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Abstract
For operating system intensive applications, the ability of

designers to understand system call performance behavior
is essential to achieving high performance. Conventional
performance tools, such as monitoring tools and profilers,
collect and present their information off-line or via out-of-
band channels. We believe that making this information
first-classand exposing it to applications viain-bandchan-
nels on aper-call basis presents opportunities for perfor-
mance analysis and tuning not available via other mecha-
nisms. Furthermore, our approach provides direct feedback
to applications on time spent in the kernel, resource con-
tention, and time spent blocked, allowing them to immedi-
ately observe how their actions affect kernel behavior. Not
only does this approach provide greatertransparencyinto
the workings of the kernel, but it also allows applications to
control how performance information is collected, filtered,
and correlated with application-level events.

To demonstrate the power of this approach, we show that
our implementation, DeBox, obtains precise information
about OS behavior at low cost, and that it can be used in
debugging and tuning application performance on complex
workloads. In particular, we focus on the industry-standard
SpecWeb99 benchmark running on the Flash Web Server.
Using DeBox, we are able to diagnose a series of problem-
atic interactions between the server and the OS. Address-
ing these issues as well as other optimization opportuni-
ties generates an overall factor of four improvement in our
SpecWeb99 score, throughput gains on other benchmarks,
and latency reductions ranging from a factor of 4 to 47.

1 Introduction
Operating system performance continues to be an active
area of research, especially as demanding applications test
OS scalability and performance limits. The kernel-user
boundary becomes critically important as these applica-
tions spend a significant fraction, often a majority, of their
time executing system calls. In the past, developers could
expect to put data-sharing services, such as NFS, into the
kernel to avoid the limitations stemming from running in
user space. However, with the rapid rate of developments
in HTTP servers, Web proxy servers, peer-to-peer systems,

and other networked systems, using kernel integration to
avoid performance problems becomes unrealistic. As a re-
sult, examining the interaction between operating systems
and user processes remains a useful area of investigation.

Much of the earlier work focusing on the kernel-user in-
terface centered around developing new system calls that
are more closely tailored to the needs of particular appli-
cations. In particular, zero-copy I/O [17, 31] and scal-
able event delivery [9, 10, 23] are examples of techniques
that have been adopted in mainstream operating systems,
via calls such assendfile(), transmitfile(),
kevent(), andepoll(), to address performance issues
for servers. Other approaches, such as allowing processes
to declare their intentions to the OS [32], have also been
proposed and implemented. Some system calls, such as
madvise(), provide usage hints to the OS, but with op-
erating systems free to ignore such requests or restrict them
to mapped files, programs cannot rely on their behavior.

Some recent research uses the reverse approach, where
applications determine how the “black box” OS is likely
to behave and then adapt accordingly. For example, the
Flash Web Server [30] uses themincore() system call to
determine memory residency of pages, and combines this
information with some heuristics to avoid blocking. The
“gray box” approach [7, 15] manages to infer memory res-
idency by observing page faults and correlating them with
known replacement algorithms. In both systems, memory-
resident files are treated differently than others, improving
performance, latency, or both. These approaches depend
on the quality of the information they can obtain from the
operating system and the accuracy of their heuristics. As
workload complexity increases, we believe that such infer-
ences will become harder to make.

To remedy these problems, we propose a much more di-
rect approach to making the OS transparent: make system
call performance information afirst-classresult, and return
it in-band. In practice, what this entails is having each sys-
tem call fill a “performance result” structure, providing in-
formation about what occurred in processing the call. The
termfirst-class resultspecifies that it gets treated the same
as other results, such as errno and the system call return
value, instead of having to be explicitly requested via other



system or library calls. The termin-bandspecifies that it is
returned to the caller immediately, instead of being logged
or processed by some other monitoring processes. While
it is much larger and more detailed than theerrno global
variable, they are conceptually similar. Simply monitor-
ing at the system call boundary, the scheduler, page fault
handlers, and function entry and exit is sufficient to pro-
vide detailed information about the inner working of the
operating system. This approach not only eliminates guess-
work about what happens during call processing, but also
gives the application control over how this information is
collected, filtered, and analyzed, providing more customiz-
able and narrowly-targeted performance debugging than is
available in existing tools.

We evaluate the flexibility and performance of our im-
plementation, DeBox, running on the FreeBSD operating
system. DeBox allows us to determine where applications
spend their time inside the kernel, what causes them to lose
performance, what resources are under contention, and how
the kernel behavior changes with the workload. The flex-
ibility of DeBox allows us to measure very specific infor-
mation, such as the kernel CPU consumption caused by a
single call site in a program.

Our throughput experiments focus on analyzing and op-
timizing the performance of the Flash Web Server on the
industry-standard SpecWeb99 benchmark [39]. Using De-
Box, we are able to diagnose a series of problematic in-
teractions between the server and the operating system on
this benchmark. The resulting system shows an overall fac-
tor of four improvement in SpecWeb99 score, throughput
gains on other benchmarks, and latency reductions ranging
from a factor of 4 to 47. Most of the issues are addressed by
application redesign and the resulting system is portable,as
we demonstrate by showing improvements on Linux. Our
kernel modifications, optimizing of thesendfile() sys-
tem call, have been integrated into FreeBSD.

DeBox is specifically designed for performance anal-
ysis of the interactions between the OS and applica-
tions, especially in server-style environments with com-
plex workloads. Its combination of features and flexibility
is novel, and differentiates it from other profiling-related
approaches. However, it is not designed to be a general-
purpose profiler, since it currently does not address appli-
cations that spend most of their time in user space or in the
“bottom half” (interrupt-driven) portion of the kernel.

The rest of this paper is organized as follows. In Sec-
tion 2 we motivate the approach of DeBox. The detailed de-
sign and implementation are described in Section 3. We de-
scribe experimental setup and workloads in Section 4, then
show a case study using DeBox to analyze and optimize
the Flash Web Server in Section 5. Section 6 contains fur-
ther experiments on latency and Section 7 demonstrates the
portability of our optimizations. We discuss related work
in Section 8 and conclude in Section 9.

2 Design Philosophy

DeBox is designed to bridge the divide in performance
analysis across the kernel and user boundary by exposing
kernel performance behavior to user processes, with a focus
on server-style applications with demanding workloads. In
these environments, performance problems can occur on ei-
ther side of the boundary, and limiting analysis to only one
side potentially eliminates useful information.

We present our observations about performance analysis
for server applications as below. While some of these mea-
surements could be made in other ways, we believe that
DeBox’s approach is particularly well-suited for these en-
vironments. Note that replacing any of the existing tools is
an explicit non-goal of DeBox, nor do we believe that such
a goal is even feasible.

