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Abstract
Storage systems frequently maintain identical copies of
data. Identifying such data can assist in the design of so-
lutions in which data storage, transmission, and manage-
ment are optimised. In this paper we evaluate three meth-
ods used to discover identical portions of data: whole
file content hashing, fixed size blocking, and a chunking
strategy that uses Rabin fingerprints to delimit content-
defined data chunks. We assess how effective each of
these strategies is in finding identical sections of data.
In our experiments, we analysed diverse data sets from
a variety of different types of storage systems including
a mirrored section of sunsite.org.uk, different data pro-
files in the file system infrastructure of the Cambridge
University Computer Laboratory, source code distribu-
tion trees, compressed data, and packed files. We report
our experimental results and present a comparative anal-
ysis of these techniques. This study also shows how lev-
els of similarity differ between data sets and file types.
Finally, we discuss the advantages and disadvantages in
the application of these methods in the light of our ex-
perimental results.

1 Introduction

Computer systems frequently store and manipulate sev-
eral copies of the same data. Some applications may gen-
erate versions of a document stored as separate files, but
whose content differs only slightly. Software develop-
ment teams, file synchronisers [1, 28, 29], backup sys-
tems [19], reference data managers [9], and peer to peer
systems [8, 11, 17, 26] deal with large quantities of iden-
tical data. Efficient data management solutions may be
created if system designers are aware of the amount of
redundant data seen in diverse data sets.

Although saving disk space can be useful, over the
past few years there has been a constant reduction in the
cost of raw disk storage. Some may argue that the disk

space savings obtained by suppressing identical portions
of data are of minimal significance. However, apart from
the benefits obtained from disk block sharing, there are
other factors that need to be considered:

� Storage systems may exploit data duplication pat-
terns to optimise the use of storage space and band-
width. Single Instance Storage (SIS) [3] explores
the content of whole files to implement links with
semantics of copies instead of storing a file with the
same content several times. Backup systems such as
Venti [19] store duplicated copies of fixed size data
blocks only once. LBFS [18], Pasta [16, 17], Pas-
tiche [8], and the Value-Based Web Caching algo-
rithm (VBWC) [23] find identical portions of data
using Rabin fingerprints. In this method, data is di-
vided into content-defined chunks in order to exploit
cross-file data duplication. Additional details of the
content-defined chunking method will be presented
in the section 3 of this paper.

� File systems may obtain improved caching perfor-
mance if they are aware of contents shared between
files. In this way, it would be possible to provide
better hit ratios for a given cache size. A potential
size reduction of the main memory file cache may
have important performance effects.

� In mobile environments, devices are often limited
in storage and bandwidth. Furthermore, there are
factors such as energy consumption and network
costs associated with data transmission that can be-
come critical [2, 18]. Under certain circumstances,
it might be desirable to perform significant compu-
tation to reduce the number of bits transmitted over
low-bandwidth or congested links.

In summary, three different methods are frequently
used to eliminate duplicated data among files: whole
file content hashing, fixed size blocking, and a chunking



strategy that uses Rabin fingerprints to delimit content-
defined portions of data. Due to the lack of a practi-
cal comparative study, the typical performance of each
method and their suitability for different data profiles are
not clear. In this work, we evaluate the effectiveness
of these three methods to discover data redundancy and
show the potential benefits of their employment under
diverse data profiles. We have developed a set of pro-
grams to evaluate each of the approaches, analyse data
redundancy patterns, and expose practical trade offs. We
explored different collections of real-world data sets to
determine how sensitive these methods are to different
data profiles:

� Mirrored section of sunsite.org.uk � . This data is
a subset of an Internet archive and its size is over
35 GB. Compressed and packed data were common
in this data set.

� Users’ personal files. The data analysed in this col-
lection of files is held in 44 home directories of dif-
ferent users in the Cambridge University Computer
Laboratory. The size of this data set is approxi-
mately 2.9 GB.

� Research groups’ files. This data set contains col-
lections of files associated with different research
projects of the Computer Laboratory. This is a data
set with a potentially high level of data duplication
because it stores software development projects,
shared documents, and information accessed and
manipulated by groups of people. The size of this
data set was 21 GB.

� Scratch directories. The 100 GB of information
explored in this section represents the largest and
most diverse data set analysed. We thought that
this collection of files is a good example of a data
set where no obvious interrelationship is previously
known.

