

er
io

d

Sc
he

du
lin

g 
L

at
en

cy

Figure 1: RCU Degrading Realtime Scheduling Latency



1 int
2 rq_has_rt_task(int cpu)
3 {
4 struct runqueue *rq = cpu_rq(cpu);
5 return (sched_find_first_bit(rq->active->bitmap) <
6 MAX_RT_PRIO);
7 }

Figure 2: Functions Encapsulating Per-CPU Realtime-
Task Count

at softirq level.
2. Directly invoking the RCU callback in those cases

where it is safe to do so, rather than queuing the
callback to be executed at the end of the next grace
period.

3. Throttling RCU callback invocation so that only a
limited number are invoked at a given time.

The first and last of these solutions require a mecha-
nism that determines when there is a runnable realtime
task on a given CPU. Such realtime tasks may be de-
tected by checking a given runqueue’s active bitmap,
as was suggested by Nick Piggin, and as shown in Fig-
ure 2. The three solutions are described at length in the
next sections.

4.1 Per-CPU Kernel RCU-Callback Dae-
mons

The per-CPU kernel RCU-callback daemons [Sar04a],
or krcud for short, were inspired by the “rcu” im-
plementation of the RCU infrastructure in the Linux
2.6 kernel [MSA

�

02]. The idea is to modify
rcu do batch() to limit the number of callbacks
processed at a time to the value in module parameter
rcupdate.bhlimit, which defaults to 256, but only
under the following conditions:

1. the kernel has been built with the
CONFIG LOW LATENCY kernel parameter,

2. there is a runnable realtime task on this CPU, and
3. rcu do batch() is running from softirq context.

If either of the first two conditions do not hold, then
there is no reason to limit latency on this CPU. If the
last condition does not hold, then preemption will limit
execution time as needed, so no explicit limit checking
is required.

When limiting does occur in rcu do batch(), any
excess callbacks are queued for processing by the CPU’s
krcud on that CPU’s rcudlist CPU-local variable.
These callbacks are added to the head of this list in or-
der to avoid any possibility of callback starvation. Note
that callbacks can be processed out of order when limit-
ing is in effect, since rcu do batch() can be invoked
from the softirq context at the end of a grace period, even
when krcud is running. We do not know any situation
where such reordering is harmful, but strict ordering can

c
a
l
l
_
r
c
u
(
)

c
a
l
l
_
r
c
u
(
)

k
r
c
u
d
(
)

k
r
c
u
d
(
)

CPU 1CPU 0

G
ra

ce
 P

er
io

d

Sc
he

du
lin

g 
L

at
en

cy

Figure 3: krcud Preserves Realtime Scheduling Latency

be easily enforced should such a situation arise.
Since krcud is fully preemptible, the situation is as

shown in Figure 3. The first few RCU callbacks are in-
voked from softirq context, which cannot be preempted.
The execution time of these few RCU callbacks thus de-
grade realtime scheduling latency, but only slightly, as
any additional RCU callbacks are invoked from krcud
context, which is fully preemptible.

The rcu do batch() function, which invokes
RCU callback, but limits the callback batch size
when run from softirq context, is shown in Figure 4.
Line 6 captures the current CPU. Note that (for once)
get cpu() is not needed:

1. If invoked from krcud(), execution is
forced to remain on a single CPU via a
set cpus allowed() call.

2. If invoked from rcu process callbacks(),
preemption is disabled due to running in softirq
context.

Line 7 invokes rcu bh callback limit() in or-
der to determine the maximum number of callbacks that
may be executed, which is bhlimit if we are run-
ning in softirq context and there is a runnable realtime



1 static void rcu_do_batch(struct list_head *list)
2 {
3 struct list_head *entry;
4 struct rcu_head *head;
5 unsigned int count = 0;
6 int cpu = smp_processor_id();
7 unsigned int limit = rcu_bh_callback_limit(cpu);
8
9 while (!list_empty(list)) {

