
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Towards Carrier Grade Linux Platforms

Ibrahim Haddad
Ericsson Research

8400 Decarie Blvd, Montreal
Quebec H4P 2N2, Canada

ibrahim.haddad@ericsson.com

Abstract

Traditionally, communications and data service networks were built on proprietary platforms that had to meet very
specific availability, reliability, performance, and service response time requirements. Today, communications ser-
vice providers are challenged to meet their needs cost-effectively for new architectures, new services, and increased
bandwidth, with highly available, scalable, secure, and reliable systems that have predictable performance and that
are easy to maintain and upgrade. This paper presents the technological trend of migrating from proprietary to open
platforms based on software and hardware building blocks. The paper focuses on the ongoing work by the Carrier
Grade Linux (CGL) working group at the Open Source Development Labs, examines the CGL architecture, the re-
quirements from the latest specification release, and presents some of the needed kernel features that are not cur-
rently supported on Linux.

1. Open, standardized, and modular plat-
forms

The demand for rich media and enhanced communica-
tions services is rapidly leading to significant changes
in the communications industry such as the conver-
gence of data and voice technologies. The transition to
packet-based, converged, multi-service IP networks
require a carrier grade infrastructure based on interop-
erable hardware and software building blocks, man-
agement middleware and applications, implemented
with standard interfaces.

The communications industry is witnessing a technol-
ogy trend moving away from proprietary systems to-
ward open and standardized systems, built using modu-
lar and flexible hardware and software (operating sys-
tem and middleware) common off the shelf
components. The trend is to proceed forward delivering
next generation and multimedia communication ser-
vices, using open standard carrier grade platforms. This
trend is motivated by the expectations that open plat-
forms are going to reduce the cost and risks of develop-
ing and delivering rich communications services; they
will enable faster time to market and ensure portability
and interoperability between various components from
different providers.

One frequently asked question is: How can we meet
tomorrow’s requirements using existing infrastructures
and technologies? Proprietary platforms are closed sys-

tems, expensive to develop, and often lacking support
of the current and upcoming standards. Using such
closed platforms to meet tomorrow’s requirements for
new architectures and services is almost impossible. A
uniform, open software environment with the character-
istics demanded by telecom applications, combined
with commercial off-the-shelf software and hardware
components is a necessary part of these new architec-
tures.

Three key industry consortia are defining hardware and
software high availability specifications that are di-
rectly related to telecom platforms:

- The PCI Industrial Computer Manufacturers Group
[1] (PICMG) defines standards for high availability
(HA) hardware.

- The Open Source Development Labs [2] (OSDL)
Carrier Grade Linux [3] (CGL) working group was
established in January 2002 with the goal of en-
hancing the Linux operating system, to achieve an
Open Source platform that is highly available, se-
cure, scalable and easily maintained, suitable for
carrier grade systems.

- The Service Availability Forum [4] (SA Forum)
defines the interfaces of HA middleware and fo-
cusing on APIs for hardware platform management
and for application failover in the application API.
SA compliant middleware will provide services to

- Vendor independent: With Linux, you no longer
have to be locked into a specific vendor. Linux is
supported on multiple platforms.

an application that needs to be HA in a portable
way.

Figure 1: From Proprietary to Open Solutions

Standards-BasedProprietary

Network Element

Proprietary Hardware

Proprietary Applications

Proprietary HA Middleware

Proprietary Real-time
Operating System

Network Element

Standard HA Hardware

Proprietary Applications

HA Middleware

Standard Carrier Grade
Operating System

Application Interface

Hardware Interface

SAF Standard
Interfaces

PICMG ATCA

Carrier Grade
Linux

Standards-BasedProprietary

Network Element

Proprietary Hardware

Proprietary Applications

Proprietary HA Middleware

Proprietary Real-time
Operating System

Network Element

Standard HA Hardware

Proprietary Applications

HA Middleware

Standard Carrier Grade
Operating System

Application Interface

Hardware Interface

SAF Standard
Interfaces

PICMG ATCA

Carrier Grade
Linux

- High innovation rate: New features are usually
implemented on Linux before they are available on
commercial or proprietary systems.