� Software distributions. To explore the sharing pat-
terns of highly correlated data in different states, we
explored five successive Linux kernel distributions
in three different formats: packed and compressed
(.tar.gz), uncompressed but still tarred (.tar), and un-
compressed and untarred.

We had a special interest in the method that uses Rabin
fingerprints to delimit chunks of identical data because it
has been used in Pasta [16, 17], an experimental large-
scale peer to peer file system developed at the Computer
Laboratory. We have plans to incorporate an optimised
version of Pasta into the XenoServers [22] project. This
study enabled us to assess the advantages and drawbacks
of using the content-defined data chunking strategy as

a compression and replica management tool in the next
implementations of the file system. The results directly
helped us to understand the impact of these techniques in
Pasta, and we believe our experimental results may also
be useful to other parties.

The next section of this paper presents an overview
of the related work. In section 3 we introduce the reader
with the methodology used to measure the levels of iden-
tical data in large collections of files. Our experiments
and results are presented in section 4. Finally, in section
5 we conclude with a discussion of our findings.

2 Related Work

A number of strategies to discover similar data in files
have been explored in different systems. Unix tools such
as diff and patch can be used to find differences be-
tween two files and to transform one file into the other.
Rsync [28] copies a directory tree over the network into
another directory tree containing similar files. It saves
bandwidth by finding similarities between files that are
stored under the same name.

The Rabin fingerprinting algorithm [20] has been em-
ployed with different purposes such as fingerprinting of
binary trees and directed acyclic graphs [4, 13], or as a
tool to discover repetitions in strings [21]. However, we
are interested in how Rabin fingerprints can be used to
identify identical portions of data in storage systems. In
general, Rabin fingerprints have been used for this pur-
pose in two ways: to sample files in order to discover
near-duplicate documents in a large collection of files, or
to create content-defined chunks of identical data.

Manber [15] employs Rabin fingerprints to sample
data in order to find similar files. His technique com-
putes fingerprints of all possible substrings of a certain
length in a file and chooses a subset of these fingerprints
based on their values; the selected fingerprints provide a
compact representation of a file that is then used to com-
pare against other fingerprinted files. Similarly, Broder
applies resemblance detection [5] to web pages [6] in or-
der to identify and filter near-duplicate documents. Ra-
bin fingerprints of a sliding window are computed to ef-
ficiently create a vector of shingles of a given web page.
Consequently, instead of comparing entire documents,
shingle vectors are used to measure the resemblance of
documents in a large collection of web pages. The tech-
niques used by Manber and Broder have been adapted
by Spring and Wetherall [27] to eliminate redundant net-
work traffic. However, they used Rabin fingerprints as
pointers into data streams to find regions of overlapping
content before and after the fingerprinted regions.

Different systems use blocking strategies that em-
ploy the Rabin fingerprinting algorithm to create content-
defined and variable-sized data chunks. Probably the first



storage system that used Rabin fingerprints for this pur-
pose was LBFS [18], specially designed to transmit data
over low-bandwidth networks. Using the Rabin finger-
printing algorithm, LBFS finds similarities between files
or versions of the same file. It avoids retransmission of
identical chunks of data by using valid data chunks con-
tained in the client’s cache and by transmitting to and
from the data server only the chunks that have been mod-
ified. LBFS’s chunking algorithm was tested on a data
set of 354 MB reporting that around 20% of the data was
contained in shared chunks.

Blocking in Pasta [16, 17], an experimental peer to
peer file system, also exploits the benefits of common in-
formation between files. Caching and replica placement
are defined by data blocks’ content. These blocks are
built by computing Rabin fingerprints of the file data over
a sliding window. Identical blocks are stored only once
and referenced using a shared key. A similar technique is
used in Pastiche [8]. In Value-Based Web Caching [23],
web proxies index data according to their content and
avoid retransmission of redundant data to clients con-
nected over low-bandwidth links. Although all these sys-
tems show that improved block sharing levels can be ob-
tained using content-defined chunking strategies, they do
not present broad experimental results based on diverse
data sets.

Data redundancy in storage systems has also been
identified using fixed size blocking strategies. Sapuntza-
kis et al., aimed to reduce the amount of data sent over
the network by identifying identical portions of data in
memory [25]. They use a hash-based compression strat-
egy of memory aligned pages (i.e. fixed size blocks of
data) to accelerate data transfer over low-bandwidth links
and improve memory performance.

