
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

InfiniBand Performance Review: It’s the Software Stupid

Troy R. Benjegerdes, Brett M. Bode
Scalable Computing Laboratory

Ames Laboratory
troy@scl.ameslab.gov, brett@scl.ameslab.gov

http://www.scl.ameslab.gov/

Abstract

The InfiniBand interconnect has received a great
deal of attention recently as a result of its use
in the Virginia Tech cluster that placed 3rd on
the Top500 list. However, InfiniBand hardware
and software have been available for over a year
and continue to evolve. In addition, InfiniBand is
supported by a number of different vendors each
of which is seeking to differentiate themselves in
the marketplace with slightly different hardware
and software offerings. This paper will examine
many of the current hardware and software im-
plementations, illustrating their similarities and
differences. In addition we will demonstrate the
sometimes dramatic effects of the various tuning
parameters of the various software implementa-
tions.

1 Introduction

The InfiniBand interconnect has seen a great deal
of publicity in the past few years since its in-
ception. Once the initial marketing faded many
thought the whole concept had failed. In fact a
great deal of effort was continuing to make the
concept a reality. For a little over a year, 4X In-
finiBand (10Gbps) hardware has been available
from a variety of vendors. During that time the
software stacks have matured a great deal to the
point where it is now practical to use InfiniBand
as the primary interconnect in a production ori-
ented High-Performance Computing (HPC) sys-
tem. Indeed the number 3 system on the top500
[ref top500.org] list is now an 1100 node cluster
connected by InfiniBand.

This is not to say there is nothing left to be
done. On the contrary, one of the biggest prob-
lems for the InfiniBand community is the soft-

ware available. Up until early spring in 2004,
each InfiniBand vendor was providing their own
proprietary software stack. This software re-
quired a specific kernel binary from a distribution
like Red Hat or Suse, and were generally only
available x86 platforms. In our case, we have
x86, amd64, and ppc64 platforms, so this was far
from optimal. Recently, several vendors have re-
leased their hardware drivers and software stacks
as open source. While this is a good step, it is
much like the first releases of the Netscape source
code as open source. Yes, it’s out there and avail-
able, but it’s not something anyone other than a
dedicated hacker is really going to use.

Part of this review will cover the impressive
performance results obtained in November of
2003, using vendor provided software stacks and
MPI implementations. We will also examine per-
formance of the latest low level InfiniBand driver
stack from Mellanox, which is expected to be re-
leased soon under a dual GPL/BSD license. In
addition, we will briefly examine application be-
havior of the GAMESS computational chemistry
application on a 4 node InfiniBand cluster.

Finally, we will discuss some of problems with
the currently available open-source InfiniBand
stacks. Some of these problems include difficulty
in the build process on systems not explicitly sup-
ported by the vendor, issues with multiple archi-
tecture support, and the disconnect between the
larger network research community and the In-
finiBand community.

2 History

First, some history of our experience with
InfiniBand. Our first real exposure was at
the InfiniBand Birds of a Feather at Ottawa
Linux Symposium 2001 [InfiniBand BOF]. Af-

ter this, we obtained InfiniBand HCA’s and
a switch development platform from Mellanox
[Mellanox Technolgies].

At one point, both IBM and Intel had plans for
making Host Channel adapters. Unfortunately,
due to the ’dot-bomb’ phenomenon, and other
reasons known only to IBM and Intel decision
makers, both companies canceled their plans for
InfiniBand host adapters. However, Intel did keep
on a team of software engineers on staff and open
sourced their access layer. This code base was
placed into a sourceforge project, and is gener-
ally referred to as the Intel Verbs layer, or IBAL
[IBAL]. Unfortunately, since there was no ship-
ping hardware, this access layer project got little
attention outside of Intel.

2.1 InfiniBand finally delivers

Initially, Mellanox’s low level drivers and
firmware were still in early development releases,
and performance was not that impressive. How-
ever, right before SuperComputing 2002, a suc-
cession of new firmware and drivers pushed the
peak bandwidth achievable up to over 6 gigabits.
This peak bandwidth was far above performance
achievable on Myrinet, SCI/Dolphin, or 10 Giga-
bit Ethernet at the time. At this time, Dr. D.K.
Panda’s group at Ohio State University released
their implementation of MPICH [MVAPICH] for
Mellanox’s VAPI InfiniBand software stack.