 The operating system is a core component in such ar-

chitectures. In the remaining of this paper, we will be
focusing on CGL, its architecture and specifications.

 2. The term Carrier Grade

 Figure 2: Open development process of the Linux
kernel In this paper, we refer to the term Carrier Grade on

many occasions. Carrier grade is a term for public net-
work telecommunications products that require a reli-
ability percentage up to 5 or 6 nines of uptime.

Other contributing factors include Linux’ support for a
broad range of processors and peripherals, commercial
support availability, high performance networking, and
the proven record of being a stable, and reliable server
platform.

5 nines of uptime refer to 99.999% of uptime (i.e. 5
minutes of downtime per year). This level of availabil-
ity is usually associated with Carrier Grade servers.
6 nines of uptime refer to 99.9999% of uptime (i.e. 30
seconds of downtime per year). This level of availabil-
ity is usually associated with Carrier Grade switches.

4. Carrier Grade Linux

 The Linux kernel is missing several features that are
needed in a telecom environment, and it is not adapted
to meet telecom requirements in various areas such as
reliability, security, and scalability. To help the ad-
vancement of Linux in the telecom space, OSDL estab-
lished the CGL working group. The group specifies and
help implement an Open Source platform targeted for
the communication industry that is highly available,
secure, scalable and easily maintained, suitable for
carrier grade systems.

3. Linux versus proprietary operating sys-
tems

This section describes briefly the motivating reasons in
favor of using Linux on Carrier Grade systems, versus
continuing with proprietary operating systems. These
motivations include:
- Cost: Linux is available free of charge in the form

of a downloadable package from the Internet.
The CGL working group is composed of several mem-
bers from network equipment providers, system inte-
grators, platform providers, and Linux distributors, all
of them contributing to the requirement definition of
Carrier Grade Linux, helping Open Source projects to
meet these requirements, and in some cases starting
new Open Source projects. Many of the CGL members
companies have contributed pieces of technologies to
Open Source in order to make the Linux Kernel a more
viable option for telecom platforms. For instance, the
Open Systems Lab [5] from Ericsson Research has con-
tributed three key technologies: the Transparent IPC
[6], the Asynchronous Event Mechanism [7], and the
Distributed Security Infrastructure [8]. In a different

- Source code availability: With Linux, you gain full
access to the source code allowing you to tailor the
kernel to your needs.

- Open development process (Figure 2): The devel-
opment process of the kernel is open to anyone to
participate and contribute. The process is based on
the concept of “release early, release often.”

- Peer review and testing resources: With access to
the source code, people using a wide variety of
platform, operating systems, and compiler combi-
nations; can compile, link, and run the code on
their systems to test for portability, compatibility
and bugs.

direction, there are already Linux distributions, Mon-
taVista [10] for instance, that are providing CGL distri-
bution based on the CGL requirement definitions.
Many companies are also either deploying CGL, or at
least evaluating and experimenting with it.

Consequently, CGL activities are giving much momen-
tum for Linux in the telecom space allowing it to be a
viable option to proprietary operating system. Member
companies of CGL are releasing code to Open Source
and making some of their proprietary technologies
open, going forward from closed platforms to open
platforms that use CGL.

5. Target CGL applications

The CGL Working Group has identified three main
categories of application areas into which they expect
the majority of applications implemented on CGL plat-
forms to fall. These application areas are gateways,
signaling, and management servers.

- Gateways are bridges between two different tech-

nologies or administration domains. For example, a
media gateway performs the critical function of
converting voice messages from a native telecom-
munications time-division-multiplexed network, to
an Internet protocol packet-switched network. A
gateway processes a large number of small mes-
sages received and transmitted over a large number
of physical interfaces. Gateways perform in a
timely manner very close to hard real-time. They
are implemented on dedicated platforms with repli-
cated (rather than clustered) systems used for re-
dundancy.

