
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



The FlightGear Flight Simulator

Alexander R. Perry
PAMurray, San Diego, CA
alex.perry@flightgear.org
http://www.flightgear.org/

Abstract

The open source flight simulator FlightGear is developed
from contributions by many talented people around the world.
The main focus is a desire to ‘do things right’ and to min-
imize short cuts. FlightGear has become more configurable
and flexible in recent years making for a huge improvement
in the user’s overall experience. This overview discusses the
project, recent advances, some of the new opportunities and
newer applications.

Introduction

The open source flight simulator FlightGear has come a long
way since first being showcased at LinuxWorld in San Jose.

In April 1996, David Murr proposed a new flight simulator
developed by volunteers over the Internet. This flight simu-
lator was to be distributed free of charge via the Internet and
similar networks. Curt Olson made a multi-platform release
of FlightGear[1] in July 1997.

Since then, it has expanded beyond flight aerodynamics
by improving graphics, adding a shaded sky with sun, moon
and stars correctly drawn, automatically generated world-
wide scenery, clouds and fog, head up display and instrument
panel, electronic navigation systems, airports and runways,
network play, and much more.

Recent changes to the simulator have simplified the cus-
tomization of those features by the user, as discussed in more
detail below. Instead of being in the source code, the con-
figuration data is now specified on the command line and/or
accessible using menu items and/or loaded from simple files.

Simulator Portability

FlightGear aims to be portable across many different proces-
sors and operating systems, as well as scale upwards from
commodity computers. The source has to be clean with re-
spect to address width and endianness, two issues which in-

convenience most open source projects, in order to to run on
Intel x86, AMD64, PowerPC and Sparc processors.

In addition to running the simulation of the aircraft in
real time, the application must also use whatever peripher-
als are available to deliver an immersive cockpit environ-
ment to the aircraft pilot. Those peripherals, such as sound
through speakers, are accessed through operating system ser-
vices whose implementation may be equivalent, yet very dif-
ferent, under the various operating systems. FlightGear cur-
rently supports Windows, FreeBSD, Linux, Solaris, MacOS,
Irix and OS-X.

For those services which are common across most video
games, the independent project PLIB offers a simple API
that acts as a Portable Library[2]. Compared to Windows,
MacOS and the Unix’s, the various distributions and releases
of Linux-based operating systems are very similar. There are
important differences, most of which cause problems when
trying to build and test PLIB, so these rarely impact Flight-
Gear directly. Once the facilities required by video games are
available through the Portable Library, the remainder of the
code acts as a conventional application.

Any Linux user can download the source, compile it and
safely expect it to run. FlightGear, and other applications with
extensive 3D visual effects as in figure 1, may use different
libraries under the same Linux distribution so that the binary
may not be portable between computers. Some hardware only
has accelerated 3D under XFree86 version 3, other hardware
requires version 4, and their GLX APIs differ. This is being
addressed by the Linux OpenGL Application Binary Interface
(ABI)[4] but continues to be a source of frustration for new
would-be users.

Once the issues associated with running the simulation pro-
gram on a specific computer are resolved, everything else is
portable. The configuration information can be freely trans-
ferred across processors and operating systems. Each instal-
lation can benefit from the broad range of scenery, aircraft
models, scenarios and other adaptations that have been made
available by any user.



Figure 1: Pilot’s view from a Cessna 172 making a poor approach for landing at San Francisco International Airport. The
“Time of Day” pop up menu is partially visible, with seven quick selects and an additional button for typing in the time. Seven
consecutive screen dumps, from a wide screen display, have been combined to demonstrate the simulator’s lighting model

Simulator Structure

Unlike proprietary commercial PC flight simulators, the Open
Source nature of the FlightGear project permits modification
and enhancement. Since the project wishes to encourage its
user community to embrace, extend and improve the simula-
tion, the FlightGear source offers a flexible framework.

The FlightGear source tree is only one level deep, except
that all the flight data models are each in their own sub-
directory located under the FDM directory. Each directory
contains a few header files that expose its object definitions.
Other source files refer to the headers directly, without the
frustrations of path globbing or multiple include paths for
the compiler. The directory names are mostly pretty self-
explanatory:

AIModel, Aircraft, Airports, ATC, Autopilot, Cockpit, Con-
trols (in the aircraft cockpit), Environment, FDM (only one
constituent is in use), GUI (menus and the like), Include (for
compiler configuration), Input (joysticks etc), Instrumenta-
tion, Main (initialization and command line parsing), Model
(3D aircraft), MultiPlayer, Navaids, Network (data sharing),
Objects (dynamically loaded and changing scenery), Replay,
Scenery (static), Scripting (remote script control), Server,
Sound, Systems and Time (in the simulated world).