By SuperComputing 2003, several vendors, in-
cluding InfiniCon had integrated together a soft-
ware stack, based on the Mellanox low level
drivers, an InfiniBand access layer, and MPI im-
plementations based on MVIAPICH [InfiniCon].
There was also a large demand, particularly
among the DOE laboratories and third party ven-
dors, like Oracle, for Open Source InfiniBand
drivers. At this point, all the major vendors were
shipping products based on the Mellanox Infini-
Band Host Channel Adapter (HCA). This led
to vendors being reluctant to support an open-
source solution, since they were attempting to
differentiate and add value in the software stack.

2.2 Where’s the source

The reluctance by vendors to open source was
compounded by the fact that they were all us-
ing the same low level drivers provided by Mel-
lanox, so even if they were to open source their
access layer, in practice it would be useless with-
out a low level driver. The IBAL sourceforge

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Mac G5, 1.8ghz
Dell 2650

Figure 1: Raw Mellanox VAPI performance

project currently still does not have a working
open-source low level driver.

Finally, in April of 2004, several InfiniBand
vendors, including Topspin, InfiniCon, Voltaire,
Mellanox, and Divergenet all announced, and
released portions of their respective software
stacks and drivers under various open-source li-
censes.The openib.org website was set up by a
collaboration between InfiniBand vendors, and
various US DOE Labs.

In some ways, the current situation resembles
that of the initial Netscape source code release.
There is a lot of code available for download from
various places now, but none of it is something
that can be used in a production cluster or data
center environment. It is, however, a good oppor-
tunity for research.

3 Performance

Raw performance delivered by current Mellanox-
based InfiniBand hardware is quite impressive
and peak bandwidth is primarily limited by the
PCI-X bus implementation on the system. Fig-
ure 1 illustrates the raw performance available us-
ing the Mellanox VAPI interface on a 2.4ghz Dell
2650 and 1.8ghz Macintosh G5.

3.1 Hardware test environment

For most of the data presented, the hardware test
environment consisted of a cluster of 4 Dell 2650
dual Xeon systems, two Macintosh G5’s, and two
dual AMD Opteron systems. Mellanox-based
HCA’s from three vendors have been tested, and
no noticeable performance difference has been
noticed between vendors. All the software stacks
tested have also worked on any HCA card with a
Mellanox ASIC.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

2650 Bios Settings
2650 Fast settings

Figure 2: Serverworks chipset flag impact

The Dell 2650 systems consist of 2 2.2Ghz
dual Xeon systems, and two 2.4Ghz dual Xeon
systems purchased a year later, which have the
faster 533mhz front-side bus. Most tests have
been run on the 2.4Ghz machines. These systems
have the ServerWorks Grand Champion chipset.
These systems have a chipset flag which can be
set by the Linux ’setpci’ program which signifi-
cantly increases peak PCI-X bandwidth, however
it is reported setting this flag results in stabil-
ity problems. Figure 2 shows the performance
impact of setting, for lack of a better term, the
Serverworks benchmark bit.

The Macintosh G5 test system consisted of a
1.8Ghz Mac G5, and a dual 2.0Ghz Mac G5.
Performance is very similar to that of the AMD
Opteron systems, which consisted of two Dual
1.4Ghz AMD Opterons with 8GB of memory
each. This is expected since both systems use
the AMD 8131 HyperTransport to PCI-X bridge
chip. The only appreciable difference is the la-
tency, which is to be expected since the G5 sys-
tem has a bridge chip (the Uni-N ASIC) between
the HyperTransport (HT) and CPU’s, while the
Opteron system has native HT links on the CPU.
Figure 3 shows the difference in latency be-
tween the Opteron and G5 systems, taken from
the November 2003 data. It is unclear why
OSX(Darwin) has a higher latency than Linux on
the same hardware.

3.2 Software test environment

Our first priority for our most recent round of
InfiniBand performance tests was to reduce the
overhead of installation and system maintenance.
Due to this, we used the debian linux based NFS-
root file system images we have already set up for
other clusters. This requires that any InfiniBand

 6.5e-06

 7e-06

 7.5e-06

 8e-06

 8.5e-06

 9e-06

 9.5e-06

 1e-05

 1.05e-05

 1.1e-05

 1 10 100 1000

La
te

nc
y,

 s
ec

Message Size in Bytes

G5 Darwin
G5 Linux-2.4
Opteron

Figure 3: Raw VAPI latency with NetPIPE

drivers be buildable from source code, and run on
the latest linux kernel (at this point linux-2.6.5,
or linux 2.4.26), and work on the Debian linux
distribution running from an NFS-root mounted
filesystem. This quickly eliminated a number of
the vendor provided solutions. The linux-2.4.26
kernel used for testing on the dell 2650’s was also
patched with Quadrics QSNet kernel patches due
to testing Quadrics on the same machines.