- Signaling servers handle call control, session con-

trol, and radio recourse control. A signaling server
handles the routing and maintains the status of
calls over the network. It takes the request of user
agents who want to connect to other user agents
and routes it to the appropriate signaling. Signaling
servers require soft real time response capabilities
less than 80 milliseconds, and may manage tens of
thousands of simultaneous connections. A signal-
ing server application is context switch and mem-
ory intensive due to requirements for quick switch-
ing and a capacity to manage large numbers of
connections.

 - Specifications: The specifications sub-group is
responsible for defining a set of requirements that lead
to enhancements in the Linux kernel, that are useful for
carrier grade implementations and applications. The
group collects, categorizes, and prioritizes the require-
ments from participants to allow reasonable work to
proceed on implementations. The group also interacts
with other standard defining bodies, open source com-
munities, developers and distributions to ensure that the
requirements identify useful enhancements in such a
way, that they can be adopted into the base Linux ker-
nel.

- Management servers handle traditional network

management operations, as well as service and cus-
tomer management. These servers provide services
such as: a Home Location Register and Visitor Lo-
cation Register (for wireless networks) or customer

information (such as personal preferences includ-
ing features the customer is authorized to use).
Typically, management applications are data and
communication intensive. Their response time re-
quirements are less stringent by several orders of
magnitude, compared to those of signaling and
gateway applications.

6. Overview of the CGL working group

The CGL working group has the vision that next-
generation and multimedia communication services can
be delivered using Linux based open standards plat-
forms for carrier grade infrastructure equipment. To
achieve this vision, the working group has setup a strat-
egy to define the requirements and architecture for the
Carrier Grade Linux platform and develop a roadmap
for the platform and to promote development of a stable
platform upon which commercial components and ser-
vices can be deployed.

In the course of achieving this strategy, the OSDL CGL
working group, is creating the requirement definitions,
and identifying existing Open Source projects that sup-
port the roadmap to implement the required compo-
nents and interfaces of the platform. When an Open
Source project does not exist to support a certain re-
quirement, OSDL CGL is launching (or support the
launch of) new Open Source projects to implement
missing components and interfaces of the platform.

The CGL working group consists of three distinct sub-
groups that work together. These sub-groups are: speci-
fication, proof-of-concept, and validation. Explanations
of the responsibilities of each sub-group are as follows:

- Proof-of-Concept: This sub-group generates docu-
ments covering the design, features, and technol-
ogy relevant to CGL. It drives the implementation
and integration of core Carrier Grade enhance-
ments to Linux as identified and prioritized by the
requirement document. The group is also responsi-

 ble for ensuring the integrated enhancements pass,
the CGL validation test suite and for establishing
and leading an open source umbrella project to co-
ordinate implementation and integration activities
for CGL enhancements.

The requirement definition document of CGL version
2.0 introduced new and enhanced features to support
Linux as a carrier grade platform. The CGL require-
ment definition divides the requirements in main cate-
gories described briefly below:

- Validation: The sub-group defines standard test
environments for developing validation suites. It is
responsible for coordinating the development of
validation suites, to ensure that all of the CGL re-
quirements are covered. This group is also respon-
sible for the development of an Open Source pro-
ject CGL validation suite.

8.1 Clustering
These requirements support the use of multiple carrier
server systems to provide higher levels of service avail-
ability through redundant resources and recovery capa-
bilities, and to provide a horizontally scaled environ-
ment supporting increased throughput.

7. CGL architecture 8.2 Security
 The security requirements are aimed at maintaining a

certain level of security while not endangering the
goals of high availability, performance, and scalability.
The requirements support the use of additional security
mechanisms to protect the systems against attacks from
both the Internet and intranets, and provide special
mechanisms at kernel level to be used by telecom ap-
plications.