High overheads hide bottlenecks.The cost of the debug-
ging tools may artificially stress parts of the system, thus
masking the real bottleneck at higher load levels. Prob-
lems that appear only at high request rates may not appear
when a profiler causes an overall slowdown. Our tests show
that for server workloads, kernelgprof has 40% perfor-
mance degradation even when low resolution profiling is
configured. Others tracing and event logging tools gener-
ate large quantities of data, up to 0.5MB/s in Linux Trace
Toolkit [42]. For more demanding workloads, the CPU or
filesystem effects of these tools may be problematic.

We design DeBox not only to exploit hardware perfor-
mance counters to reduce overhead, but also to allow users
to specify the level of detail to control the overall costs.
Furthermore, by splitting the profiling policy and mecha-
nism in DeBox, applications can decide how much effort to
expend on collecting and storing information. Thus, they
may selectively process the data, discard redundant or triv-
ial information, and store only useful results to reduce the
costs. Not only does this approach make the cost of profil-
ing controllable, but one process desiring profiling does not
affect the behavior of others on the system. It affects only
its own share of system resources.

User-level timing can be misleading.Figure 1 shows user-
level timing measurement of thesendfile() system call
in an event-driven server. This server uses nonblocking
sockets and invokes sendfile only for in-memory data. As
a result, the high peaks on this graph are troubling, since
they suggest the server is blocking. A similar measurement
usinggetrusage() also falsely implies the same. Even
though the measurement calls immediately precede and fol-
low the system call, heavy system activity causes the sched-
uler to preempt the process in that small window.

In DeBox, we integrate measurement into the system call
process, so it does not suffer from scheduler-induced mea-
surement errors. The DeBox-derived measurements of the
same call are shown in Figure 2, and do not indicate such
sharp peaks and blocking. Summary data forsendfile
andaccept (in non-blocking mode) are shown in Table 1.
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Figure 1:User-space timing of thesendfile call on a server
running the SpecWeb99 benchmark – note the sharp peaks, which
may indicate anomalous behavior in the kernel.
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Figure 2: The same system call measured using DeBox shows
much less variation in behavior.

accept() sendfile()
User DeBox User DeBox

Min 5.0 5.0 8.0 6.0
Median 10.0 6.0 60.0 53.0

Mean 14.8 10.5 86.6 77.5
Max 5216.0 174.0 12952.0 998.0

Table 1:Execution time (in usec) of two system calls measured
in user application and DeBox – Note the large difference in max-
imums stemming from the measuring technique.

Statistical methods miss infrequent events.Profilers and
monitoring tools may only sample events, with the belief
that any event of interest is likely to take “enough” time to
eventually be sampled. However, the correlation between
frequency and importance may not always hold. Our exper-
iments with the Flash web server indicate that adding a 1 ms
delay to one out of every 1000 requests can degrade latency
by a factor of 8 while showing little impact on throughput.
This is precisely the kind of behavior that statistical profil-
ers are likely to miss.

We eliminate this gap by allowing applications to exam-
ine every system call. Applications can implement their
own sampling policy, controlling overhead while still cap-
turing the details of interest to them.

Data aggregation hides anomalies.Whole-system profil-
ing and logging tools may aggregate data to keep complete-
ness and reduce overhead at the same time. This approach
makes it hard to determine which call invocation experi-
enced problems, or sometimes even which process or call
site was responsible for high-overhead calls. This problem
gets worse in network server environments where the sys-
tems are complex and large quantities of data are generated.
It is not uncommon for these applications to have dozens of
system call sites and thousands of invocations per second.
For example, the Flash server consists of about 40 system
calls and 150 calling sites. In these conditions, either dis-
carding call history or logging full events is infeasible.

By making performance information a result of system
calls, developers have control over how the kernel profil-
ing is performed. Information can be recorded by process

and by call site, instead of being aggregated by call number
inside the kernel. Users may choose to save accumulated
results, record per-call performance history over time, or
fully store some of the anomalous call trace.

Out-of-band reporting misses useful opportunities.As
the kernel-user boundary becomes a significant issue for
demanding applications, understanding the interaction be-
tween operating systems and user processes becomes es-
sential. Most existing tools provide measurements out-
of-band, making online data processing harder and possi-
bly missing useful opportunities. For example, the online
method allows an application toabort() or record the
status when a performance anomaly occurs, but it is impos-
sible with out-of-band reporting.

When applications receive performance information tied
to each system call via in-band channels, they can choose
the filtering and aggregation appropriate for the program’s
context. They can easily correlate information about sys-
tem calls with the underlying actions that invoke them.

3 Design & Implementation

This section describes our DeBox prototype implementa-
tion in FreeBSD and measures its overhead. We first de-
scribe the user-visible portion of DeBox, and then the ker-
nel modifications. We compare overhead for DeBox sup-
port and active use versus an unmodified kernel. Examples
of how to fully use DeBox and what kinds of information it
provides are deferred to the case study in Section 5.

3.1 User-Visible Portion
The programmer-visible interface of DeBox is intentionally
simple, since it consists of some monitoring data structures
and a new system call to enable and disable data gather-
ing. Figure 3 shows DeBoxInfo, the data structure that
handles the DeBox information. It serves as the “perfor-
mance information” counterpart to other system call results
like errno. Programs wishing to use DeBox need to per-
form two actions: declare one or more of these structures
as global variables, and call DeBoxControl to specify how
much per-call performance information it desires.



typedef struct PerSleepInfo {
int numSleeps; /* # sleeps for the same reason */
struct timeval blockedTime; /* how long the process is blocked */
char wmesg[8]; /* reason for sleep (resource label) */
char blockingFile[32]; /* file name causing the sleep */
int blockingLine; /* line number causing the sleep */
int numWaitersEntry; /* # of contenders at sleep */
int numWaitersExit; /* # of contenders at wake-up */

} PerSleepInfo;

typedef struct CallTrace {
unsigned long callSite; /* address of the caller */
int deltaTime; /* elapsed time in timer or CPU counter */

} CallTrace;

typedef struct DeBoxInfo {
int syscallNum; /* which system call */
union CallTime {
struct timeval callTimeval;
long callCycles; /* wall-clock time of entire call */

} CallTime;
int numPGFaults; /* # page faults */
int numPerSleepInfo; /* # of filled PerSleepInfo elements */
int traceDepth; /* # functions called in this system call */
struct PerSleepInfo psi[5]; /* sleeping info for this call */
struct CallTrace ct[200]; /* call trace info for this call */

} DeBoxInfo;

int DeBoxControl(DeBoxInfo *resultBuf, int maxSleeps, int maxTrace);

Figure 3:DeBox data structures and function prototype

At first glance, the DeBoxInfo structure appears very
large, which would normally be an issue since its size could
affect system call performance. This structure size is not
a significant concern, since the process specifies limits on
how much of it is used. Most of the space is consumed
by two arrays, PerSleepInfo and CallTrace. The PerSleep-
Info array contains information about each of the times the
system call blocks (sleeps) in the course of processing. The
CallTrace array provides the history of what functions were
called and how much time was spent in each. Both arrays
are generously sized, and we do not expect many calls to
fully utilize either one.