FlightGear exposes the internal state of the simulation

through the property database, part of the generic simulation
infrastructure offered by SimGear[6]. This dynamically maps
a name (such as /position/latitude) into an object
with getter and setter methods. If the property will be ac-
cessed frequently, the pointer to the object can be stored so
that the string lookup of the name only occurs one time. The
single pointer indirection is still somewhat slower than hard
linkage, but enhances the modularity of the code base. For
example, the user interface definitions in XML files (panels,
instruments, 3D animation, sound, etc) are able to refer to any
property offered by any subsystem.

The simulator state is also accessible on the network.
Adding the command line option --telnet=5555 allows
another computer (such as the instructor console) to inter-
act with the simulator computer using a command such as
telnet simulator 5555. This network interface al-
lows any property in the database to be viewed or modified
and includes remote enumeration of all the property names.
This has been used to implement a complete external operator
GUI and for automating FAA certification tests.

Many tasks within the simulator need to only run periodi-
cally. These are typically tasks that calculate values that don’t
change significantly in 1/60th of a second, but instead change
noticeably on the order of seconds, minutes, or hours. Run-
ning these tasks every iteration would needless degrade per-



Figure 2: Panoramic scenery, configured by Curt Olson

formance. Instead, we would like to spread these out over
time to minimize the impact they might have on frame rates,
and minimize the chance of pauses and hesitations.

We do this using the Event Manager and Scheduler, which
consists of two parts. The first part is simply a heap of regis-
tered events along with any management information associ-
ated with that event. The second part is a run queue. When
events are triggered, they are placed in the run queue. The
system executes only one pending event per iteration in or-
der to balance the load. The manager also acquires statistics
about event execution such as the total time spent running this
event, the quickest run, the slowest run, and the total number
of times run. We can output the list of events along with these
statistics in order to determine if any of them are consuming
an excessive amount of time, or if there is any chance that a
particular event could run slow enough to be responsible for
a perceived hesitation or pause in the flow of the simulation.

FlightGear itself supports threads for parallel execution,
which distributes tasks such as scenery management over
many iterations, but some of the library dependencies are
not themselves thread clean. Thus all accesses to non-thread-
clean libraries (such as loading a 3D model) need to be made
by a single thread, so that other activities wishing to use the
same library must be delayed. These small delays can lead to
minor user-visible hesitations.

Simulator Execution

FlightGear is packaged by all major distributions and most
others too, so that installation of pre-built binaries can usually
be completed in a few minutes. Almost all customization,
including adding new aircraft and scenery, occurs through
XML and through a structured directory tree. Most users can
now simply use the prepackaged distributed binaries and no
longer need to recompile the simulator to add new features.

However, this is a rapidly changing project and new func-
tionality is added to the source code on an continuing ba-
sis. If a user wishes to take advantage of a new capability
or function, when customizing the simulation for their indi-
vidual needs, that source version does of course need to be

compiled.
Installing and running FlightGear is relatively easy under

Linux, especially compared to other operating systems with
weak tool automation.

1. Install Linux normally and test Internet access.

2. Add video card support, using a maximum of 25% of
memory for the 2D display, as 3D uses the remainder.

3. Enable hardware accelerated OpenGL support and test
for speed, using glTron[5] for example.

4. Install[2] PLIB 1.8 or above, which is already in many
distributions, and test with all the supplied examples to
ensure all the API features are working.

5. Verify that headers for zlib and similar are present.

6. Download[6], compile and install SimGear.

7. While that compiles, download the FlightGear source.

8. With SimGear installed, compile and install FlightGear

9. While compiling, download FlightGear’s base package.
This contains data files that are required at runtime.

10. Type runfgfs and enjoy.

Starting from a blank hard drive with no operating system,
FlightGear can be running in less than an hour.

Simulating the Pilot’s view

The new FlightGear pilot will probably not want to remain
within the San Francisco bay area, which is the small scenery
patch included in the Base package. The scenery server al-
lows the selection and retrieval of any region of the world.
Joining other users in the sky is another possibility.

Due to limited monitor size, the view that is available on a
normal computer is a poor substitute for the wraparound win-
dows of general aviation aircraft. This is especially true when
the simulated aircraft has an open cockpit and an unrestricted
view in almost all directions.

FlightGear can make use of multiple monitors to provide a
nicer external view, possibly even wrap around, without spe-
cial cabling. The additional computers and monitors need
not be dedicated to this purpose. Once the command lines
and fields of view (relative to the pilot) for each of the ad-
ditional computers have been established, the main computer
will make the necessary data available irrespective of whether
those other computers are actually running FlightGear. In
consequence, each of the additional computers can change
from a ‘cockpit window’ to a office software workstation (for
someone else) and, when available again, rejoin the Flight-
Gear simulation session.



Figure 3: Looking east from Mount Sutro, just south of Golden Gate Park. The scenery shows the shoreline, variations in land
use from scrubland on the hill and urban beyond, randomly placed trees in the scrubland and buildings in the urban area, custom
created additional objects for the tower, downtown buildings and the Bay Bridge, and an interstate freeway. The sky shows the
limited visibility due to haze and some scattered clouds.