10 entry = list->next;
11 list_del(entry);
12 head = list_entry(entry, struct rcu_head, list);
13 head->func(head->arg);
14 if (++count > limit && rq_has_rt_task(cpu)) {
15 list_splice(list, &RCU_rcudlist(cpu));
16 wake_up_process(RCU_krcud(cpu));
17 break;
18 }
19 }
20 }

Figure 4: Limiting RCU Callback Batches

1 static inline unsigned int
2 rcu_bh_callback_limit(int cpu)
3 {
4 if (in_softirq() && RCU_krcud(cpu))
5 return bhlimit;
6 return (unsigned int)-1;
7 }

Figure 5: Determining Maximum RCU Callback Batch
Size

task on this CPU, or a very large integer otherwise,
as can be seen in Figure 5. Lines 9-19 look over the
callbacks, invoking each in turn until either the list is
empty or the maximum allowable number has been ex-
ceeded. Lines 10 and 11 remove the first element from
the list, and line 12 obtains a pointer to the struct
rcu head. Line 13 then invokes the RCU callback.
Lines 14-18 check for exceeding the limit, but only if
there is a runnable realtime task on this CPU. If there is,
line 15 prepends the remainder of the list to this CPU’s
list of callbacks that are waiting for krcud(), line 16
wakes up this CPU’s krcud(), and line 17 exits the
“while” loop.

A given CPU’s krcud task is created when that CPU
is first brought online by rcu cpu notify, as shown
in Figure 6. CPUs are brought up in two stages, the
CPU UP PREPARE stage and the CPU ONLINE stage.
The CPU UP PREPARE stage is handled by lines 7-9,
which invoke rcu online cpu(), which in turn ini-
tializes the RCU per-CPU data and initializes the per-
CPU tasklet that processes callbacks when limiting is
not in effect. At boot time, rcu online cpu() is
instead called from rcu init(). The CPU ONLINE
stage is handled by lines 10-13, which invoke
start krcud(), which starts the krcud tasks if ap-
propriate. At boot time, start krcud() is instead
called from rcu late init(), which is registered
for execution via initcall(). Failure to start the

1 static int __devinit
2 rcu_cpu_notify(struct notifier_block *self,
3 unsigned long action, void *hcpu)
4 {
5 long cpu = (long)hcpu;
6 switch (action) {
7 case CPU_UP_PREPARE:
8 rcu_online_cpu(cpu);
9 break;

10 case CPU_ONLINE:
11 if (start_krcud(cpu) != 0)
12 return NOTIFY_BAD;
13 break;
14 /* Space reserved for CPU_OFFLINE :) */
15 default:
16 break;
17 }
18 return NOTIFY_OK;
19 }

Figure 6: Creating krcud Tasks: rcu cpu notify

1 static int start_krcud(int cpu)
2 {
3 if (bhlimit) {
4 if (kernel_thread(krcud, (void *)(long)cpu,
5 CLONE_KERNEL) < 0) {
6 printk("krcud for %i failed\n", cpu);
7 return -1;
8 }
9

10 while (!RCU_krcud(cpu))
11 yield();
12 }
13 return 0;
14 }

Figure 7: Creating krcud Tasks

krcud task results in failure to start the CPU.
The start krcud() function starts a krcud task for

a specified CPU, and is shown in Figure 7. If the mod-
ule parameter bhlimit is non-zero, the kernel thread
is created by lines 4-8. Lines 10-12 then wait until the
newly created krcud has initialized itself and is ready to
accept callbacks. This function returns 0 on success and
-1 on failure.

The krcud() function processes callbacks whose
execution has been deferred, and is shown in Figure 8.
Unlike the tasklets used by the 2.6 RCU infrastructure,
krcud() invokes the RCU callbacks preemptibly, so
that RCU callback execution from krcud() cannot
degrade realtime scheduling latency. Note that each
krcud() runs only on its own CPU, so that RCU call-
backs are guaranteed never to be switched from one CPU
to another while executing.