Venti [19], a network storage system intended for
archival of data, aims to reduce the consumption of stor-
age space. It stores duplicated copies of fixed size data
blocks only once. Venti reports a reduction of around
30% in the size of the data sets employing this method.
Future implementations of Venti may also incorporate a
content-based blocking scheme based on Rabin finger-
prints.

A different approach to eliminate data redundancy can
be seen in SIS [3] for Windows 2000. It saves space
on disk and in main memory cache but with a differ-
ent approach; SIS explores the content of the whole file
and implements links with the semantics of copies for
identical files stored on a Windows 2000 NTFS volume.
A user level service, called the groveler, is responsible
for automatically finding identical files, tracking changes
to the file system, and maintaining a database with the
corresponding file indexes. When SIS was tested on a
server with 20 different images of Windows NT the over-
all space saving was 58%.

Although many systems have proposed different tech-
niques to manage duplicated data, it has been only lately
that practical studies to assess their benefits and appli-
cability have been performed. Building on Manber’s
observations, Douglis and Iyengar [10] explore duplica-
tion in empirical data sets using Delta-Encoding via Re-
semblance Detection (DERD) and quantify their poten-
tial benefits. Their technique generalises the applicabil-
ity of delta-encoding by choosing an appropriate set of
base versions in a large collection of files through resem-
blance detection.

As part of the design of a storage system specially
crafted to manage reference data [9], a comparison on the
effectiveness of three duplicate suppression techniques
has been done; two of the techniques analysed in this
work are similar to the methods we analysed: fixed size
blocking and the content-defined chunking algorithm.
The third technique, called sliding blocking, uses rsync
checksums and a block-sized sliding window to calculate
the checksum of every overlapping block-sized segment
of a file. The sliding blocking technique consistently de-
tected greater amounts of redundant data than the other
two strategies.

More recently, Redundancy Elimination at the Block
Level (REBL) has been proposed as an efficient and
scalable mechanism to suppress duplicated blocks in
large collections of files [14]. REBL combines advan-
tageous features of techniques such as content-defined
data chunks, compression, delta-encoding, and resem-
blance detection. Empirical data sets were used to com-
pare REBL with other techniques. REBL presented the
smallest encoding size in 3 out of the 5 data sets analysed
and consistently performed better than the other tech-
niques. Specifically, the effectiveness of this technique
compared to the content-defined chunking strategy var-
ied by factors of 1.03-6.67, whole file compression by
1.28-14.25, sliding blocks [14] by 1.18-2.56, object com-
pression (tar.gz) by 0.59-2.46, and DERD by 0.88-2.91.
All these studies [9, 10, 14] used Rabin fingerprints as
a tool to eliminate data redundancy. Thus, their experi-
mental results relate highly to ours.

3 Design

In this section we explain the methodology used to quan-
tify duplication in our data sets. In general, we analyse a
collection of files and spot identical data among them us-
ing the three methods mentioned before: whole file con-
tent, fixed size blocks, and Rabin fingerprints. As a re-
sult, we collect information to exhibit sharing patterns in
the different data sets.

Sharing patterns at a whole file granularity are found
by calculating the SHA-1 digest of individual files. The
first 64 bits of the resulting digest are used as the key to



a hash table. Identical files are likely to be indexed us-
ing the same hash table entry. We use the hash table to
store statistical data of identical files such as number of
occurrences and size of the original file. Although Hen-
son [12] warns about some of the dangers of comparing
by hash digests, this method can be safely used in our
experiments. In our case, false sharing of the key space
is not a crucial concern � .

In order to find similarities using fixed size blocks an
analogous procedure is employed, but instead of obtain-
ing digests for whole files, they are calculated for con-
tiguous non-overlapping fixed size portions of the files.
In this case, hash table entries correspond to unique data
blocks.

The third method analysed employs Rabin finger-
prints. It offers the advantage that the chunks generated
are defined according to their contents. The mathe-
matical principles of Rabin fingerprints are well docu-
mented [20]. A Rabin fingerprint ���
	�� is the polynomial
representation of some data 	����� modulus an irreducible
polynomial ������� . We compute such an irreducible poly-
nomial only once and use the same value in all our exper-
iments in order to find identical pieces of data. The al-
gorithm for computing such a polynomial can be found
in [7]. Our implementation follows the principles pre-
sented by Broder in [4] which is an extension of the work
done by Rabin. Broder uses precomputed tables to pro-
cess more than 1 bit at a time, particularly, 32 bits are di-
vided into four bytes and processed in one iteration. The
value of � , which is the degree of the irreducible poly-
nomial and consequently the length of the fingerprint,
should be a multiple of 32.