FlightGear has built in support for network socket com-
munication and the display synchronizing is built on top of
this support. FlightGear also supports a null or do-nothing
flight model which expects the flight model parameters to be
updated somewhere else in the code. Combining these two
features allows you to synchronize displays.

Here is how Curt Olson set up the example in figure 2:

1. Configure three near identical computers and monitors.

2. Pick one of the computers (i.e. the center channel) to be
the master. The left and right will be slaves s1 and s2.

3. When you start runfgfs on the master, use the com-
mand line options
--native=socket,out,60,s1,5500,udp
--native=socket,out,60,s2,5500,udp
respectively to specify that we are sending the “native”
protocol out of a udp socket channel at 60 Hz, to a slave
machine on port 5500.

4. On each slave computer, the command line option
--native=socket,in,60,,5500,udp shows
that we expect to receive the native protocol via a udp
socket on port 5500. The option --fdm=external
tells the slave not to run it’s own flight model math, but
instead receive the values from an “external” source.

5. You need to ensure that the field of view on the scenery
matches the apparent size of the monitor to the pilot.
--fov=xx.x allows you to specify the field of view in
degrees on each computer display individually.

6. --view-offset=xx.x allows you to specify the
view offset direction in degrees. For instance,
--view-offset=0 for the center channel,
--view-offset=-50 for slave 1, and
--view-offset=50 for slave 2.

There is no built in limit to the number of slaves you may
have. It wouldn’t be too hard to implement a full 360

o wrap
around display using 6 computers and 6 projectors, each cov-
ering 60

o field of view on a cylindrical projection screen. Ide-
ally, the master computer should be chosen to be whichever
visual channel has the lightest graphical workload. This
might be the dedicated instrument panel, for example. If the
master computer has a heavy graphical workload, the other
channels will usually lag one frame behind. Select the graph-
ics realism parameters to ensure that all the visual channels
consistently achieve a solid and consistent frame rate (30 Hz

for example) and, if your video card supports it, lock the
buffer swaps to the vertical refresh signal.

For optimal results, make sure the FOV each display sub-
tends, matches the actual FOV that display covers from the
pilot’s perspective. From the top view, draw a line from the
pilot’s eye to each edge of the display. Measure the angle and

use that for your visual channel configuration. Draw a line
from the eye to the center of the display. Measure the angle
from that line to the dead center straight ahead line. Use that
angle for the view offset. This ensures that all objects in your
simulator will be exactly life size.

Simulating the Aircraft

The aerodynamic simulation may be only one constituent of
the whole environment being simulated for the user, but its
performance is critical to the quality of the user’s simulation
experience. Errors in this Flight Dynamics Model (FDM) are
distracting to the pilot. Other simulator components, such as
the autopilot, are designed to expect a realistic aircraft, may
respond incorrectly as a result of FDM errors and provide
additional pilot distractions. These factors can ruin the im-
mersive experience that the user is seeking.

As a result of this concern, FlightGear abstracts all of the
code that implements an FDM behind an object oriented in-
terface. As future applications find that existing FDM choices
do not meet their requirements, additional FDM code can be
added to the project without impacting the consistent perfor-
mance of existing applications.

The original FlightGear FDM was LaRCsim, originally
modeling only a Navion, which currently models a Cessna
172 using dedicated C source that has the necessary coeffi-
cients hard coded. It is sufficient for most flight situations
that a passenger would choose to experience in a real aircraft.
Unusual maneuvers that are often intentionally performed for
training purposes are poorly modeled, including deep stalls,
incipient and developed spins and steep turns. The code also
supports a Navion and a Cherokee, to a similar quality.

A research group at the University of Illinois created a
derivative of LaRCsim, with simplified the models such that
they are only really useful for cruise flight regimes. They
enhanced the code with a parametric capability, such that a
configuration file could be selected at simulation start to de-
termine how the aircraft will fly. Their use for this modi-
fication was to investigate the effect on aircraft handling of
progressive accumulations of ice.

Another group is developing a completely parametric FDM
code base, where all the information is retrieved from XML
format files. Their JSBSim project[7] can run independently
of a full environmental simulation, to examine aerodynamic
handling and other behavior. An abstraction layer links the
object environment of FlightGear to the object collection of
JSBSim to provide an integrated system. Among many oth-
ers, this FDM supports the Cessna 172 and the X-15 (a experi-
mental hypersonic rocket propelled research vehicle), provid-
ing the contrast between an aircraft used for teaching student
pilots and an aircraft that could only be flown by trained test
pilots.

An additional FDM code base, YASim, generates reason-
able and flyable models for aircraft from very limited infor-



mation. This is especially valuable when a new aircraft is
being added into FlightGear. Initially, there is often insuf-
ficient public data for a fully parametric model. This FDM
allows the aircraft to be made available to the user commu-
nity, thereby encouraging its users to find sources of addi-
tional data that will improve the model quality.