Figure 3 presents the scope of the CGL Working
Group, which covers two areas:

Figure 3: CGL architecture and scope

8.3 Standards
CGL specifies standards that are required for compli-
ance for carrier grade server systems.
Examples of these standards include:
- Linux Standard Base
- POSIX Timer Interface
- POSIX Signal Interface
- POSIX Message Queue Interface
- POSIX Semaphore Interface
- IPv6 RFCs compliance 1. Carrier Grade Linux: Various requirements such

as availability and scalability are related to the
CGL enhancements to the operating system. En-
hancements may also be made to hardware inter-
faces, interfaces to the user level or application
code and interfaces to development and debugging
tools. In some cases, to access the kernel services,
user level library changes will be needed.

- IPsecv6 RFCs compliance
- MIPv6 RFCs compliance
- SNMP support
- POSIX threads

8.4 Platform
OSDL CGL specifies requirements that support interac-
tions with the hardware platforms making up carrier
server systems. Platform capabilities are not tied to a
particular vendor's implementation.

2. Software Development Tools: These tools will in-

clude debuggers and analyzers.
Examples of the platform requirements include:
- Hot insert: supports hot-swap insertion of hard-

ware components.
On October 9, 2003, OSDL announced the availability
of the OSDL Carrier Grade Linux Requirements Defi-
nition, Version 2.0 (CGL 2.0). This latest requirement
definition for next-generation carrier grade Linux offers
major advances in security, high availability, and clus-
tering.

- Hot remove: supports hot-swap removal of hard-
ware components.

- Remote boot support: supports remote booting
functionality.

- Boot cycle detection: supports detecting reboot
cycles due to recurring failures.

8. CGL 2.0 requirements

- Diskless systems: support diskless systems which
load and run applications via the network.

These requirements support vertical and horizontal
scaling of carrier server systems such as the addition of
hardware resources to result in acceptable increases in
capacity.

8.5 Availability

 The availability requirements support heightened avail-
ability of carrier server systems, such as improving the
robustness of software components or by supporting
recovery from failure of hardware or software.

8.9 Tools
The tools requirements provide capabilities to facilitate
diagnosis. Examples of these requirements include:
- Support the usage of a kernel debugger. Examples of these requirements include:
- Support for Kernel dump analysis. - RAID 1: support for RAID 1 offers mirroring to

provide duplicate sets of all data on separate hard
disks.

- Support for debugging multi-threaded programs

- Watchdog timer interface: support for watchdog
timers to perform certain specified operations
when timeouts occur.

9. CGL 3.0

The work on the next version of the OSDL CGL re-
quirements, version 3.0, started in January 2004 with
focus on advanced requirement areas such as manage-
ability, serviceability, tools, security, standards, per-
formance, hardware, clustering and availability. With
the success of CGL’s first two requirement documents,
OSDL CGL working group anticipate that their third
version will be quite beneficial to the Carrier Grade
ecosystem. Official release of the CGL requirement
document Version 3.0 is expected in October 2004.

- Support for Disk and volume management: to al-
low grouping of disks into volumes.

- Ethernet link aggregation and link failover: support
bonding of multiple NIC for bandwidth aggrega-
tion and provide automatic failover of IP addresses
from one interface to another.

- Support for application heartbeat monitor: monitor
applications availability and functionality.

8.6 Serviceability The serviceability requirements support servicing and
managing hardware and software on carrier server sys-
tems. These are wide-ranging set requirements that, put
together, help support the availability of applications
and the operating system.

10. CGL implementations
There are several enhancements to the Linux Kernel
that are required by the communication industry, to
help adopt Linux on their carrier grade platforms, and
support telecom applications. These enhancements
(Figure 4) fall into the following categories availability,
security, serviceability, performance, scalability, reli-
ability, standards, and clustering.

Examples of these requirements include:
- Support for producing and storing kernel dumps.
- Support for dynamic debug of the kernel and run-

ning applications.
- Support for platform signal handler enabling infra-

structures to allow interrupts generated by hard-
ware errors to be logged using the event logging
mechanism.

- Support for remote access to event log information.

8.7 Performance
OSDL CGL specifies the requirements that support
performance levels necessary for the environments ex-
pected to be encountered by carrier server systems.
Examples of these requirements include:

- Support for application (pre) loading.
Figure 4: CGL enhancements areas - Support for soft real time performance through

configuring the scheduler to provide soft real time
support with latency of 10 ms.