Due to time constraints, we wound up only be-
ing able to run the pre-release thca-3.2-rc9, since
this was the source base we had the most expe-
rience with trying to tweak it to run on our three
types of test systems. In addition, with the ex-
ception of the Divergenet stack, all the other ven-
dors are based on some Mellanox thca release,
so this was the natural place to start. Due to the
recent level of activity on openib.org, and inter-
nal vendor projects we expect we may have new
results on other stacks by the time this paper is
presented.

The AMD Opteron systems were running a
debian-amd64 biarch system, with a 32 bit base
system, and specific 64 bit libraries. All the In-
finiBand libraries were built as 64 bit libraries
since the Mellanox thca release does not have any
facilities for biarch 32/64 bit environments, and
the kernel code is 64 bit. Due to a build prob-
lem, we were unable to build a 2.6.5 kernel for
Opteron at this time.

We were only able to obtain results on the
Macintosh G5 on a 32 bit linux-2.4 kernel and
on MacOSX, which is also 32 bit. After some
changes, it is possible to get the Mellanox thca
to build for a PPC64 linux environment, however
the module does not load due to attempting to ac-
cess a very low level memory management prim-
itive. It is unclear if this is a generic InfiniBand
issue, or something specific to PPC64. Even if

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 1 10 100 1000

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Dell LAM
Opteron LAM
Dell MVAPICH
Opteron MVAPICH

Figure 4: MPI Latency

the module were to load, it, it’s not clear it would
work due to issues with the PCI-X bridge and
having to use an IOMMU. These problems are
a rather strong indication that the current Infini-
Band software was written primarily with x86 In-
tel systems and time-to-market considerations in
mind rather than cross-platform software porta-
bility.

3.3 MPI testing

For MPI testing, we tested both the OSU-0.9.2
MVAPICH patches to MPICH-1.2.5, and an
April 28 checkout of the LAM-MPI subversion
repository. Figure 4 shows that MVAPICH,
which uses an RDMA-write and memory polling,
has significantly lower latency than LAM. MVA-
PICH also has a lower latency that NetPIPE-3.6’s
raw IB module, due to NetPIPE using POLL CQ,
which polls the InfiniBand card, causing extra
PCI-X cycles.

The MVAPICH patches to MPICH are more
mature, and have been available for over a year.
They have been derived from the earlier M-VIA
work at Berkeley Lab [M-VIA], and have several
optimizations that LAM-MPI lacks. However, as
Figure 5 shows, there are cases where maturity
and advanced optimizations lose out to a simpler
implementation.

These dropouts in MVAPICH only occur
when running NetPIPE-3.6 with the ’-I’ cache-
invalidate option, which causes NetPIPE to rotate
through many buffers when sending ping-pong
messages instead of re-using the same buffer.
This forces worst-case behavior by causing a
cache miss on every subsystem in the message
path. In this case, there are internal caches in the
MPI implementation for re-using so-called “ea-
ger” buffers, as well as a translation protection

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Opteron MVAPICH
Dell MVAPICH
Opteron LAM
Dell LAM

Figure 5: MVAPICH bad interaction with caches

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Opteron MVAPICH
Opteron LAM
Dell MVAPICH
Dell LAM

Figure 6: MVAPICH and LAM-MPI perfor-
mance

table (TPT) cache in the Mellanox ASIC. The
TPT cache configuration is also the reason for the
dropouts from around 6 gigabits to 5 gigabits on
messages larger than 1-2MB on other graphs as
well. Figure 6 shows the results of a NetPIPE
run in which the messages are sent from the same
buffers every time. MVAPICH makes effective
use of internal caches and the TPT cache on the
HCA as well, showing noticeable better perfor-
mance than LAM-MPI at medium message sizes.

The dropouts in MVAPICH are not, however,
inherent to the code base. Figure 7 shows the per-
formance of the MVAPICH and InfiniCon MPI
from our earlier November 2003 data. The code
base is largely the same, since InfiniCon used
MVAPICH as a base. The differences appear
to result from differences in tuning parameters,
interaction with the memory management sub-
system, and the Mellanox TPT cache. With
the cache-invalidate option, InfiniCon’s MPI only
has two small dropouts around 10K byte mes-
sages sizes, opposed to MVAPICH, which has
a drop from around 2K to 100k. Differences in

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Infinicon MPI
Infinicon MPI, -I
Nov MVAPICH
Nov MVAPICH, -I

Figure 7: MVAPICH and InfiniCon MPI

 0

 200

 400

 600

 800

 1000

 1200

 100 1000

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

MVAPICH on linux-2.4
MVAPICH on linux-2.6

Figure 8: Kernel 2.4 vs 2.6, small messages

peak bandwidth from other graphs are due to the
Serverworks chipset options discussed earlier.