DeBoxControl can be called multiple times over the
course of a process execution for a variety of reasons. Pro-
grammers may wish to have several DeBoxInfo structures
and use different structures for different purposes. They
can also vary the number of PerSleepInfo and CallTrace
items recorded for each call, to vary the level of detail gen-
erated. Finally, they can specify a NULL value for result-
Buf, which deactivates DeBox monitoring for the process.

3.2 In-Kernel Implementation
The kernel support for DeBox consists of performing the
necessary bookkeeping to gather the data in the DeBoxInfo
structure. The points of interest are system call entry and
exit, scheduler sleep and wakeup routines, and function en-
try and exit for all functions reachable from a system call.

Since DeBox returns performance information when
each system call finishes, the system call entry and exit
code is modified to detect if a process is using DeBox. Once
a process calls DeBoxControl and specifies how much of
the arrays to use, the kernel stores this information and al-
locates a kernel-space DeBoxInfo reachable from the pro-

cess control block. This copy records information while the
system call executes, avoiding many small copies between
kernel and user. Prior to system call return, the requested
information is copied back to user space.

At system call entry, all non-array fields of the process’s
DeBoxInfo are cleared. Arrays do not need to be explicitly
cleared since the counters indicating their utilization have
been cleared. Call number and start time are stored in the
entry. We measure time using the CPU cycle counter avail-
able on our hardware, but we could also use timer interrupts
or other facilities provided by the hardware.

Page faults that occur during the system call are counted
by modifying the page fault handler to check for DeBox
activation. We currently do not provide more detailed in-
formation on where faults occur, largely because we have
not observed a real need for it. However, since the DeBox-
Info structure can contain other arrays, more detailed page
fault information can be added if desired.

The most detailed accounting in DeBoxInfo revolves
around the “sleeps”, when the system call blocks waiting on
some resource. When this occurs in FreeBSD, the system
call invokes thetsleep() function, which passes control
to the scheduler. When the resource becomes available, the
wakeup() function is invoked and the affected processes
are unblocked. Kernel routines invokingtsleep() pro-
vide a human-readable label for use in utilities liketop.
We define a new macro fortsleep() in the kernel header
files that permits us to intercept any sleep points. When
this occurs, we record in a PerSleepInfo element where the
sleep occurred (blockingFile and blockingLine), what time
it started, what resource label was involved (wmesg), and
the number of other processes waiting on the same resource
(numWaitersEntry). Similarly, we modify thewakeup()



DeBoxInfo:
4, /* system call # */

3591064, /* call time, microsecs */
989, /* # of page faults */

2, /* # of PerSleepInfo used */
0, /* # of CallTrace used (disabled) */

PerSleepInfo[0]:
1270 /* # occurrences */

723903 /* time blocked, microsecs */
biowr /* resource label */

kern/vfs_bio.c /* file where blocked */
2727 /* line where blocked */

1 /* # processes on entry */
0 /* # processes on exit */

PerSleepInfo[1]:
325 /* # occurrences */

2710256 /* time blocked, microsecs */
spread /* resource label */

miscfs/specfs/spec_vnops.c /* file where blocked */
729 /* line where blocked */

1 /* # processes on entry */
0 /* # processes on exit */

Figure 4:Sample DeBox output showing the system call perfor-
mance of copying a 10MB mapped file

routine to provide numWaitersExit and calculate how much
time was spent blocked. If the system call sleeps more than
once at the same location, that information is aggregated
into a single PerSleepInfo entry.

The process of tracing which kernel functions are called
during a system call is slightly more involved, largely to
minimize overhead. Conceptually, all that has to occur is
that every function entry and exit point has to record the
current time and function name when it started and finished,
similar to what call graph profilers use. The gcc compiler
allows entry and exit functions to be specified via the “in-
strument functions” option, but these are invoked by ex-
plicit function calls. As a result, function call overhead
increases by roughly a factor of three. Our current solu-
tion involves manually inserting entry and exit macros into
reachable functions. The entry macro pushes current func-
tion address and time in a temporary stack. The exit macro
pops out the function address, calculates the wall clock
time, and records these information in the CallTrace array.
Automating this modification process should be possible in
the future, and we are investigating using themcount()
kernel function used for kernel profiling.

To show what kind of information is provided in DeBox,
we give a sample output in Figure 4. We memory-map a
10MB file, and use thewrite() system call to copy its
contents to another file. The main DeBoxInfo structure
shows that system call 4 (write()) was invoked, and it
used about 3.6 seconds of wall-clock time. It incurred 989
page faults, and blocked in two unique places in the ker-
nel. The first PerSleepInfo element shows that it blocked
1270 times at line 2727 in vfsbio.c on “biowr”, which is
the block I/O write routine. The second location was line
729 of specvnops.c, which caused 325 blocks at “spread”,
read of a special file. The writes blocked for roughly 0.7
seconds, and the reads for 2.7 seconds.

3.3 Overhead
For DeBox to be attractive, it should generate low kernel
overhead, especially in the common case. To quantify this
overhead, we compare an unmodified kernel, a kernel with
DeBox support, and the modified kernel with DeBox acti-
vated. We show these measurements in Table 2. The first
column indicates the various system calls –getpid(),
gettimeofday(), and pread() with various sizes.
The second column indicates the time required for these
calls on an unmodified system. The remaining columns in-
dicate the additional overhead for various DeBox features.

DeBox without DeBox
call name base call trace call trace

or read size time off on off on

getpid 0.46 +0.00 +0.50 +0.03 +1.45

gettimeofday 5.07 +0.00 +0.43 +0.03 +1.52

pread 128B 3.27 +0.02 +0.56 +0.21 +2.03
256 bytes 3.83 +0.00 +0.59 +0.26 +2.02
512 bytes 4.70 +0.00 +0.69 +0.28 +2.02

1024 bytes 6.74 +0.00 +0.68 +0.27 +2.02
2048 bytes 10.58 +0.03 +0.68 +0.26 +2.01
4096 bytes 18.43 +0.03 +0.74 +0.29 +2.16

Table 2:DeBox microbenchmark overheads – Base time uses an
unmodified system. All times are in microseconds

We separate the measurement for call history tracing
since we do not expect it will be activated continuously.
These numbers show that the cost to support most DeBox
features is minimal, and the cost of using the measurement
infrastructure is tolerable. Since these costs are borne only
by the applications that choose to enable DeBox, the over-
head to the whole system is even lower. The performance
impact with DeBox disabled, indicated by the 3rd column,
is virtually unnoticeable. The cost of supporting call trac-
ing, shown in the 5th column, where every function en-
try and exit point is affected, is higher, averaging approxi-
mately 5% of the system call time. This overhead is higher
than ideal, and may not be desirable to have continuously
enabled. However, our implementation is admittedly crude,
and better compiler support could integrate it with the func-
tion prologue and epilogue code. We expect that we can
reduce this overhead, along with the overhead of using the
call tracing, with optimization.

tar-gz a directory with make
1MB file 10MB file kernel

base time 275.61 ms 3078.50 ms 236.96 s
basic on +0.97 ms +22.73 ms +1.74 s

full support +1.03 ms +44.58 ms +7.49 s
Table 3:DeBox macrobenchmark overheads

Since microbenchmarks do not indicate what kinds of
slowdowns may be typically observed, we provide some
macrobenchmark results to give some insight into these
costs in Table 3. The three systems tested are: an unmodi-



fied system, one with only “basic” DeBox without call trace
support, and one with complete DeBox support. The first
two columns are times for archiving and compressing files
of different sizes. The last column is for building the ker-
nel. The overheads of DeBox support range from less than
1% to roughly 3% in the kernel build. We expect that many
environments will tolerate this overhead in exchange for the
flexibility provided by DeBox.