The implementations providing theses enhancements
are Open Source projects and planned for integration
with the Linux kernel when the implementations are
mature, and ready for merging with the kernel code. In
some cases, bringing some projects into maturity levels
takes a considerable amount of time before being able
to request its integration into the Linux kernel. Never-

- Support Kernel preemption.
- Provide Raid 0 support to enhance performance.

8.8 Scalability

theless, some of the enhancements are targeted for in-
clusion in kernel version 2.7. Other enhancement will
follow in later kernel releases. Meanwhile, all en-
hancements, in the form of packages, kernel modules
and patches, are available from their respective project
web sites.
The CGL 2.0 requirements are in-line with the Linux
development community. The purpose of this project is
to form a catalyst to capture common requirements
from end-users for a CGL distribution. With a com-
mon set of requirements from the major Network
Equipment Providers, developers can be much more
productive and efficient within development projects.
Many individuals within the CGL initiative are also
active participants and contributors in the Open Source
development community

11. Examples of missing features from the
Linux Kernel

In this section, we provide some examples of missing
features and mechanisms from the Linux kernel that are
necessary in a telecom environment.

11.1 IPv4, IPv6, MIPv6 forwarding tables fast
access and compact memory with multiple FIB
support
Linux should be able to run in a routing environment
with fast recovery of routes when network failure is
detected. This is achievable by having around 2000
routes/sec. Latency is not really an issue in a PC envi-
ronment (a few ms doesn't make a big difference).
What is important is to have a predictable performance
from 10.000 to 500.000 routes. However, the faster is
always better.
The actual implementation of the IP stack in Linux
works fine for host or small router. However, with the
high requirements in telecom, it becomes impossible to
develop using Linux a high-end router for large net-
work (core/border/access router) or a high-end server
with routing capabilities.
The problem we are facing with Linux is the lack of
support for multiple forwarding information bases
(multi-FIB) with overlapping interface's IP address and
appropriate interfaces for addressing FIB(VR). The
route table is not scalable.
Another objective is to support multi-FIB with overlap-
ping IP address. We can have on different VLAN or
different physical interface, independent network in the
same Linux box. For example, you can have 2 HTTP
servers serving 2 different networks with potentially the
same IP address. One HTTP serves the network/FIB
10, and the other serves the network/FIB 20. So the
advantage you have is to have 1 Linux box serving 2

different customers with the own networks. (i.e. ISP
with big companies using there services). So the only
way to achieve that is to have an ID to completely sepa-
rate the table in memory. (i.e. can be separate table or
the ID is just append at the beginning of the key).
Another problem arise when we are not able to predict
access time, with the chaining in the hash table of the
routing cache (and FIB). This problem is of particular
interest in environment that requires predictable per-
formance.
Another aspect of the problem is that the route cache
and the routing table are not kept synchronized most of
the time (path MTU, just to name one). The route cache
flush is executed regularly therefore any updates on the
cache are lost. For example, if you have a routing cache
flush, you have to rebuild every route that you are cur-
rently talking to. To achieve that, you need to go for
every route in the hash/try table and rebuild the infor-
mation. So you first have to lookup in the routing
cache, if you have a miss, you need to go in the
hash/try table. It's a very slow and not predictable be-
cause in the hash/try table with linked list with also a
lot of potential collision when a large number of routes
are present. This design is perfect for a home PC with
a few routes, but it is not scalable for a large server.

To support the various routing requirements of telecom
platforms, Linux should support:
- Implementation of multi-FIB using tree (radix,

patricia, etc.). It is very important to have predict-
able performance in insert/delete/lookup from 10
to 500k routes. And, if possible, to have the same
data structure for both IPv4 and IPv6.