Line 3 of krcud() casts the argument, and line 4
converts this task to a daemon, setting the name, discard-
ing any user-mode address space, blocking signals, clos-
ing open files, and setting the init task to be the newly
created task’s parent. Line 5 sets the krcud task’s prior-
ity to the highest non-realtime priority. Line 6 marks the
krcud task as required for swap operations, and line 8 re-
stricts the task to run only on the specified CPU. Line 10



1 static int krcud(void * __bind_cpu)
2 {
3 int cpu = (int) (long) __bind_cpu;
4 daemonize("krcud/%d", cpu);
5 set_user_nice(current, -19);
6 current->flags |= PF_IOTHREAD;
7 /* Migrate to the right CPU */
8 set_cpus_allowed(current, cpumask_of_cpu(cpu));
9 BUG_ON(smp_processor_id() != cpu);

10 __set_current_state(TASK_INTERRUPTIBLE);
11 mb();
12 RCU_krcud(cpu) = current;
13 for (;;) {
14 LIST_HEAD(list);
15 if (list_empty(&RCU_rcudlist(cpu)))
16 schedule();
17 __set_current_state(TASK_RUNNING);
18 local_bh_disable();
19 while (!list_empty(&RCU_rcudlist(cpu))) {
20 list_splice(&RCU_rcudlist(cpu), &list);
21 INIT_LIST_HEAD(&RCU_rcudlist(cpu));
22 local_bh_enable();
23 rcu_do_batch(&list);
24 cond_resched();
25 local_bh_disable();
26 }
27 local_bh_enable();
28 __set_current_state(TASK_INTERRUPTIBLE);
29 }
30 }

Figure 8: krcud Function

marks the task as alive, line 11 executes a memory bar-
rier to prevent misordering, and line 12 sets the CPU’s
krcud per-CPU variable to reference this krcud task.
Lines 13-29 loop processing any RCU callbacks placed
on the rcudlist. Lines 15-16 wait for RCU callbacks
to appear on this list, and line 17 sets the task state to
running. Line 18 masks interrupts (which are restored
by line 27), and lines 19-26 loop processing the call-
backs on this CPU’s rcudlist. Lines 20-21 move the
contents of this CPU’s rcudlist onto the local list
variable, at which point it is safe for line 22 to re-enable
interrupts. Line 23 invokes rcu do batch() to in-
voke the callbacks, and, since we are calling it from kr-
cud context, it will unconditionally invoke all of them,
relying on preemption to prevent undue delay of real-
time tasks. Line 24 yields the CPU, but only if there is
some other more deserving task, as would be the case af-
ter timeslice expiration. Line 25 then disables interrupts,
setting up for the next pass through the “while” loop. As
noted earlier, line 27 re-enables interrupts. Line 28 sets
up to block on the next pass through the “for” loop.

This approach limits the number of callbacks that may
be executed by rcu do batch() from softirq con-
text. The duration of a grace period protects against
too-frequent invocations of rcu do batch(), which
could otherwise result in an aggregate degradation of
realtime response. Since krcud() runs with preemp-
tion enabled, it cannot cause excessive realtime response
degradation, and, in addition, can handle any RCU call-
back load up to the full capacity of the CPU.

1 #if !defined(CONFIG_SMP) && defined(CONFIG_LOW_LATENCY)
2 static inline void
3 call_rcu_rt(struct rcu_head *head,
4 void (*func)(void *arg), void *arg)
5 {
6 func(arg);
7 }
8 #else
9 static inline void

10 call_rcu_rt(struct rcu_head *head,
11 void (*func)(void *arg), void *arg)
12 {
13 call_rcu(head, func, arg);
14 }
15 #endif

Figure 9: Uniprocessor Call-Through RCU

Further refinements under consideration include:

1. Use elapsed time rather than numbers of callbacks
to enforce the limiting in rcu do batch().

2. Dynamically varying the number of callbacks to be
executed based on workload or other measurement.

4.2 Direct Invocation of RCU Callbacks
Traditionally, most realtime and embedded systems have
had but a single CPU. Single-CPU systems can in some
cases short-circuit some of the RCU processing in some
cases.