The rest of FlightGear’s configuration files are now also
XML, such as the engine models, the instrument panel lay-
outs and instrument design, the HUD layout, the user prefer-
ences and saved state. The real benefit of using XML here
is that people with no software development experience can
easily and effectively contribute. Pilots, instructors, mainte-
nance technicians and researchers each have in-depth tech-
nical knowledge of how a specific subsystem of an aircraft,
and hence the simulator, should behave. It is critical that we
allow them direct access to the internals that define their re-
spective subsystem, without burdening them with having to
dig through other subsystem data to get there. We have made
huge progress on achieving this in the last two years.

Simulating the Cockpit

In order to simulate the cockpit environment around the pi-
lot, additional information is included from subsidiary XML
files. These include a 3D model of the cockpit interior, as-
sociations of keyboard keys to panel switches, the instrument
panel layout and position, visual representations of the indi-
vidual instruments, mappings between joystick channels and
flight controls, parametric descriptions of the head up display
elements, a 3D model of the aircraft exterior, animation of
moving aircraft surfaces and other reference data.

In the same way that aircraft manufacturers reuse much
of their designs and instruments across product lines, many
XML files are included by multiple aircraft models. Once
loaded, this information is integrated into the simulation.

For example, one can look into the cockpit from outside,
as shown in figure 4, and see the live instrument panel indica-
tions. This is the same exact instrument panel being shown to
the pilot when inside the cockpit, demonstrating that Flight-
Gear has a fully working 3D animated cockpit that is visible
from inside or out.

Some aircraft types have ‘glass cockpit’ displays, as shown
in figure 7. The independent project OpenGC [8] is a multi-
platform, multi-simulator, open-source tool for developing
and implementing high quality glass cockpit displays for sim-
ulated flightdecks. Due to the resolution and size limitations
of computer monitors, the OpenGC images are best on a sep-
arate monitor from FlightGear.

The head up display of a real aircraft uses computer gener-
ated graphics, so the software can generally detect, and cor-
rect for, the flaws and inaccuracies in the sensors that are
feeding it data. As a result, the information presented to the
pilot is generally accurate. Simulating that is relatively easy,

Figure 4: Closeup of an A4 with the animated cockpit interior

since the actual state of the aircraft (in the properties) can be
retrieved and directly displayed.

An important aspect of learning to fly an aircraft (without
computer assistance) is understanding what the limitations
and errors of the various instruments are, and when their in-
dications can be trusted as useful flight data. Unfortunately,
the information from panel instruments has errors, which in
general only read a single sensor value with negligible correc-
tion for the limitations of the sensors being used. When the
FlightGear panel advanced from no errors to having only two
of the limitations implemented (VSI lag and compass turning
errors), the non-pilot developers went from trivially flying in-
strument approaches to frequent ground impacts. Many more
limitations have been realistically implemented since.

Considerable effort is needed to write this code. Gyro-
scopes can slow down and wobble, their rotation axis can
drift, they can hit gimbal stops and tumble and their power
source can be weak or fail. Air-based instruments are wrong
in certain weather conditions, tend not to respond immedi-
ately, can be blocked by rainwater in the lines, or become
unusable when iced over. Radio navigation is subject to line-
of-sight, signals bounce off hills and bend near lake shores or
where another aircraft is in the way and distant stations can
interfere. Still more errors are associated with the magnetic
compass, and other instruments that seem ’trivial’.

Currently, the communication radios are not implemented,
so that pilots cannot use their microphone inputs to interact.



Radio usage is a large part of the complexity in operating at
large and busy airports. Unfortunately, this often encourages
pilots to fly the microphone and forget about the airplane, oc-
casionally with disastrous results. We hope to implement this
feature soon, to provide another source of challenging dis-
tractions to the pilot.

Although voice communication between pilots is not yet
supported, there is an artificial intelligence (AI) subsystem
that seeks to make the airspace feel less empty. This subsys-
tem moves other aircraft around the sky as a source of distrac-
tion, issues ATC style instructions and responses, and ATIS
messages. Somewhat surprisingly, everywhere in the world,
the ATIS always has a British accent.

Simulating the World

The purpose of the TerraGear project[9] is to develop open-
source tools and rendering libraries and collect free data for
building 3D representations (or maps) of the earth for use
in real time rendering projects. There is much freely avail-
able Geographic Information System (GIS) data on the In-
ternet. Because the core data for FlightGear has to be unre-
stricted, the default use of the project only uses source data
that doesn’t impose restrictions on derivative works. Three
categories of data are used.

Digital Elevation Model (DEM) data is typically a set of
elevation points on a regular grid. Currently, 30 arcsecond
(about 1 km = 0.6 mi) data for the whole world, and 3
arcsecond (90 m) data from the Shuttle Radar Topography
Mission (SRTM) for the United States and Eurasia, is avail-
able from the U.S. Geological Survey (USGS). Although the
SRTM data was originally recorded in February 2000, the
signal processing by the Jet Propulsion Laboratory (JPL) is
being continuously improved. The recent releases with even
finer grids, including 1 arcsecond, would offer much better
resolution of landscape features but still suffer from artifacts
around large buildings. Future improvements in these data
sources are hoped for.