4 Experimental Setup & Workload

We describe our experimental setup and the relevant soft-
ware components of the system in this section. All of our
experiments, except for the portability measurements1, are
performed on a uniprocessor server running FreeBSD 4.6,
with a 933MHz Pentium III, 1GB of memory, one 5400
RPM Maxtor IDE disk, and a single Netgear GA621 giga-
bit ethernet network adapter. The clients consist of ten Pen-
tium II machines running at 300 MHz connected to a switch
using Fast Ethernet. All machines are configured to use the
default (1500 byte) MTU as required by SpecWeb99.

Our main application is the event-driven Flash Web
Server, although we also perform some tests on the widely-
used multi-process Apache [6] server. The Flash Web
Server consists of a main process and a number of helper
processes. The main process multiplexes all client con-
nections, is intended to be nonblocking, and is expected
to serve all requests only from memory. The helpers load
disk data and metadata into memory to allow the main pro-
cess to avoid blocking on disk. The number of main pro-
cesses in the system is generally equal to the number of
physical processors, while the number of helper processes
is dynamically adjusted based on load. In previous tests,
the Flash Web Server has been shown to compare favorably
to high-performance commercial Web servers [30]. We run
with logging disabled to simplify comparison with Apache,
where enabling logging degrades performance noticeably.

We focus on the SpecWeb99 benchmark, an industry-
standard test of the overall scalability of Web servers un-
der realistic conditions. It is designed by SPEC, the de-
velopers of the widely-used SpecCPU workloads [38], and
is based on traffic at production Web sites. Although not
common in academia, it is thede factostandard in indus-
try [27], with over 190 published results, and is different
from most other Web server benchmarks in its complex-
ity and requirements. It measures scalability by reporting
the number of simultaneous connections the server can han-
dle while meeting a specified quality of service. The data
set and working set sizes increase with the number of si-
multaneous connections, and quickly exceed the physical
memory of commodity systems. 70% of the requests are
for static content, with the other 30% for dynamic content,
including a mix of HTTP GET and POST requests. 0.15%
of the requests require the use of a CGI process that must
be spawned separately for each request.

1The Linux kernel crashes on our existing server hardware

5 Case Study

In this section, we demonstrate how DeBox’s features can
be used to analyze and optimize the behavior of the Flash
Web Server. We discover a series of problematic interac-
tions, trace their causes, and find appropriate solutions to
avoid them or fix them. In the process, we gain insights into
the causes of performance problems and how conventional
solutions, such as throwing more resources at the problem,
may exacerbate the problem. Our optimizations quadruple
our SpecWeb99 score and also sharply decrease latency.

5.1 Initial experiments
Our first run of SpecWeb99 on the publicly available ver-
sion of the Flash Web Server yields a SpecWeb99 re-
sult of roughly 200 simultaneous connections, much lower
than the published score of 575 achieved on compara-
ble hardware using TUX, an in-kernel Linux-only HTTP
server. At 200 simultaneous connections, the dataset size is
roughly 770MB, which is smaller than the amount of phys-
ical memory in the machine. Not surprisingly, the work-
load is CPU-bound, and a quick examination shows that
themincore() system call is consuming more resources
than any other call in Flash.

The underlying problem is the use of linked lists in the
FreeBSD virtual memory subsystem for handling virtual
memory objects. The heavy use of memory-mapped files
in Flash generates large numbers of memory objects, and
a linear walk utilized bymincore() generates signifi-
cant overhead. We apply a patch from Alan Cox of Rice
University that replaces the linked lists with splay trees,
and this bringsmincore() in line with other calls. Our
SpecWeb99 score rises to roughly 320, a 60% improve-
ment. At this point, the working set has increased to
1.13GB, slightly exceeding our physical memory.

Once themincore() problem is addressed, we still
appear to be CPU-bound, and suspect the data copying is
the bottleneck. So we update the Flash server to use the
zero-copy I/O system call,sendfile(). However, using
sendfile() requires that file descriptors be kept open,
greatly increasing the number of file descriptors in use by
Flash. To mitigate this impact, we implement support for
sendfile() concurrently with support forkevent(),
which is a scalable event delivery mechanism recently in-
corporated into FreeBSD. After these changes, we are not
surprised by the drop in CPU utilization, but are surprised
that the SpecWeb99 score drops to 300.

5.2 Successive refinement of detail
With the server exhibiting idle CPU time but an inability to
meet SpecWeb99’s quality-of-service requirements, an ob-
vious candidate is blocking system calls. However, Flash’s
main process is designed to avoid blocking. We tried trac-
ing the problem using existing tools, but found they suf-
fered from the problems discussed in section 2. These ex-
periences motivated the creation of DeBox.



biord/166 inode/127 getblk/1 sfpbsy/1

open/162 readlink/84 close/1 sendfile/1
read/3 open/28

unlink/1 read/9
stat/6

Table 4:Summarized DeBox output showing blocking counts –
The layout is organized by resource label and system call name.
For example, of the 127 times this test blocked with the “inode”
label, 28 were from theopen() system call

The DeBox structures provide various levels of detail,
allowing applications to specify what to measure. A typi-
cal use would first collect the basic DeBoxInfo to observe
anomalies, then enable more details to identify the affected
system calls, invocations, and finally the whole call trace.

We first use DeBox to get the blocking information,
which is stored in the PerSleepInfo field. The PerSleepInfo
data shows seven different system calls blocking in the ker-
nel, and examination of the resource labels (wmesg) shows
four reasons for blocking. These results are shown in Ta-
ble 4, where each column header shows the resource label
causing the blocking, followed by the total number of times
blocked at that label. The elements in the column are the
system calls that block on that resource, and the number of
invocations involved. As evidenced by the calls involved,
the “biord” (block I/O read) and “inode” (vnode lock) la-
bels are both involved in opening and retrieving files, which
is not surprising since our data set exceeds the physical
memory of the machine.