For example, if an element has just been removed
from an RCU-protected data structure, and if there are
no references to this element anywhere in the call stack,
the element may safely be freed, since there is no other
CPU that can be holding any additional references.
However, it is not always possible to determine whether
the call stack is free of references. For example, inter-
rupt handlers can interrupt any function that runs without
masking interrupts. Furthermore, many functions are in-
voked via function pointers or APIs that might be used
anywhere in the kernel.

Therefore, direct invocation of RCU callbacks cannot
be applied in all cases. Each use of RCU must be in-
spected to determine whether or not that particular use
qualifies for direct invocation. However, it turns out that
the important cases of dcache and of the IP route cache
do qualify. When running on a uniprocessor, these two
subsystems can simply immediately execute the RCU
callback, so that there is no “pileup” of RCU callbacks
at the end of the grace period.

Figure 9 shows how a call rcu rt() primi-
tive may be defined, which immediately invokes the
RCU callback in a realtime uniprocessor kernel, but
invokes call rcu() otherwise [Sar03]. The new
call rcu rt() API prevents existing call rcu()
users from breaking, while allowing specific subsystems
to use RCU in a more realtime-friendly manner.

Given this primitive, the trivial change to d free()
shown in Figure 10 renders the dcache subsystem



1 static void d_free(struct dentry *dentry)
2 {
3 if (dentry->d_op && dentry->d_op->d_release)
4 dentry->d_op->d_release(dentry);
5 call_rcu_rt(&dentry->d_rcu, d_callback, dentry);
6 }

Figure 10: dcache Call-Through RCU

1 #define rcu_read_lock_bh() local_bh_disable()
2 #define rcu_read_unlock_bh() local_bh_enable()

Figure 11: Disabling softirq Processing

realtime-friendly. The single call rcu() in dcache
has simply been replaced by call rcu rt().

The changes required to the IP route cache are more
complex, due to the fact that the route cache may be up-
dated from interrupt context, but is accessed from pro-
cess context. For an example of the problem that this
poses, suppose that ip route output key() is
interrupted while accessing the IP route cache in process
context, and that the interrupt handler invokes softirq
upon return. A softirq action might then delete the
entry that ip route output key() is currently
referencing. If the interrupt handler were to invoke
call rcu rt(), then ip route output key()
would fail upon return from interrupt.

This problem can be solved by having
ip route output key() disable softirq

(and bottom-half processing) during the traver-
sal, similar to the manner in which preemption is
already disabled. New rcu read lock bh()
and rcu read unlock bh() primitives do just
this, as shown in Figure 11. The IP route cache
code (in functions rt cache get first(),
rt cache get next(),
rt cache get next(), rt cache seq next(),
ip route output key(), and ip rt dump())

is then changed to use these new operations in place of
rcu read lock() and rcu read unlock().

Finally, as with dcache, the rt free()
and rt drop() functions are changed to use
call rcu rt() instead of call rcu(), as shown
in Figure 12.

These changes are quite straightforward, but of course
this call rcu rt() approach works only on single-
CPU systems. The increasing popularity of multi-
threaded CPUs makes this restriction less tenable on
x86 CPUs, though it would still hold on some embed-
ded CPUs. In addition, existing and planned uses of
call rcu() must be carefully vetted in order to en-
sure that direct invocation of the RCU callback is safe.
At this writing, dcache and IP route cache are the two
biggest realtime offenders, and they both are amenable
to use of call rcu rt(), but it is easy to imagine less

1 static __inline__ void rt_free(struct rtable *rt)
2 {
3 call_rcu(&rt->u.dst.rcu_head,
4 (void (*)(void *))dst_free, &rt->u.dst);
5 }
6
7 static __inline__ void rt_drop(struct rtable *rt)
8 {
9 ip_rt_put(rt);

10 call_rcu(&rt->u.dst.rcu_head,
11 (void (*)(void *))dst_free, &rt->u.dst);
12 }

Figure 12: Freeing and Dropping IP Route Table Entries

fortunate circumstances.
As a result, a realtime-friendly call rcu() imple-

mentation would be preferable.