Irrespective of which data source is selected for a given
area, an optimizing algorithm seeks to find the smallest num-
ber of flat triangles that provide a fairly smooth and realistic
terrain contour. This algorithm reduces the number of tri-
angles need to render an area while preserving all the detail
within some specified error tolerance.

Other more specialized data such as airport beacon, light-
house locations, radio transmission towers and the like are
available in listings from various government agencies. These
generally provide a short text description of the item and its
geographic coordinates. The challenge is to convert each en-
try into a realistic visual object which can be inserted into the
scenery database.

Polygonal data such as landmass outlines, lakes, islands,
ponds, urban areas, glaciers, land use and vegetation are
available from the USGS and other sources. Unfortunately,

the land use data is many years old and thus may not be
current with a pilot’s local real world knowledge and this
is not expected to change in the near future. The GSHHS
database provides a highly detailed and accurate global land
mass data so we can model precise coast lines for the entire
world. Based on the source of the data and factoring in the
land use data, we can select an appropriate texture which will
be painted onto the individual triangles. Where necessary,
triangles are subdivided to get the effect correct. Runways
and taxiways are generated by converting the list of runway
segments into polygons, painted with appropriate surface tex-
ture and markings, and then integrated into the scenery in the
same way.

Clearly, someone can gain access to data sources that are
under more restrictive licenses, use the TerraGear project
tools to generate enhanced scenery and then distribute those
files as they choose. Both the FlightGear and TerraGear
projects encourage this kind of enhancement, because the ba-
sic open source packages cannot do this.

There is a trade-off between the quality of the scenery and
the speed at which it can be rendered by the graphics card.
As cards get faster, it becomes feasible to place more detail
into the scenery while maintaining a useful and smooth visual
effect. There are many techniques for adjusting the level of
detail according to the altitude and attitude of the aircraft, to
optimize the visual quality, but none of them are currently
implemented as they cause visual artifacts.

The scenery system adds trees, buildings, lights (at night)
and other objects. The choice of object, as well as the cover-
age density, is determined by the land use data. These objects
are relatively slow to display in large quantities, so the user
must trade off the reduction in display responsiveness against
the improved cues for height, speed and underlying terrain.
Like other settings, this property may be adjusted in real time.
Figure 3 shows randomly placed buildings and trees, with a
maximum range of about half way to downtown San Fran-
cisco, together with the manually placed downtown area and
bay bridge.

Airports have runways and taxiways that are automatically
created from the best available information to ensure that their
locations, dimensions and markings correspond to real life.
This is not trivial, since there are dozens of different levels
of painting complexity in use. This information is also used
to determine the pattern of lighting, if any - since some air-
ports have no lights, that is shown at night and during twilight.
Some lights are directional, multicolored, flashing or are de-
fined to have a specific relative brightness. Figure 1 shows
the lights and markings for KSFO.

Currently, the visual effect is clearly synthetic, as can be
seen in figures 3 and 4, but it has sufficient information to
readily permit navigation by pilotage (i.e. comparing the
view out of the window to a chart). The compressed data
requires about one kilobyte per square kilometer. All the in-
formation inside the scenery database is arranged in a four-



Figure 5: World scenery

level hierarchy, each level changing scale by a factor between
10 and 100:

1. One planet, currently only the Earth

2. 10
o
× 10

o rectangle as shown in figure 5,

3. 1
o
× 1

o
≈ 70 mi× 50 mi = 100 km× 60 km,

4. 50 mi
2

= 100 km
2 approximately.

One of the difficulties facing the TerraGear developers is
that most information sources are only generated at a na-
tional level. It is easy to justify writing special code to read
and process data files for the largest ten countries, since they
cover most of the land surface of the planet, but this approach
rapidly reaches the point of diminishing returns.

There are already many organizations that painstakingly
collect and transform the data into standardized formats, pre-
cisely for these kinds of applications. However, the huge
amount of effort involved requires them to keep the prices
extremely high in order to fund the conversions. Therefore,
in the medium term, it is possible that these organizations (or
one of their licensees) may start selling TerraGear compatible
scenery files that is derived from their data archive. You can
expect a high price tag for such reliable data though.

Downloading the World

The scenery for the entire world currently requires 3 DVD-
ROMs, which is a significant download for users with broad-
band access and an prohibitive barrier for dial up access users.

It was hoped that someone would get around to writing a
utility for on-demand streaming of scenery to the user, but
this hasn’t happened. A significant factor is that this stream-
ing real time bandwidth is much more expensive to host than
the existing bulk retrieval. Money aside, it isn’t a difficult
problem.