To divide a file into content-defined chunks of data our
implementation incrementally analyses a given file us-
ing a sliding window and marks boundaries according to
the Rabin fingerprints obtained in this process. Figure 1
depicts this mechanism. The program inspects every �
bytes of a sliding window that is shifted over the contents
of the file. Although the value of � can be tuned, chang-
ing the size of the sliding window does not significantly
impact the result. Experimental evidence in [16, 18]
shows that by setting � � ��� bytes it is possible to
discover significant levels of data duplication.

Adding a new byte into the sliding window is accom-
plished in two parts. Firstly, the value for the oldest byte
in the window are subtracted from the fingerprint. Sec-
ondly, the terms of the new byte are added to the fin-
gerprint. This is possible since the fingerprint is dis-
tributive over addition. When subtracting, precomputed
tables are used in order to improve the implementation
performance.

Rabin fingerprints for each window frame are calcu-
lated and if the value obtained matches the � least signif-
icant bits of a constant, a breakpoint is marked. These

C1 C2 C3 C4 .....

48-byte sliding window
bi-48 bi

Figure 1: Chunks’ boundaries are found using a 48-byte slid-
ing window that incrementally analyses the file’s content and
computes Rabin fingerprints. Shaded boxes represent the 48-
byte regions that generated a boundary. The light striped rect-
angle corresponds to the current 48-byte window. At each step
the byte in the oldest position of the sliding window ( �����! #" ) is
subtracted from the fingerprint and the next byte in the file ( ��� )
is added to the fingerprint.

breakpoints are used to indicate chunk boundaries. In or-
der to avoid pathological cases (i.e many small blocks or
enormous blocks) our implementation forces a minimum
and a maximum block size.

Once a boundary has been set, the SHA-1 digest cor-
responding to the chunk’s content is calculated. Similar
to the other two techniques, the first 64 bits of the SHA-1
digest are used as the key for accessing the hash table that
stores statistical information about identical data chunks.

Two kind of values are calculated and reported in our
experimental results: percentage of identical data and
storage savings. To calculate the percentage of iden-
tical data in shared blocks we add for each duplicated
block, the product of its size and its number of occur-
rences; then, present this value as a percentage of the
original data set size.

To calculate storage space savings we add the size of
every unique block in the hash table; replicated blocks
are counted only once. We present this value as a per-
centage of the original data set size. Additionally, stor-
age space savings are compared with the space used by
simply tarring and compressing the whole collection of
files in the different data sets. We used the standard tar
and gzip utilities for this purpose.

4 Repeated Data in Empirical Data Sets

This section presents the experimental results used to
evaluate the benefits and performance of three different
duplicate suppression methods in each of the data sets
mentioned.



4.1 Mirror of sunsite.org.uk
In order to find commonality in data that resembles a
standard Internet archive, we ran our programs on a
35 GB section of sunsite.org.uk. The total number of
files in the data set was 79,551, with an average file size
of 464 KB. Table 1 shows a partial characterisation of
this data set. It shows the 15 most popular file-name
extensions and their percentage of the total number of
files. The 15 most popular file extensions account for
over 82% of all files. Table 1 also indicates the 15 file ex-
tensions that use the most storage space and the percent-
age of the total space they consume; collectively, they
cover almost 97% of the whole data set. Packed and
compressed files (e.g., rpm, gz, bz2, zip, and Z) repre-
sent an important part of the data set (around 24.4 GB).
A detailed analysis of compressed files is presented in
section 4.1.1.

Popularity Storage Space
Rank Ext. % Occur. Ext. % Storage

1 .gz 32.50 .rpm 29.30
2 .rpm 10.60 .gz 20.95
3 .jpg 7.54 .iso 20.40
4 .html 4.83 .bz2 6.26
5 .gif 4.43 .tbz2 5.65
6 – 4.16 .raw 4.44
7 .lsm 3.74 .tgz 2.66
8 .tgz 2.90 .zip 2.53
9 .tbz2 2.35 .bin 2.00

10 .Z 2.12 .jpg 0.94
11 .asc 1.84 .Z 0.65
12 .zip 1.59 .gif 0.43
13 .rdf 1.39 .tif 0.31
14 .htm 1.21 .img 0.21
15 .o 1.06 .au 0.19

Total —— 82.26 —— 96.92

Table 1: Data profile of our mirrored section of sunsite.org.uk.
Files without extension are denoted by the – symbol.