- Socket and ioctl interfaces for addressing multi-
FIB, and

- Multi-FIB support for neighbors (arp)

Providing these implantations in Linux will affect a
large part of net/core, net/ipv4 and net/ipv6; these sub-
systems (mostly network layer) will need to be re-
written. Other areas will have minimal impact at the
source code level, mostly at the transport layer (socket,
TCP, UDP, RAW, NAT, IPIP, IGMP, etc).
There is no Open Source solutions or patches that are
available.

11.2 Efficient low-level asynchronous event
mechanism
Operating systems for telecom applications must ensure
that they can deliver a high response rate with mini-
mum downtime, less than five minutes per year of
downtime, including hardware, operating system and
software upgrade. In addition to this goal, a carrier-
grade system also must take into account such charac-

teristics as scalability, high availability and perform-
ance.
For such systems, thousands of requests must be han-
dled concurrently without affecting the overall system's
performance, even under extremely high loads. Sub-
scribers can expect some latency time when issuing a
request, but they are not willing to accept an un-
bounded response time. Such transactions are not han-
dled instantaneously for many reasons, and it can take
some milliseconds or seconds to reply. Waiting for an
answer reduces applications' abilities to handle other
transactions.
Many different solutions have been envisaged to im-
prove Linux's capabilities using different types of soft-
ware organization, such as multithreaded architectures,
by implementing efficient POSIX interfaces or by im-
proving the scalability of existing kernel routines. We
think that none of these solutions are adequate for true
Carrier Grade servers.
As a result, Ericsson has designed and developed the
needed mechanism for telecom application and released
it to Open Source under the GPL license. The solution
is called Asynchronous Event Mechanism (AEM); it
provides asynchronous execution of processes in the
Linux kernel. AEM implements a native support for
asynchronous events in the Linux kernel and aims to
bring carrier-grade characteristics to Linux in areas of
scalability and soft real-time responsiveness. In addi-
tion, AEM offers event-based development framework,
scalability, flexibility and extensibility.
AEM has been announced on the Linux Kernel Mailing
List (LKML) and received feedback that resulted in
some changes to the design and implementation. AEM
is not yet integrated with the Linux kernel. More in-
formation on AEM is available from [7].

11.3 Transparent inter-process and inter-
processor communication protocol
Today’s telecommunication environments are increas-
ingly adopting clustered servers to gain benefits in per-
formance, availability, and scalability. The resulting
benefits of a cluster are greater or more cost-efficient
than what a single server can provide. Furthermore, the
telecommunication industry's interest in clustering
originates from the fact that clusters ad-dress carrier-
class characteristics such as guaranteed service avail-
ability, reliability and scaled performance, using cost-
effective hardware and software. Without being abso-
lute about these requirements, they can be divided in
these three categories: short failure detection and fail-
ure recovery, guaranteed availability of service, and
short response times.
The most widely adopted clustering technique is use of
multiple interconnected loosely coupled nodes to a sin-
gle highly available system.

One missing feature from Linux in this area is a reliable
and efficient inter-process and inter-processor commu-
nication protocol. However, there exist an Open Source
project, Trans-parent Inter Process Communication
(TIPC) protocol, which is specially designed for effi-
cient intra cluster communication, leveraging the par-
ticular conditions present within loosely coupled clus-
ters. It runs on Linux and is provided as a portable
source code package implementing a loadable kernel
module.
TIPC is unique from the perspective that there seems to
be no other protocol providing a comparable combina-
tion of versatility and performance. The functional ad-
dressing scheme is an original innovation, as is the to-
pology subscription services and its "reactive connec-
tion" concept. TIPC is a useful toolbox for anyone
wanting to develop or use Carrier Grade or Highly
Available clusters on Linux. It provides the necessary
infrastructure for cluster, network and software man-
agement functionality, as well as a good support for
designing site-independent, scalable, distributed, high-
availability and high-performance applications.
Some of the most important TIPC features include full
location transparency, lightweight connections, reliable
multicast, signaling link protocol, topology subscription
services and more.
TIPC is a contribution from Ericsson to Open Source. It
will be announced to LKML in mind-May 2004, two
weeks after I submit the paper the USENIX. However,
more recent news regarding TIPC will be included in
the USENIX presentation. TIPC is licensed under a
dual GPL and BSD license. More information on TIPC
is available from [6][11].