Suppose we consider the pilot’s viewpoint. Most general
aviation aircraft cruise below 200 knots and flight visibility is
(in real life) usually below 20 miles at their cruise altitudes.
The database uses about one megabyte for 600 square miles
so the peak streaming rate would be 12 megabytes/hour, less
for areas previously visited. A 56K modem is easily capable
of 12 megabytes/hour.

The utility for streaming scenery download does not need
to be integrated into the core FlightGear source code. The lat-
itude and longitude of the aircraft are already exported for use
by independent programs, so the center of interest is trivially
available. Since the scenery is stored in 100 km

2 pieces, an
independent program need only generate a list of the closest
elements that have not been fetched yet, and issue a wget to
ensure that they will be available before the aircraft gets close
enough for the pilot to see them.

Simulating the Charts

Laptop/PDA applications for use in flight are becoming in-
creasingly popular with light aircraft pilots, since they assist
in situational awareness and in managing flight plan logs,
navigation data and route planning. While FlightMaster,
CoPilot and other applications are valuable tools, it is danger-
ous for pilots to use them in an aircraft without first becoming
familiar with the user interface and gaining some practice.

FlightGear offers several specialist interfaces, one of which
emits a stream of NMEA compliant position reports (the for-
mat used by GPS units) to serial port or UDP socket. This can
be fed directly into one of those applications, which doesn’t
notice that this isn’t coming from a real GPS, enabling the
user to practice realistic tasks in the context of the simulated
aircraft and all the realistic workload of piloting.

Data that is released into the public domain is generally of
reduced quality, or out of date, or does not give widespread
area coverage. The TerraGear scenery from such data is ac-
tually wrong, compared to the real world, but generally only
in ways that are visually unobtrusive to the casual user.

These errors are much more visible in electronic naviga-
tion, such as needed for instrument flight, since the route
tolerances are extremely tight. Navigating the simulated air-
craft around imperfect scenery according to current Jeppe-
sen (or NOS, etc) charts (or electronic databases) can be ex-
tremely frustrating and occasionally impossible when a piece
of scenery is in the way.

To avoid the frustration, the Atlas project[10] has devel-
oped software which automatically synthesizes aviation style
charts from the actual scenery files and databases being used
by FlightGear. These charts, while inaccurate to the real
world and therefore useless for flight in an aircraft, are ex-
tremely accurate for the simulated world in which the Flight-
Gear aircraft operate. Thus, it is often easier to make printouts
from the Map program of the Atlas project.



Figure 6: Atlas chart of San Francisco, California

The project also includes the namesake Atlas application.
This can be used for browsing those maps and can also accept
the GPS position reporting from FlightGear in order to dis-
play aircraft current location on a moving map display. This
capability must be used selectively by the simulator pilot,
since most small aircraft do not have built in map displays.

The Atlas moving map need not run on the same computer
as the simulator, of course. It is especially valuable running
on the instructor’s console, where the pilot cannot see the pic-
ture, for gauging the student performance at assigned tasks.

Simulating the Weather

Weather consists of many factors. Some items, such as air
temperature and pressure, are invisible but have a strong ef-
fect on aircraft performance. Other items, such as smog lay-
ering, have no effect on the aircraft or piloting duties but con-
tribute to realism (in Los Angeles, for example). In between
these limits are many other items, such as wind and cloud,
that must be simulated in order to reproduce the challenges
facing the aircraft and pilot. Some complex items, such as
turbulence, affect the simulation in many ways and are capa-
ble of making the aircraft realistically unflyable.

While FlightGear supports all these items, each of which
can vary by location, altitude and time, leading to the diffi-
culty of enabling the user to explain the desired configuration
without too much effort. Three modes are currently available.

First, a single set of conditions can be specified on the com-
mand line which will be applied to the entire planet and do not
change over time. This is very convenient for short duration

and task specific uses, such as flying a single instrument ap-
proach from the IAF to the airport, where the same task will
recur for each successive student session.

Second, all the weather configuration is accessible through
the property database and so can be tweaked by the instructor
(for example). This is useful for training on weather decision
making, such as choosing between VFR, SVFR, IFR during
deteriorating conditions.

Third, a background thread can monitor current weather
conditions from http://weather.noaa.gov for the
closest station. This is useful when conditions may be too
dangerous to fly into intentionally, yet the pilot seeks experi-
ence with them. Such training, often an opportunity when a
training flight is canceled, addresses the situation where the
pilot had taken off before the weather deteriorated. Unfor-
tunately, the transitions in weather conditions are necessarily
harsh because the official weather reports may be issued as
infrequently as once per hour. In any case, when flying be-
tween airports, the thread must at some point switch from old
airport’s report to the one ahead.

None of those is the ‘correct’ approach. All of them are es-
pecially suitable for specific situations. Other weather man-
agement approaches can be quickly created, if needed, since
all the weather configuration parameters are properties and
thus can be managed and modified across the network from a
small specially-created utility.