3.4 Kernel versions

Figure 8 and Figure 9 show very little difference
between a linux-2.4 series kernel, and linux-2.6.5
running on the Dell 2650 hardware. This is to
be expected since the current driver implemen-
tations bypass many of the linux kernel subsys-
tems.

4 Conclusions

We have seen that InfiniBand can achieve very
good performance. What remains is to see how
well it continues to evolve and compete with
other custom cluster interconnects. Vendor sup-
port for small clusters and ’commercial’ linux
distributions like Red Hat and Suse seems to be
very good. What’s missing is better support for
open source, and a common API for application
development.

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 6200

 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

MVAPICH on linux-2.4
MVAPICH on linux-2.6

Figure 9: Kernel 2.4 vs 2.6, big messages

4.1 A Commodity Interconnect?

Many claims have been made over the history of
InfiniBand about it becoming the ’new’ commod-
ity network interconnect. The first several years
of it’s existence were met with a great deal of
skepticism from various communities that Infini-
Band was just another marketing buzzword, and
a bunch of vaporware. Now, the hardware exists,
and proprietary driver stacks seem to work well in
specific environments. Current pricing on HCA’s
is around $750 a port, and switch pricing is $300
a port. While this pricing is quite competitive
for other cluster-specific interconnects, it is de-
pendant on InfiniBand adoption in the Data Cen-
ter and Enterprise Storage markets. It remains to
be seen whether the potential of commodity vol-
ume production and raw performance is offset by
the additional complexity of the software stack.
10 Gigabit Ethernet has a definite advantage in
that drivers for the Intel 10Gig-E card have been
in the linux-2.6 kernel series for several months,
and other vendors have submitted drivers for in-
clusion into the mainline kernel.

4.2 Linux integration

InfiniBand’s biggest (and some would say fatal)
flaw is the amount of new code required to just
get something to run. The Mellanox low level
driver alone is over 100,000 lines of code. This
doesn’t count extras like sockets direct, SCSI Re-
mote Protocol, or an IP over IB driver. We have
some very nice OS-bypass hardware, but it re-
quires what amounts to half an OS worth of ad-
ditional software to run. The hoped-for com-
modity markets of scale will never occur un-
less adding InfiniBand drivers is not much dif-
ferent than adding an ethernet driver. In the case

of Linux, this means integration into the mem-
ory management subsystem in a clean, cross-
platform manner, and a minimal driver that can
bring the card up and send packets without a lot
management code.

There is a definite opportunity here to develop
a clean API for RDMA-capable networks like In-
finiBand, and get that API integrated into Linux.
But it’s got to be something for more than just
InfiniBand. 10 Gigabit Ethernet is going to need
some sort of RDMA capability to function well,
and the existing high-performance cluster net-
works could benefit from something like this as
well. The real benefit isn’t necessarily to the net-
work vendor, it’s to application developers who
currently use the Berkeley Sockets API, because
it’s the only thing that’s portable. Sockets direct
is appealing, but in order for it to work, there
needs to be a consensus on how it is to work
across different types of networks.

5 Acknowledgments

This work was performed under auspices of the
U. S. Department of Energy under contract W-
7405-Eng-82 at Ames Laboratory operated by the
Iowa State University of Science and Technology.
Funding was provided by the Mathematical, In-
formation and Computational Science division of
the Office of Advanced Scientific Computing Re-
search.

We would also like to thank InfiniCon Systems
for a hardware loan, Jeff Kirk at Mellanox for in-
valuable technical assistance, everyone contribut-
ing to the OpenIB.org project, and linux kernel
developers who have taken an interest in Infini-
Band.

References

[InfiniBand BOF] InfiniBand on Linux BOF,
http://www.linuxsymposium.org/2001/bofs.php
Ottawa Linux Symposium, 2001

[Mellanox Technolgies]
http://www.mellanox.com

[IBAL] http://infiniband.sourceforge.net

[MVAPICH] http://nowlab.cis.ohio-
state.edu/projects/mpi-iba

[InfiniCon] http://www.infinicon.com

[M-VIA] http://www.nersc.gov/research/FTG/via/download info.html