11.4 Run-time authenticity verification for sys-
tem binaries
Linux has generally been considered immune to the
spread of viruses, backdoors and Trojan programs on
the Internet. However, with the increasing popularity of
Linux as a desktop platform, the risk of seeing viruses
or Trojans developed for this platform are rapidly
growing. To alleviate this problem, the system should
prevent on run time the execution of untrusted soft-
ware. One solution is to digitally sign the trusted bina-
ries and have the system check the digital signature of
binaries before running them. Therefore, untrusted (not
signed) binaries are denied the execution. This can im-
prove the security of the system by avoiding a wide
range of malicious binaries like viruses, worms, Torjan
programs and backdoors from running on the system.
DigSig Linux kernel module checks the signature of a
binary before running it [9][12]. It inserts digital signa-
tures inside the ELF binary and verifies this signature
before loading the binary. It is based on the Linux Se-

curity Module hooks (main stream Linux kernel from
2.5.X and higher).
Typically, in this approach, vendors do not sign bina-
ries; the control of the system remains with the local
administrator. S/he is responsible to sign all binaries
s/he trusts with his/her private key. Therefore, DigSig
guarantees two things: (1) if you signed a binary, no-
body else than you can modify that binary without be-
ing detected, and (2) nobody can run a binary which is
not signed or badly signed.
There have already been several initiatives in this do-
main, such as Tripwire, BSign, Cryptomark
[14][15][16]. We believe the DigSig project is the first
to be both easily accessible to all (available on Source-
Forge, under the GPL license), and it operates at kernel
level on run time. The run time is very important for
CGL as this takes into account the high availability
aspects of the system.
The DigSig approach has been to use the existing solu-
tions like GPG [13] and BSign [15] (a Debian package)
rather than reinventing the wheel. However, in order to
reduce the overhead in the kernel, the DigSig project
only took the minimum code necessary from GPG. This
helped much to reduce the amount of code imported to
the kernel in source code of the original (only 1/10 of
the original GnuPG 1.2.2 source code has been im-
ported to the kernel module).

12. Conclusion

There are many challenges accompanying the migration
from proprietary to open platforms. The main challenge
remains to be the availability of the various kernel fea-
tures and mechanisms needed for telecom platforms
and integrating these features in the Linux kernel.
Carrier Grade Linux is a cooperative initiative aiming
to advance the Linux in the communications space and
provide an alternative away from proprietary carrier
grade operating systems. The participation in OSDL
CGL is open to everyone. For more information, please
visit the OSDL web site.

References

[1] PCI Industrial Computer Manufacturers Group,
http://www.picmg.org
[2] Open Source Development Labs,
http://www.osdl.org
[3] Carrier Grade Linux,
http://osdl.org/lab_activities/carrier_grade_linux
[4] Service Availability Forum,
http://www.saforum.org
[5] Open System Lab,
http://www.linux.ericsson.ca

[6] Transparent IPC,
http://tipc.sf.net
[7] Asynchronous Event Mechanism,
http://aem.sf.net
[8] An Event Mechanism for Linux, Linux Journal,
July 2004,
http://www.linuxjournal.com/print.php?sid=6777
[9] Distributed Security Infrastructure,
http://disec.sf.net
[10] MontaVista Carrier Grade Edition
http://www.mvista.com/cge/index.html
[11] Make Clustering Easy with TIPC, LinuxWorld
Magazine, April 2004,
http://www.linux.ericsson.ca/papers/tipc_lwm/
[12] Stop Malicious Code Execution at Kernel Level,
LinuxWorld Magazine, January 2004,
http://www.linux.ericsson.ca/papers/digsig_lwm.pdf
[13] GnuPG,
http:// www.gnupg.org
[14] Tripwire,
http://www.tripwire.com
[15] Bsign,
http://packages.qa.debian.org/b/bsign.html
[16] Cryptomark,
http://www.immunix.org/cryptomark.html