4.3 Throttling of RCU Callbacks
Another solution to the realtime-degradation problem
is to throttle softirq, so that only a limited number of
RCU callbacks may execute during a given invocation of
do softirq() [Sar04b]. This approach was indepen-
dently suggested by Andrea Arcangeli, and is illustrated
in Figure 13, where the callbacks are executed in short
bursts, limiting the realtime scheduling-latency degrada-
tion.

This solution is implemented using two addi-
tional per-CPU variables, RCU donelist, which is
a list of RCU callbacks awaiting invocation, and
RCU plugticks, which counts down the num-
ber of jiffies to block RCU callback invocation.
RCU plugticks is decremented each scheduling
clock tick on each CPU in scheduler tick().
There are also two module parameters, rcumaxbatch,
which is the maximum number of callbacks that
may be executed in a single softirq invocation, and
rcuplugticks, which is the number of jiffies to
wait after exceeding the rcumaxbatch limit be-
fore resuming RCU callback invocation. Note that
rcuplugticks may be set to zero, in which RCU
callbacks can be run continuously, which allows easy ex-
perimentation.

This callback limiting is enforced in
rcu do batch(), which is shown in Figure 14.
The differences from the stock 2.6 kernel implemen-
tation are quite small. Lines 5 and 6 add count and
cpu variables that count the number of RCU callbacks
invoked and track the current CPU, respectively. Line 13
checks for too many RCU callback invocations and
line 14 sets the per-CPU RCU plugticks variable in
order to prevent RCU callback invocation on this CPU
for the next rcuplugticks jiffies. Line 15 checks
to see if there is to be no such delay, and, if so, line 16
reschedules the tasklet.

The rcu process callbacks() function has



c
a
l
l
_
r
c
u
(
)

c
a
l
l
_
r
c
u
(
)

s
o
f
t
i
r
q

s
o
f
t
i
r
q

CPU 1CPU 0
G

ra
ce

 P
er

io
d

Sc
he

du
lin

g 
L

at
en

cy

Figure 13: Throttling Preserves Realtime Scheduling
Latency

1 static void rcu_do_batch(struct list_head *list)
2 {
3 struct list_head *entry;
4 struct rcu_head *head;
5 int count = 0;
6 int cpu = smp_processor_id();
7
8 while (!list_empty(list)) {
9 entry = list->next;

10 list_del(entry);
11 head = list_entry(entry, struct rcu_head, list);
12 head->func(head->arg);
13 if (++count >= rcumaxbatch) {
14 RCU_plugticks(cpu) = rcuplugticks;
15 if (!RCU_plugticks(cpu))
16 tasklet_hi_schedule(&RCU_tasklet(cpu));
17 break;
18 }
19 }
20 }

Figure 14: Limiting RCU Callback Batch Size

@@ -153,18 +164,16 @@
spin_unlock(&rcu_ctrlblk.mutex);

}

-
/*
* This does the RCU processing work from
* tasklet context.
*/

static void
rcu_process_callbacks(unsigned long unused)
{

int cpu = smp_processor_id();
- LIST_HEAD(list);

if (!list_empty(&RCU_curlist(cpu)) &&
rcu_batch_after(rcu_ctrlblk.curbatch,

RCU_batch(cpu))) {
- list_splice(&RCU_curlist(cpu), &list);
+ list_splice_tail(&RCU_curlist(cpu),
+ &RCU_donelist(cpu));

INIT_LIST_HEAD(&RCU_curlist(cpu));
}

@@ -185,8 +194,8 @@
local_irq_enable();