We ran our implementation of the content-defined
chunking method over the data using different expected
chunk sizes and sliding window lengths. Although in
all the subsequent experiments the maximum chunk size
permitted was set to 64 KB, the minimum chunk size
was fixed to $&%&' of the expected chunk size; the ex-
pected chunk size is set as a parameter in the algorithm.
By fixing the maximum chunk size to 64 KB despite
changes in the expected chunk size, we aimed to max-
imise the opportunities of finding identical portions of
data in larger chunks. We enforce minimum and maxi-
mum chunk lengths to avoid pathological cases such as
very small or large chunks. Table 2 shows the amount of
information in shared chunks with two different window

sizes and three different expected chunk sizes. The last
column of Table 2 illustrates the percentage of identical
data that was found using fixed size blocks.

Table 2 suggests that the size of the window does not
significantly influence the commonality levels. Other
studies [16, 18], which use similar techniques to ours, re-
port similar findings. Therefore, in all subsequent exper-
iments we fixed the window size to 48 bytes. We also ob-
serve that when the expected size of the chunks is shorter,
the percentage of shared data is larger because the proba-
bility of finding similar chunks also increases. However,
the expected size of the blocks represents a trade-off be-
tween the size of the hash table needed to maintain a
larger number of entries for each of the unique chunks
and the potential storage space saved (see section 4.6).

The percentage of identical data in whole files was
only 5%. Therefore, it was possible to find a consider-
able amount of similar data in partially modified files. On
the other hand, the percentages of identical data found
using the content-defined chunking method presented
only slight differences when compared with those ob-
tained using fixed size blocks. These findings suggest
that a storage system handling this kind of data could
easily select a fixed size blocking scheme without losing
significant storage space savings.

% of Data in Identical Blocks
Size 48 B window 24 B window Fixed Size
8 KB 16.43 16.12 12.13
4 KB 20.27 19.72 17.25
2 KB 25.00 24.18 22.23

Table 2: Percentages of identical data in a 35 GB section of
sunsite.or.uk.

Figure 2 shows the distribution of block sizes under
the content-defined chunking method when the expected
chunk size was set to 8 KB. In particular, we obtained an
average block size of 9.2 KB. The algorithm generated
3,730,576 blocks of which 7.6% have at least one iden-
tical copy. It is also possible to appreciate the impact of
pathological cases on the distribution: the chunks under
the minimum block size (2 KB) correspond to files that
are shorter than the minimum permitted or to final por-
tions of files. Moreover, the peak at 64 KB corresponds
to chunks inserted because of the maximum size allowed.

We focused our attention on the set of files that ac-
count for 97% of the total storage space. We explored
the levels of similarity of these 15 kinds of files. We
fixed the expected chunk size to a value of 4 KB. Ta-
ble 3 shows the results and compares them against the
percentage that can be obtained if we consider whole file
contents. We found remarkable patterns in our results.
Firstly, it is very difficult to exploit similarity in com-
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Figure 2: Distribution of chunk sizes obtained from sun-
site.org.uk using an expected chunk size of 8 KB and a 48-byte
sliding window size.

pressed files; practically all the duplicated chunks were
contained in identical files. The behaviour of compressed
data will be further investigated in the section 4.1.1.

Secondly, .iso and .img files presented the highest
difference in percentage of similarity against the whole
file column. These findings suggest that variations be-
tween files can be efficiently isolated using the content-
defined chunking method, whereas under the whole file
approach, even a small change in the file leads to storing
a new almost-identical file. The negative effects of this
situation are intensified in large files such as ISO image
files in which the average size was 280 MB. All other
files showed only slight increments if they are compared
against the value obtained for the whole file scheme.

Keeping only one copy of the information saves
storage space. Using the best scenario, which was
the content-defined chunking method with an expected
chunk size of 2 KB, our experimental results indicate that
a file system would store only 30 GB of unique data in-
stead of the original 35 GB, representing around 14%
of storage savings. Duplicate suppression proved to be
somewhat more efficient in saving storage space than the
tar-compressed version of the data set; the tar.gz file for
this data set claimed around 33.3 GB of disk space.