The finest-grained kernel information is provided in the
CallTrace structure, and we enable this level of detail once
the PerSleepInfo identifies possible candidates. The main
process should only be accessing cached data, so the fact
that it blocks on disk-related calls is puzzling. For portabil-
ity, the main process in Flash uses the helpers to demand-
fetch disk data and metadata into the OS caches, and repeats
the operation immediately after the helpers have completed
loading, assuming that the recently loaded information will
prevent it from blocking. Observing the full CallTrace of
some of these blocking invocations shows the blocking is
not caused by disk access, but contention on filesystem
locks. Combining the blocking information from helper
processes reveals that when the main process blocks, the
helpers are operating on similarly-named files as the main
process. We solve this problem by having the helpers re-
turn open file descriptors usingsendmsg(), eliminating
duplication of work in the main process. With this change,
we are able to handle 370 simultaneous connections from
SpecWeb99, with a dataset size of 1.28GB.

5.3 Capturing rare anomaly paths
We find that thesendmsg() change solves most of the
filesystem-related blocking. However, oneopen() call in
Flash still shows occasional blocking at the label “biord”
(reading a disk block), but only after the server has been
running for some time and under heavy workloads. Only

revealing which call induced the problem may not suffice a
complete picture, because the reason of invoking that call
is unclear. In a system with multiple identical system calls,
existing tools do not have an efficient way to find which one
causes the problem and the calling path involved.

Because DeBox information is returned in-band, the
user-space context is also available once kernel perfor-
mance anomaly is detected. On finding a blocking invo-
cation ofopen(), we capture the path through the user
code by callingabort() and usinggdb to dump the
stack2. This approach uncovers a subtle performance bug in
Flash induced by mapped-file cache replacement. Flash has
two independent caches – one for URL-to-filename trans-
lations (name cache), and another for memory-mapped re-
gions (data cache). For this workload, the name cache does
not suffer from capacity misses, while the data cache may
evict the least recently used entries. Under heavy load, a
name cache hit and a data cache capacity miss causes Flash
to erroneously believe that it had just recently performed
the name translation and has the metadata cached. When
Flash callsopen() to access the file in this circumstance,
the metadata associated with the name conversion is miss-
ing, causing blocking. We solve this problem by allowing
the second set of helpers, the read helpers, to return file de-
scriptors if the main process does not already have them
open. After fixing this bug, we are able to handle 390 si-
multaneous connections, and a 1.34GB dataset.

5.4 Tracking call histories
With all blocking eliminated and with a much higher re-
quest rate, we return to the issue of CPU consumption. By
storing the CallTime field of each system call, we can track
per-call performance by invocation, both to observe trends
and to identify time-related problems. Traditional profil-
ing tools usually report average CPU consumption of each
function, thus hiding any performance trends. User space
timing functions may catch the general trend in spite of the
measurement error, but involve much more work to track
each system call and find the problematic ones.

5.4.1 Process creation overhead
By recording all CPU time values, we find that the largest
call times are for thefork() system call and that its cost
grows with the number of invocations, approaching 130
msec. Figure 5 shows the per-call time as a function of
invocation. We observe thatfork() time increases as the
program runs, starting as low as 0.3 msec. These calls stem
from the SpecWeb99 workload’s requirement that 0.15% of
the requests be handled by forking new processes.

A full call trace indicates thatfork() spends the bulk
of its time copying file descriptors and VM map entries (for
mapped regions). Rather than changing the implementa-
tion of fork(), we opt to slightly modify the Flash archi-

2Alternately, we could invokefork() followed byabort() to keep
the process running while still obtaining a snapshot, or we could record the
call path manually
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Figure 6:Call time ofmmap() as a function of invocation

tecture. We introduce a new helper process that is responsi-
ble for creating the CGI processes. Since this new process
does not map files or cache open files, itsfork() time is
not affected by the main process size. This change yields a
10% improvement, to 440 simultaneous connections and a
1.50GB dataset size.

5.4.2 Memory lookup overhead

Though the dataset size now exceeds physical memory by
over 50%, the system bottleneck remains CPU. Examining
the time consumption of each system call again reveals that
most time is being spent in memory residency checking.
Though our modified Flash usessendfile(), it uses
mincore() to determine memory residency, which re-
quires that files be memory-mapped. The cumulative over-
head of memory-map operations is the largest consumer of
CPU time. As can be seen in Figure 6, the per-call overhead
of mmap() is significant and increases as the server runs.
The cost increase is presumably due to finding available
space as the process memory map becomes fragmented.

To avoid the memory-residency overheads, we use
Flash’s mapped-file cache bookkeeping as the sole heuristic
for guessing memory residency. We eliminate allmmap,
mincore, and munmap calls but keep track of what
pieces of files have been recently accessed. Sizing the
cache conservatively with respect to main memory, we save
CPU overhead but introduce a small risk of having the main
process block. The CPU savings of this change is substan-
tial, allowing us to reach 620 connections (2GB dataset).

5.5 Profiling by call site
We take advantage of DeBox’s flexibility by separating the
kernel time consumption based on call site rather than call
name. We are interested in the cost of handling dynamic
content since SpecWeb99 includes 30% dynamic requests
which could be processed by various interfaces. Flash uses
a persistent CGI interface similar to FastCGI [28] to reuse
CGI processes when possible, and this mechanism commu-
nicates over pipes. Although theread() andwrite()
system calls are used by the main process, the helpers, and
all of the CGI processes, we measure the overhead of only
those involved in communication with CGI processes.

Our measurements show that the single call site respon-
sible for most of the time is where the main process reads
from the CGIs, consuming 20% of all kernel time, (176 sec-
onds out of 891 seconds total). Writing the request to the
CGI processes is much smaller, requiring only 24.3 seconds
of system call time. This level of detail demonstrates the
power of making performance a first-class result, since ex-
isting kernel profilers would not have been able to separate
the time for theread() calls by call sites. By modify-
ing our CGI interface slightly, the main process writes only
the HTTP header to the client, and passes the socket to the
CGI application to let it write the data directly. This change
allows us to reach 710 connections (2.35GB dataset).

5.6 Other optimization opportunities
By replacing our exact memory residency check with
a cheaper heuristic, we gain performance, but intro-
duce blocking into thesendfile() system call. New
PerSleepInfo measurements of the blocking behavior of
sendfile() are shown in Table 5.

time label kernel file line

6492 sfbufa kern/uipcsyscalls.c 1459
702 getblk kern/kernlock.c 182

984544 biord kern/vfsbio.c 2724
Table 5:New blocking measurements ofsendfile()

The resource label “sfbufa” indicates that the kernel has
exhausted the sendfile buffers used to map filesystem pages
into kernel virtual memory. We confirm that increasing the
number of buffers during boot time may mitigate this prob-
lem in our test. However, based on the results of previous
copy-avoidance systems [17, 31], we opt instead to imple-
ment recycling of kernel virtual address buffers. With this
change, many requests to the same file do not cause mul-
tiple mappings, and eliminates the associated virtual mem-
ory and physical map (pmap) operations. Caching these
mappings may temporarily use more wired memory than
no caching, but the reduction in overhead and address space
consumption outweighs the drawbacks.