The FlightGear environmental lighting model seeks to of-
fer the best image that can be achieved with the limited
dynamic range of computer monitors. For dusk and night
flights, as shown in the left side of figure 1, it is best to use
a darkened room in order that the subtle differences between
the dark grays and blacks can be seen.

Applications for the Simulator

We have a wide range of people interested and participating
in this project. This is truly a global effort with contributors
from just about every continent. Interests range from building
a realistic home simulator out old airplane parts, to university
research and instructional use, to simply having a viable al-
ternative to commercial PC simulators.

The Aberystwyth Lighter Than Air Intelligent
Robot (ALTAIR)

The Intelligent Robotics Group at the University of Wales,
Aberystwyth, UK is using FlightGear as part of their aerobot
research[11] to design aerial vehicles that can operate in the
atmosphere of other planets.

For those planets and moons that support an atmosphere
(e.g. Mars, Venus, Titan and Jupiter), flying robots, or aer-
obots, are likely to provide a practical solution to the prob-
lem of extended planetary surface coverage for terrain map-
ping and surface/subsurface composition surveying. Not only



could such devices be used for suborbital mapping of ter-
rain regions, but they could be used to transport and deploy
science packages or even microrovers at different geographi-
cally separate landing sites.

The technological challenges posed by planetary aerobots
are significant. To investigate this problem the group is build-
ing a virtual environment to simulate autonomous aerobot
flight.

The NaSt3DGP computational fluid dynamics (CFD) soft-
ware package generates meteorological conditions, which
are ’loaded’ into the FlightGear simulator to create realis-
tic wind effects acting upon an aerobot when flying over a
given terrain. The terrain model used by both FlightGear and
NaSt3DGP is obtained from the MGS Mars Orbiter Laser Al-
timeter (MOLA) instrument, and the Mars Climate Database
(MCD) is used to initialize the CFD simulation.

University of Tennessee at Chattanooga

UTC has been using Flightgear as the basis of a research
project started in August, 2001, with the goal of providing
the Challenger Center at the university (and hopefully other
centers in the future) a low cost virtual reality computer sim-
ulation.

The project is using flightgear and JSBSim, specifically
the shuttle module, to develop a shuttle landing simulator.
They are aiming to contribute instructions, on how to inter-
face their virtual reality hardware with Flightgear, back to
the OS community. The project is funded by the Wolf Avi-
ation Foundation[12]. Dr. Andy Novobiliski is heading the
research project.

ARINC

Todd Moyer of ARINC used FlightGear as part of an effort
to test and evaluate Flight Management Computer avionics
and the corresponding ground systems. Certain capabilities
of the Flight Management Computer are only available when
airborne, which is determined by the FMC according to data
it receives from GPS and INS sensors.

They wrote additional software that translates the NMEA
output of FlightGear (including latitude, longitude, and alti-
tude) into the ARINC 429 data words used by GPS and INS
sensors. These data words are fed to the Flight Management
Computer. the position information from FlightGear is real-
istic enough to convince the FMC that it is actually airborne,
and allows ARINC to test entire ‘flights’ with the avionics.

MSimulation

Marcus Bauer and others worked on a simulator cockpit en-
vironment using FlightGear as the software engine to drive a
real cockpit, including three cockpit computers.

Space Island

Space Island[13] Space Island are using FlightGear as the
software for a moving cockpit entertainment simulator that
supports both flight and space environments.

Other applications

Many applications started using FlightGear years ago:

1. University of Illinois at Urbana Champaign. FlightGear
is providing a platform for icing research for the Smart
Icing Systems Project[14].

2. Simon Fraser University, British Columbia Canada. Por-
tions of FlightGear were used in simulation to develop
the needed control algorithms for an autonomous aerial
vehicle.

3. Iowa State University. A senior project intended to
retrofit some older sim hardware with FlightGear based
software.

4. University of Minnesota - Human Factors Research Lab.
FlightGear brings new life to an old Agwagon single
seat, single engine simulator.

5. Aeronautical Development Agency, Bangalore India.
FlightGear is used as as the image generator for a flight
simulation facility for piloted evaluation of ski-jump
launch and arrested recovery of a fighter aircraft from
an aircraft carrier.

6. Veridian Engineering Division, Buffalo, NY. FlightGear
is used for the scenery and out-the-window view for the
Genesis 3000 flight simulator.

Configuration User Interfaces

Scripting languages such as Python and Perl use a wrapper
API for the network interface, hiding the protocol and oper-
ating system. This approach enables instructor interfaces to
be developed in accordance with regulatory requirements and
quickly customized to meet specific local needs.

Simulating Flight Training

FlightGear could also be helpful when learning to fly aircraft.
Flight training is carefully regulated by the government, to
ensure that aircraft generally stay in the sky until their pilot
intends for them to come down safely. There are thus some
real concerns which need to be addressed before authorities
can approve a system.



1. Do the controls feel, and operate, sufficiently like the
ones in the aircraft that a pilot can use them without con-
fusion? Are they easier to use and/or do they obscure
dangerous real-life effects?