We consider that an explanation to these numbers may
be found in the detailed analysis of the files that conform
this data set. As has been pointed out before, a large
amount of data is already compressed (see table 1); ap-
proximately 24.4 GB correspond to rpm, gzip, bz2, zip,
and Z files. Note that archives in rpm files are com-
pressed using gzip’s deflation method. To a certain ex-
tent, redundant data in these files has already been re-

% of Identical Data
Format Content-defined chunks Whole file content

.rpm 9.08 7.07
.gz 6.71 5.29
.iso 31.26 0.54
.bz2 8.33 8.32
.tbz2 5.02 5.02
.raw 0.47 0.0
.tgz 13.55 13.55
.zip 2.79 1.43
.bin 2.57 0.0
.jpg 0.49 0.28
.Z 3.40 3.14
.gif 2.73 2.69
.tif 95.29 95.29

.img 33.84 8.69
.au 0.0 0.0

all ext. 20.27 5.03

Table 3: Detailed similarity pattern in our mirror of sun-
site.org.uk. A 4 KB expected chunk size and a 48-byte slid-
ing window size were used in the content-defined chunking
method. The last row of the table shows the values obtained
when all files in the data set were analysed.

moved as part of the LZ77 [31] compression technique.
Compressing compressed data with the same algorithm
normally results in more data, not less.

However, it may still be possible to argue that if the
content-defined chunking method was able to remove du-
plicated chunks of data from the data set, the compressed
version of the data would do it as well, resulting in a
smaller tar.gz file. The gzip compression algorithm re-
places repeated strings in a 32 KB sliding window with
a pointer of the form (distance, length) to the previous
and nearest identical string in the window. Distances are
limited to the size of the sliding window (i.e. 32 KB)
and lengths are limited to 258 bytes. As a consequence,
redundancy elimination occurs within a relatively local
scope; identical portions of data across files will be de-
tected only if files are positioned close in the tar file. In
contrast, the content-defined chunking method is able to
find data redundancy across distant files in the data set
and, in this particular case, to save more storage space
than the compressed tar file.

4.1.1 Compressed Data

Compressed files (e.g., gz, bz2, zip, and Z) constitute an
important segment of information within our sunsite data
set: around 14 GB correspond to compressed files. In
this experiment we measured the potential storage space
savings that might be obtained if once data is decom-
pressed, the content-defined chunking strategy is used
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Figure 3: Storage space reductions using three different meth-
ods to eliminate duplication in compressed data. Original sizes
of the data sets: gz=8.13 GB, bz2=2.4 GB, zip=1 GB, and
Z=260 MB.

to suppress duplicates, and then compression is applied
again on the resulting set of unique chunks. We decided
to use the content-defined chunking method to eliminate
data redundancy because it proved to be the most effi-
cient strategy to find data similarity over the four main
categories of compressed files. Tools such as zcat,
bzcat, and unzip were used to decompress the files.
The output stream generated by all these utilities was set
as the input to our redundancy elimination program that
used a 4 KB expected chunk size.

Figure 3 compares the storage space savings obtained
in each of the four categories of compressed files us-
ing three different methods to eliminate duplication.
The first method suppress duplication from the original
collection of compressed files using the whole-file ap-
proach. The second method removes similar chunks of
data from the original compressed files using the content-
defined chunking method. Finally, in the third strategy
the files are decompressed, redundancy is removed us-
ing the content-defined chunking method, and the re-
sulting unique chunks are compressed again. Although
the storage space savings are maximised using the third
method, it barely outperforms the result obtained with
the content-defined chunking strategy on the original
files especially in the cases in which the original data set
is of considerable size (gz and bz2 formats).

When duplication is removed from the uncompressed
version of the files, the value obtained for the zip cate-
gory is substantially different to those seen in the other
two techniques. It also contrasts with the pattern ob-
served in the other three data sets in which the differ-
ences between columns are fairly small. It seems that re-

dundancy elimination specially helped zip files. In gen-
eral, zip is used to deflate one file at a time to then in-
clude it into a single object; it limits any potential size
reduction to intra-file compression. In contrast, the other
compression tools also remove inter-file data duplication
(e.g., from all the files in a tar) which finally reduces the
benefits of redundancy suppression due to the content-
defined chunking method. We conclude that the im-
provement seen in zip files can be attributed to the abil-
ity of the content-defined chunking method to eliminate
redundancy within a broader scope (i.e. inter-file redun-
dancy); a gap that zip compression fails to address.