The other two resource labels, “getblk” and “biord”, are
related to disk access initiated withinsendfile() when
the requested pages are not in memory. Even though the



socket being used is nonblocking, that behavior is limited
only to network buffer usage. We introduce a new flag to
sendfile() so that it returns a differenterrno value
if disk blocking would occur. This change allows us to
achieve the same effect as we had withmincore(), but
with much less CPU overhead. We may optionally have
the read helper process send data directly back to the client
on a filesystem cache miss, but have not implemented this
optimization.

However, even with blocking eliminated, we find per-
formance barely changes when usingsendfile() ver-
suswritev(), and we find that the problem stems from
handling small writes. HTTP responses consist of a small
header followed by file data. Thewritev() code aggre-
gates the header and the first portion of the body data into
one packet, benefiting small file transfers. In SpecWeb99,
35% of all static requests are for files 1KB or smaller.

The FreeBSDsendfile() call includes parameters
specifying headers and trailers to be sent with the data,
whereas the Linux implementation does not. Linux intro-
duces a new socket option, TCPCORK, to delay transmis-
sion until full packets can be assembled. While FreeBSD’s
“monolithic” approach provides enough information to
avoid sending a separate header, its implementation uses
a kernel version ofwritev() for the header, thus gen-
erating an extra packet. We improve this implemen-
tation by creating an mbuf chain using the header and
body data before sending it to lower levels of the net-
work stack. This change generates fewer packets, improv-
ing performance and network latency. Results of these
changes on a microbenchmark are shown in Figure 7.
With the sendfile() changes, we are able to achieve
a SpecWeb99 score of 820, with a dataset size of 2.7GB.
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5.7 Case Study Summary
By addressing the interaction areas identified by DeBox,
we achieve a factor of four improvement in our SpecWeb99
score, supporting four times as many simultaneous con-
nections while also handling a data set that almost three
times as large as the physical memory of our machine. The
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Figure 8: SpecWeb99 summary – 1. Original 2. VM patch
3. Using sendfile() 4. FD-passing helpers 5. Fork helper 6. Elim-
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SpecWeb99 results of our modifications can be seen in Fig-
ure 8, where we show the scores for all of the intermedi-
ate modifications we made. Our final result of 820 com-
pares favorably to published SpecWeb99 scores, though no
directly comparable systems have been benchmarked. We
outperform all uniprocessor systems with similar memory
configurations but using other server software – the highest
score for a system with less than 2GB of memory is 575.

Most of our changes are portable architectural modifica-
tions to the Flash Web Server, including (1) passing file de-
scriptors between the helpers and the main process to avoid
most disk operations in the main process, (2) introducing
a newfork() helper to handle forking CGI requests, (3)
eliminating the mapped file cache, and (4) allowing CGI
processes to write directly to the clients instead of writing
to the main process. Figure 9 shows the original and new
architectures of the static content path for the server.

Figure 9:Architectural changes – The architecture is greatly sim-
plified by using file descriptor passing and eliminating mapped file
caching. Modified components are indicated with dark boxes.

The changes we make to the operating system focus on
sendfile(), including (1) adding a new flag and return



value to indicate when blocking on disk would occur, (2)
caching kernel address space mapping to avoid unneces-
sary physical map operations, and (3) sending headers and
file data in a single mbuf chain to avoid multiple packets
for small responses. Additionally, we apply a virtual mem-
ory system patch that ultimately is superfluous since we re-
move the memory-mapped file cache. We have provided
our modifications to the FreeBSD developer group and all
three optimizations have been incorporated into FreeBSD.

6 Latency

Since we identify and correct many sources of blocking,
we are interested in the effects of our changes on server
latency. We first compare the effect of our changes on the
SpecWeb99 workload, and then reproduce workloads used
by other researchers in studying static content latencies.In
all cases, we compare latencies using a workload below the
maximum of the slowest server configuration under test.

6.1 SpecWeb99 workload
On the SpecWeb99 workload, we find that mean response
time is reduced by a factor of four by our changes. The cu-
mulative distribution of latencies can be seen in Figure 10.
We use 300 simultaneous connections, and compare the
new server with the original Flash running on a patched VM
system. Since 30% of the requests are for longer-running
dynamic content, we also test the latencies of a SpecWeb99
test with only static requests. The mean of this workload
is 7.1 msec, lower than the 10.6 msec mean for the new
server running the complete workload. This difference sug-
gests that further optimization of dynamic content handling
may lead to even better performance. To compare the dif-
ference between static and dynamic request handling, we
calculate the 5th, 50th, and 95th percentiles of the latencies
for requests on the SpecWeb99 workload. These results
are shown in Table 6, and indicate that dynamic content
is served at roughly half the speed of its static counterpart.
The latency difference between the new server and the orig-
inal Flash on this test is not as large as expected because the
working set still fits in physical memory.
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Figure 10:Latency summary for 300 SpecWeb99 connections

5%(ms) 50%(ms) 95%(ms) mean(ms)
static 0.51 1.45 59.81 9.92

dynamic 0.99 2.83 91.31 12.19

Table 6:Separating SpecWeb99 static and dynamic latencies

6.2 Diskbound static workload
To determine our latency benefit on a more disk-bound
workload and to compare our results with those of other re-
searchers, we construct a static workload similar to the one
used to evaluate the Haboob server [41]. In this workload,
1020 simulated clients generate static requests to a 3.3GB
data set. Persistent connections are used, with clients issu-
ing 5 requests per connection before closing it. To avoid
overload, the request rate is fixed at 2300 requests/second,
which is roughly 90% of the slowest server’s capacity.

We compare several configurations to determine the la-
tency benefits and the impact of parallelism in the server.
We run the new and original versions of Flash with a single
instance and four instances, to compare uniprocessor con-
figurations with what would be expected on a 4-way SMP.
We also run Apache with 150 and 300 server processes.
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Figure 11:Response latencies for the 3.3GB static workload

5% median 95% mean
(ms) (ms) (ms) (ms)

New Flash 0.37 0.79 7.45 7.56
New Flash, 4p 0.38 0.82 7.51 7.72

Old Flash 3.36 37.59 326.40 92.37
Old Flash, 4p 7.05 142.65 1924.42 420.85

Apache 150p 0.70 6.64 1599.50 360.62
Apache 300p 0.78 124.98 2201.63 545.93

Table 7:Summaries of the static workload latencies

The results, given in Figure 11 and Table 7, show the re-
sponse time of our new server under this workload exhibits
improvements of more than a factor of twelve in mean re-
sponse time, and a factor of 47 in median latency. With
four instances, the differences are a factor of 54 in mean re-
sponse time and 174 in median time. We measure the max-
imum capacities of the servers when run in infinite-demand
mode, and these results are shown in Table 8. While the
throughput gain from our optimizations is significant, the
scale of gain is much lower than the SpecWeb99 test, in-



data set Apache Old Flash New Flash
500MB 240.3 485.2 660.9
1.5GB 230.7 410.6 580.3
3.3GB 210.6 264.5 326.4

Table 8:Server static workload capacities (Mb/s)

dicating that our latency benefits do not stem purely from
extra capacity.