}
rcu_check_quiescent_state();

- if (!list_empty(&list))
- rcu_do_batch(&list);
+ if (!list_empty(&RCU_donelist(cpu)) &&
+ !RCU_plugticks(cpu))
+ rcu_do_batch(&RCU_donelist(cpu));
}

void rcu_check_callbacks(int cpu, int user)

Figure 15: Callback-Processing Changes

small modifications to place RCU callbacks that are
ready to be invoked onto the per-CPU RCU donelist
list rather than on a local list, and to check for
RCU plugticks. The diffs are shown in Figure 15.

This small set of changes relies on the fact that
do softirq() exits after MAX SOFTIRQ RESTART
number of iterations. When do softirq() is invoked
from ksoftirqd(), returning to ksoftirqd()
re-enables preemption. On the other hand, when
do softirq() is invoked from interrupt context,
returning to interrupt context in turn results in ex-
iting interrupt context. Either alternative prevents
rcu do batch() from excessively degrading real-
time response.

5 Evaluation
These three approaches were tested on a uniproces-
sor 2.4GHz P4 system with 256MB of RAM running
dbench 32 in a loop. The kernel was built with
CONFIG PREEMPT=y, and the configuration excluded
realtime-problematic modules such as VGA. Realtime
scheduling latency was measured using Andrew Mor-
ton’s amlat utility. The results are shown in Table 1.
All three approaches greatly decrease realtime schedul-
ing latency. Although direct invocation performs some-
what better than do the other two approaches, the differ-



ence is not statistically significant. Therefore, the sim-
pler throttling approach seems preferable at present.

Although these numbers do not meet the 250-
microsecond goal, they do indicate that RCU has been
made safe for realtime environments. Changes to other
parts of Linux will be needed in order to fully meet this
goal. Such changes are likely to expose more significant
performance differences between the three low-latency
RCU approaches, so these tests should be re-run at that
time.

Note that although the current testing techniques are
not sufficient to validate the Linux 2.6 kernel for use by
hard-realtime applications on which lives depend, they
do demonstrate usefulness to soft realtime applications,
even those requiring deep sub-millisecond realtime re-
sponse.

6 Future Work

Future work includes applying realtime modifications
to RCU in order to better withstand denial-of-service
attacks, including taking full-network-adaptor-speed at-
tacks while still providing good response to console in-
put and user commands. It is likely that successfully
withstanding such attacks will require additional work
on the softirq layer in order to ensure that user processes
are allowed to run even when the attack is sufficient to
consume the entire system with softirq processing.

Of course, Linux will require more work if it is to
meet more stringent realtime scheduling latencies, to say
nothing of hard realtime requirements. Since some re-
altime applications require 10-microsecond scheduling
latencies, it will be interesting to see if Linux can meet
these applications’ needs without sacrificing its useful-
ness to other workloads or its simplicity.

7 Acknowledgments

We owe thanks to Robert Love and Andrew Morton,
who brought this problem to our attention. We are in-
debted to Andrew Morton for the amlat application
that measures realtime scheduling latency, and to Jon
Walpole and to Orran Krieger for many valuable discus-
sions regarding RCU. We are grateful to Tom Hanrahan,
Vijay Sukthankar, Daniel Frye, Jai Menon, and Juergen
Deicke for their support of this effort.

8 Availability

RCU is freely available as part of the Linux 2.6
kernel from ftp://kernel.org/pub/linux/
kernel/v2.6. The patches described in this paper
are freely available from any archive of the Linux Ker-
nel Mailing List.

Legal Statement
This work represents the view of the author and does not nec-
essarily represent the view of IBM.
Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trade-
marks or service marks of others.

References
[ACMS03] Andrea Arcangeli, Mingming Cao, Paul E.

McKenney, and Dipankar Sarma. Using
read-copy update techniques for System V
IPC in the Linux 2.5 kernel. In Proceed-
ings of the 2003 USENIX Annual Technical
Conference (FREENIX Track), June 2003.