2. Does the software provide a forward view that is repre-
sentative for the desired training environment?

3. Are the instruments drawn such that a pilot can easily
read and interpret them as usual? Do they have the sys-
tematic errors that often cause accidents?

4. Are the cockpit switches and knobs intuitive to operate?

5. Operating within the limited envelope of flight config-
urations that is applied to the training activity, does it
match the manufacturer’s data for aircraft performance?

6. Are weather settings accessible to the instructor and suf-
ficiently intuitive that they can change them quickly?

7. Are there easy mechanisms for causing the accurate sim-
ulation of system failures and broken instruments?

8. Can the pilot conduct normal interactions with air traf-
fic control? Can the instructor easily determine whether
the pilot is complying with the control instructions and
record errors for subsequent review?

9. Is the pilot’s manual for the simulator similar in content
and arrangement to that of the aircraft being represented,
such that it can readily be used in flight by the pilot?

10. Can all maneuvers be performed in the same way?

In that (partial) list of concerns, the quality of the actual
flight simulation (which is really what FlightGear is offer-
ing) is a minor topic and and acceptable performance is easily
achieved. In contrast, a large package of documentation must
be added to the software to explain and teach people how to
use it correctly. This has led to a number of separate projects
whose goals are to meet or exceed the standards created by
the United States Federal Aviation Administration (FAA).

It is easy to suggest that the FAA is being unrealistic in
requiring this documentation, but they are responding to im-
portant traits in human nature that won’t go away just because
they’re inconvenient.

For example, the things learnt first leave an almost un-
shakeable impression and, at times of severe stress, will
over-rule later training. Thus, any false impressions that are
learned by a beginning student through using a simulator will
tend to remain hidden until a dangerous and potentially lethal
situation is encountered, at which time the pilot may react
wrongly and die. Pilots who use a simulator on an ongoing
basis to hone their skills will get an excessively optimistic
opinion of their skills, if the simulator is too easy to fly or

Figure 7: Example display from the OpenGC[8] project

does not exhibit common flaws. As a result, they will will-
ingly fly into situations that are in practice beyond their skill
proficiency and be at risk.

Clearly, a flight simulator (such as FlightGear) can only
safely be used for training when under the supervision of a
qualified instructor, who can judge whether the learning ex-
perience is beneficial. The documentation materials are es-
sential to supporting that role.

What’s in the future?

In many areas of the project, the source code is stable and any
ongoing programming rarely affects the interfaces used by
XML files. The majority of the current developer effort cen-
ters around the crafting of nice looking 3D aircraft, animating
their control surfaces, synthesizing appropriate sound effects,
implementing an interactive cockpit, and adding detail to the
aerodynamics parameters. The aerodynamic models are not
(yet) accurate enough for use in all flight situations, so they
don’t reflect the challenges and excitement of acrobatic ma-
neuvering.

Surround projectors, head mounted displays, directional
sound and cockpit motion are rapidly converging into con-
sumer technologies. Maybe we can immerse the users so well
that they fly conservatively because they forget that they’re
not in real danger.

Aircraft wake is invisible, can last five minutes, descends
slowly or spreads across the ground, is blown around by the
wind and is extremely dangerous to following aircraft. A fu-
ture extension to fgd could keep track of the hundreds of
miles of wake trails in a given area and notify individual air-
craft when they are encountering invisible severe turbulence.

Replication and scalability is only starting to take hold in
the desktop environment. A room of several hundred com-
puters acting as X terminals for word processing can reboot
and, within a couple of minutes, all be running FlightGear
identically. They’re ready for the next class of student pilots.



Conclusions

On the surface, FlightGear is a simple Open Source project
that builds on many existing projects in the community tradi-
tions. Due to the subject it addresses, many issues and con-
cerns are raised that rarely inconvenience most other project
teams. These elements are providing the exciting challenges
and variety of associated activities that the developer team is
enjoying.

About the Author

Alexander Perry holds M.A. and Ph.D. degrees in engineer-
ing from Cambridge University in England. A member of
the IEEE Consultants Network in San Diego, he is one of the
FlightGear developers, a commercial and instrument rated pi-
lot, ground instructor and an aviation safety counselor in San
Diego and Imperial counties of California.

References

[1] http://www.flightgear.org/

[2] http://plib.sourceforge.net/

[3] http://www.linuxbase.org/

[4] http://oss.sgi.com/projects/ogl-sample/ABI/

[5] http://www.gltron.org/

[6] http://www.simgear.org/

[7] http://jsbsim.sourceforge.net/

[8] http://opengc.sourceforge.net/

[9] http://www.terragear.org/

[10] http://atlas.sourceforge.net/

[11] http://users.aber.ac.uk/dpb/aerobots.html

[12] http://www.wolf-aviation.org/

[13] http://www.spaceisland.de/

[14] http://www.aae.uiuc.edu/sis/mainpapers.html

[15] http://fgatd.sourceforge.net/