6.3 Excess parallelism
We also observe that all servers tested show latency degra-
dation when running with more processes, though the effect
is much lower for our new server. This observation is in line
with the self-interference between the helpers and the main
Flash process which we described earlier. We increase the
number of helper processes and measure its effect on the
SpecWeb99 results, as shown in Table 9. We observe that
too few helpers is insufficient to fully utilize the disk, and
increasing their number initially helps performance. How-
ever, the blocking from self-interference increases, eventu-
ally decreasing performance. A similar phenomenon, stem-
ming from the same problem, is also observed with Apache.
Using DeBox, we find that Apache with 150 processes,
sleeps 3667 times per second, increasing to 3994 times per
second at 300 processes. This behavior is responsible for
Apache’s latency increase in Figure 11.

# of helpers 1 5 10 15

Blocking count 114 295 339 394
% Conforming 40.9% 95.1% 96.9% 89.5%

Table 9: Parallelism benefits and self-interference – The
conformance measurement indicates how many requests meet
SpecWeb99’s quality-of-service requirement.

This result suggests that excess parallelism, where server
designers use parallelism for convenience, may actually de-
grade performance noticeably. This observation may ex-
plain the latency behavior reported for Haboob [41].

7 Results Portability

The main goal of this work is to provide developers with
tools to diagnose and correct the performance problems in
their own applications. Thus we hope that the optimiza-
tions made on one platform also have benefit on other plat-
forms. To test this premise, we test the performance on
Linux, which has no DeBox support.

Unfortunately, we were unable to get Linux to run prop-
erly on our existing hardware, despite several attempts to
resolve the issue on the Linux kernel list. So, for these
numbers, we use a server machine with a 3.0 GHz Pentium
4 processor and two Intel Pro1000/MT Gigabit adapters,
1GB of memory, and a similar disk. The experiments were
performed on 2.4.21 kernel withepoll() support.

We compare the throughput and latency of four servers:
Apache 1.3.27, Haboob, Flash, and the new Flash. We in-
crease the max number of clients to 1024 in Apache and

disable logging. Both the original Flash and the new Flash
server use the maximum available cache size for LRU. We
also adjust the cache size in Haboob for the best perfor-
mance. The throughput results, shown in Table 10, are quite
surprising. The Haboob server, despite having aggressive
optimizations and event-driven stages, performs slightly
better than Apache on diskbound workload but worse than
Apache on an in-memory workload. We believe that its
dependence on excess parallelism (via its threaded design)
may have some impact on its performance. The new Flash
server gains about 17-24% over the old one for the smaller
workloads, and all four servers have similar throughput on
the larger workload because of diskbound.

Throughput (Mb/s)
data set Haboob Apache Flash New Flash

500MB 324.9 434.3 1098.1 1284.7
1.5GB 303.4 372.4 661.7 822.5
3.3GB 184.1 177.4 173.8 199.1

Response Time (ms)
profile Haboob Apache Flash New Flash

5% 78.2 0.22 0.21 0.15
median 414.3 0.61 1.56 0.42

95% 1918.9 661.8 412.5 3.68
mean 656.2 418.0 512.5 141.9

Table 10:Throughput measurement on Linux with 1GB memory
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Figure 12:Response time on Linux with 3.3GB dataset

Despite similar throughputs at the 3.3GB data set size,
the latencies of the servers, shown in Figure 12 and Ta-
ble 10, are markedly different. The Haboob latency profile
is very close to their published results, but are beaten by all
of the other servers. We surmise that the minimal amount
of tuning done to configurations of Apache and the original
Flash yield much better results than the original Haboob
comparison [41]. The benefit of our optimization is still
valid on this platform, with a factor of 4 both in median
and mean latency over the original Flash. One interesting
observation is that the 95% latency of the new Flash is a
factor of 39 lower than the mean value. This result suggests
that the small fraction of long-latency requests is the major
contribution to the mean latency. Though our Linux re-
sults are not directly comparable to our FreeBSD ones due



to the hardware differences, we do notice this phenomenon
is less obvious on FreeBSD. Presumably one of the causes
of this is the blocking disk I/O feature ofsendfile()
on Linux. Another reason may be Linux’s filesystem per-
formance, since this throughput is worse than what we ob-
served on FreeBSD.

8 Related Work

To compare DeBox’s approach of making performance in-
formation a first-class result, we describe three categories
of tools currently in use, and explain how DeBox relates to
these approaches.
• Function-based profilers – Programs such asprof,
gprof [18], and their variants are often used to detect hot-
spots in programs and kernels. These tools use compiler as-
sistance to add bookkeeping information (count and time).
Data is gathered while running and analyzed offline to re-
veal function call counts and CPU usage, often along edges
in the call graph.
• Coverage-based profilers– These profilers divide the
program of interest into regions and use a clock interrupt
to periodically sample the location of the program counter.
Like function-based profilers, data gathering is done on-
line while analysis is performed offline. Tools such as
profil(), kernbb, andtcov can then use this infor-
mation to show what parts of the program are most likely to
consume CPU time. Coverage-only approaches may miss
infrequently-called functions entirely and may not be able
to show call graph behavior. Coverage information com-
bined with compiler analysis can be used to show usage on
a basic-block basis.
• Hardware-assisted profilers– These profilers are sim-
ilar to coverage-based profilers, but use special features of
the microprocessor (event counters, timers, programmable
interrupts) to obtain high-precision information at lower
cost. The other major difference is that these profilers, such
as DCPI [4], Morph [43], VTune [19], Oprofile [29], and
PP[3] tend to be whole system profilers, capturing activity
across all processes and the operating system.

In this category, DeBox is logically closest to kernel
gprof, though it provides more than just timing infor-
mation. DeBox’s full call trace allows more complete call
graph generation than gprof’s arc counts, and with the data
compression and storage performed in user space, overhead
is moved from the kernel to the process. Compared to path
profiling, DeBox allows developers to customize the level
of detail they want about specific paths, and it allows them
to act on that information as it is generated. In compari-
son to low-level statistical profilers such as DCPI, coverage
differs since DeBox measures functions directly used dur-
ing the system call. As a result, the difference in approach
yields some differences in what can be gathered and the dif-
ficulty in doing so – DCPI can gather bottom-half informa-
tion, which DeBox currently cannot. However, DeBox can

easily isolate problematic paths and their call sites, which
DCPI’s aggregation makes more difficult.