[GKAS99] Ben Gamsa, Orran Krieger, Jonathan Ap-
pavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a
shared memory multiprocessor operating
system. In Proceedings of the 3rd Sympo-
sium on Operating System Design and Im-
plementation, New Orleans, LA, February
1999.

[KL80] H. T. Kung and Q. Lehman. Concur-
rent maintenance of binary search trees.
ACM Transactions on Database Systems,
5(3):354–382, September 1980.

[LSS02] Hanna Linder, Dipankar Sarma, and Ma-
neesh Soni. Scalability of the directory en-
try cache. In Ottawa Linux Symposium,
pages 289–300, June 2002.

[MAK
�

01] Paul E. McKenney, Jonathan Appavoo,
Andi Kleen, Orran Krieger, Rusty Russell,
Dipankar Sarma, and Maneesh Soni. Read-
copy update. In Ottawa Linux Symposium,
July 2001.

[McK03] Paul E. McKenney. Using RCU in
the Linux 2.5 kernel. Linux Journal,
1(114):18–26, October 2003.

[McK04] Paul E. McKenney. Exploiting Deferred
Destruction: An Analysis of Read-Copy-
Update Techniques in Operating System
Kernels (in preparation). PhD thesis, Ore-
gon Graduate Institute of Science and Tech-
nology, 2004.

[ML84] Udi Manber and Richard E. Ladner. Con-
currency control in a dynamic search struc-
ture. ACM Transactions on Database Sys-
tems, 9(3):439–455, September 1984.

[MS98] Paul E. McKenney and John D. Slingwine.
Read-copy update: Using execution history



Configuration Latency (microseconds) Standard Deviation
Base 2.6.0 811.0 85.26
krcud 406.4 17.87
Direct Invocation 393.0 37.18
Throttle 414.8 37.83

Table 1: Realtime Scheduling Latencies

to solve concurrency problems. In Par-
allel and Distributed Computing and Sys-
tems, pages 509–518, Las Vegas, NV, Oc-
tober 1998.

[MSA
�

02] Paul E. McKenney, Dipankar Sarma, An-
drea Arcangeli, Andi Kleen, Orran Krieger,
and Rusty Russell. Read-copy update. In
Ottawa Linux Symposium, pages 338–367,
June 2002.

[MSS04] Paul E. McKenney, Dipankar Sarma, and
Maneesh Soni. Scaling dcache with RCU.
Linux Journal, 1(118), January 2004.

[Pug90] William Pugh. Concurrent maintenance
of skip lists. Technical Report CS-TR-
2222.1, Institute of Advanced Computer
Science Studies, Department of Computer
Science, University of Maryland, College
Park, Maryland, June 1990.

[SAH
�

03] Craig A. N. Soules, Jonathan Appavoo,
Kevin Hui, Dilma Da Silva, Gregory R.
Ganger, Orran Krieger, Michael Stumm,
Robert W. Wisniewski, Marc Auslander,
Michal Ostrowski, Bryan Rosenburg, and
Jimi Xenidis. System support for online
reconfiguration. In Proceedings of the
2003 USENIX Annual Technical Confer-
ence, June 2003.

[Sar03] Dipankar Sarma. Rcu low la-
tency patches. Message ID:
20031222180114.GA2248@in.ibm.com,
December 2003.

[Sar04a] Dipankar Sarma. [patch] rcu
for low latency (experimental).
http://marc.theaimsgroup.
com/?l=linux-kernel\&m=
108003746402892\&w=2, March
2004.

[Sar04b] Dipankar Sarma. Re: [patch] rcu
for low latency (experimental).
http://marc.theaimsgroup.
com/?l=linux-kernel\&m=
108016474829546\&w=2, March
2004.

[Sei03] Joseph W. Seigh II. Read copy update.
email correspondence, March 2003.