• System activity monitors – Tools such astop,
vmstat, netstat, iostat, andsystat can be used
to monitor a running system or determine a first-order cause
for system slowdowns. The level of precision varies greatly,
with top showing per-process information on CPU us-
age, memory consumption, ownership, and running time,
to vmstat showing only summary information on mem-
ory usage, fault rates, disk activity, and CPU usage.
• Trace tools – Trace tools provide a means of observ-
ing the system call behavior of processes without access to
source code. Tools such astruss, PCT [11],strace [2],
andktrace are able to show some details of system calls,
such as parameters, return values, and timing information.
Recent tools, such as Kitrace [21] and the Linux Trace
Toolkit [42], also provide data on some kernel state that
changes as a result of the system calls. These tools are in-
tended for observing another process, and as a result, pro-
ducing out-of-band measurements and data aggregation, of-
ten requiring post-processing to generate usable output.
• Timing calls – Usinggettimeofday() or similar
calls, programmers can manually record the start and end
times of events to infer information based on the difference.
The getrusage() call adds some information beyond
timings (context switches, faults, messages and I/O counts)
and can similarly used. If per-call information is required,
not only do these approaches introduce many more system
calls, but the information can be misleading.

DeBox compares favorably with a hypothetical merger
of the timing calls and the trace tools in the sense that tim-
ing information is presented in-band, but so is the other in-
formation. In comparison with the Linux Trace Toolkit, our
focus differs in that we gather the most significant pieces of
data related to performance, and we capture it at a much
higher level of detail.

• Microbenchmarks – Tools such as lmbench [24] and
hbench:OS [13] can measure best-case times or the isolated
cost of certain operations (cache misses, context switches,
etc.). Common usage for these tools is to compare different
operating systems, different hardware platforms, or possi-
ble optimizations.
• Latency tools– Recent work on attempting to find the
source of latency on desktop systems not designed for real-
time work have yielded insight and some tools. The Intel
Real-Time Performance Analyzer [33] helps automate the
process of pinpointing latency. The work of Cota-Robles
and Held [16] and Jones and Regehr [20] demonstrate the
benefits of successive measurement and searching.
• Instrumentation – Dynamic instrumentation tools pro-
vide mechanisms to instrument running systems (processes
or the kernel) under user control, and to obtain pre-
cise kernel information. Examples include DynInst [14],
KernInst [40], ParaDyn [25], Etch [35], and ATOM [37].



The appeal of this approach versus standard profilers is the
flexibility (arbitrary code can be inserted) and the cost (no
overhead until use). Information is presented out-of-band.

Since DeBox measures the performance of calls in their
natural usage, it resembles the instrumentation tools. De-
Box gains some flexibility by presenting this data to the
application, which can filter it on-line. One major differ-
ence between DeBox and kernel instrumentation is that we
provide a rich set of measurements to any process, rather
than providing information only to privileged processes.

Beyond these performance analysis tools, the idea of ob-
serving kernel behavior to improve performance has ap-
peared in many different forms. We share similarities with
Scheduler Activations [5] in observing scheduler activityto
optimize application performance, and with the Infokernel
system by Arpaci-Dusseau et al. [8]. Our goals differ, since
we are more concerned with understanding why blocking
occurs rather than reacting to it during a system call. Our
non-blockingsendfile() modification is patterned on
non-blocking sockets, but it could be used in other system
calls as well. In a similar vein, RedHat has applied for a
patent on a new flag to theopen() call, which aborts if
the necessary metadata is not in memory [26].

Our observations on blocking and its impact on latency
may impact server design. Event-driven designs for net-
work servers have been a popular approach since the per-
formance studies of the Harvest Cache [12] and the Flash
server [30]. Schmidt and Hu [36] performed much of the
early work in studying threaded architectures for improv-
ing server performance. A hybrid architecture was used
by Welsh et al. [41] to support scheduling, while Larus
and Parkes [22] demonstrate that such scheduling can also
be performed in event-driven architectures. Qie et al. [34]
show that such architectures can also be protected against
denial-of-service attacks. Adya et al. [1] discuss the unifi-
cation of the two models. We believe that DeBox can be
used to identify problem areas in other servers and archi-
tectures, as our latency measurements of Apache suggest.

9 Conclusions and Discussion

This paper presents the design, implementation and eval-
uation of DeBox, an effective approach to provide more
OS transparency, by exposing system call performance as
a first-class result via in-band channels. DeBox provides
direct performance feedback from the kernel on a per-call
basis, enabling programmers to diagnose kernel and user
interactions correlated with user-level events. Furthermore,
we believe that the ability to monitor behavior on-line pro-
vides programmatic flexibility of interpreting and analyz-
ing data not present in other approaches.

Our case study using the Flash Web Server with the
SpecWeb99 benchmark running on FreeBSD demonstrates
the power of DeBox. Addressing the problematic interac-
tions and optimization opportunities discovered using De-

Box improves our experimental results an overall factor of
four in SpecWeb99 score, despite having a data set size
nearly three times as large as our physical memory. Fur-
thermore, our latency analysis demonstrates gains between
a factor of 4 to 47 under various conditions. Further re-
sults show that fixing the bottlenecks identified using De-
Box also mitigates most of the negative impact from excess
parallelism in application design.

We have shown how DeBox can be used in a variety of
examples, allowing developers to shape profiling policy and
react to anomalies in ways that are not possible with other
tools. Although DeBox does require access to kernel source
code for achieving the highest impact, we do not believe
that such a restriction is significant. FreeBSD, NetBSD,
and Linux sources are easily available, and with the ad-
vent of Microsoft’s Shared Source initiatives, few hardware
platforms exist for which some OS source is not available.
Also, general information about kernel behavior instead of
source code may be enough to help application redesign.
Our performance portability results also demonstrate that
our new system achieves better performance even without
kernel modification. A further implication of this is that it
is possible to perform analysis and modifications while run-
ning on one operating system, and still achieve some degree
of benefit in other environments.

In this paper we focused on how DeBox can be used as
a performance analysis tool, but we have not discussed its
utility in general-purpose monitoring because of space lim-
its. Given its low overheads, DeBox is an excellent candi-
date for monitoring long-running applications. We are ap-
proaching this problem by modifying thelibc library and
associated header files so that a simple recompile and relink
will enable monitoring of applications using DeBox. It is
also possible to process results automatically by allowing
user-specified analysis policies. We are working on such a
tool, which will allow passive monitoring of daemons, but
a full discussion of it is beyond the scope of this paper.

While we have shown DeBox to be effective in identi-
fying performance problems in the interaction between the
OS and applications, the current version of DeBox does not
handle the bottom-half activities in the kernel. DeBox’s
current focus on the system call boundary also makes it less
useful for tracing problems arising purely in user space.
However, we believe that both of these limitations can be
addressed, and we are continuing work in these areas.
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