It seems that the comparatively slight storage sav-
ings obtained by decompressing files to eliminate re-
dundancy, and compressing the result anew may not
be enough to justify the computational overhead of the
whole process. Douglis and Iyengar also analyse com-
monality patterns in compressed data [10]; they reach a
similar conclusion to ours.

4.2 Users’ Personal Files

The data analysed in this section was held in 44 home
directories of different users of the Computer Labora-
tory. Although the total amount of data processed was
only 2.9 GB, this data set presented high diversity in
the kind of files stored; we collected 1,756 different file-
name extensions in 98,678 files with an average file size
of 31 KB. However, the profile of the data set follows
a clear pattern. Table 4 shows the most common file-
name extension in terms of popularity and storage space.
Apart from the files without extension, home directories
are mainly used to store files related to word processing
and source code development. The 15 file-name exten-
sions showed in Table 4 under the column related to stor-
age space account for over 69% of the whole data set.

In this case the percentage of identical data in whole
files was 12.80%. Table 5 shows the result of running
our implementation of the content-defined chunking al-
gorithm over the data set using different expected chunk
sizes. It also shows the percentage of identical data found
when we explored the files using only fixed size blocks.
Although the performance of the content-defined chunk-
ing algorithm was better, significant storage space sav-
ings can also be obtained by using fixed size blocks.

Our results indicate that using the content-defined
chunking method and an expected chunk size of 2 KB,
which is the best case, a storage utility would maintain
only 2.3 GB of the original 2.9 GB. This represents a
storage space reduction of 20.6%. However, the com-
pressed tar version of the data set used only 1.4 GB of
disk space; considerably outperforming our best dupli-
cate suppression scenario. Similar storage saving ratios
were obtained in the next two data sets (research groups’



Popularity Storage Space
Rank Ext. % Occur. Ext. % Storage

1 – 19.47 .ps 17.24
2 .eps 4.83 – 11.73
3 .obj 3.98 .gz 10.66
4 .tex 3.82 .pdf 6.16
5 .c 3.43 .eps 4.58
6 .gz 2.85 .zip 4.13
7 .gif 2.45 .doc 3.13
8 .ps 2.28 .ppt 2.60
9 .dat 2.11 .obj 1.75

10 .html 1.81 .xls 1.53
11 .h 1.68 .tgz 1.29
12 .log 1.61 .tex 1.25
13 .aux 1.30 .c 1.24
14 .java 1.28 .so 1.19
15 .dvi 1.26 .txt 1.04

Total —— 54.16 —— 69.52

Table 4: Profile of the data in 44 home directories of the Cam-
bridge University Computer Laboratory. Files without exten-
sion are denoted by the – symbol.

% of Data in Identical Blocks
Size Content-defined chunks Fixed size blocks
8 KB 24.16 17.22
4 KB 26.76 18.05
2 KB 29.30 19.25

Table 5: Percentages of identical data obtained in 44 home di-
rectories of users of the Cambridge University Computer Labo-
ratory. A 48-byte sliding window size was used in the content-
defined chunking method.

files and scratch directories) when their corresponding
compressed tar files were generated.

4.3 Research Groups’ Files

This data set represents a collection of files stored by
work groups. We analysed the information of differ-
ent research groups in the Computer Laboratory. It
presents high degrees of similarity because it contains
software projects, documents, and information shared
among groups of people. This is an ideal environment to
save storage space or to reduce the amount of data trans-
mitted based on suppressing identical portions of data.
The data set contained a total of 708,536 files in 21 GB
of disk space and a 32 KB average file size. Table 6
illustrates the main sections of information arranged by
file-name extension popularity and storage space used.
Although we found 2,820 different file extensions, our
list with the 15 most popular extensions covers more

Popularity Storage Space
Rank Ext. % Occur. Ext. % Storage

1 .c 15.82 – 15.56
2 .h 14.51 .gz 10.20
3 – 13.90 .ps 8.01
4 .html 4.07 .c 6.66
5 .o 3.45 .a 3.29
6 .c,v 2.79 .pdf 3.15
7 .h,v 2.11 .o 2.97
8 .py 1.95 .eps 2.41
9 .gif 1.56 .tgz 2.18

10 .S 1.40 .h 1.93
11 .gz 1.23 .0 1.82
12 .if 1.14 .html 1.40
13 .m 1.01 .taz 1.29
14 .eps 0.97 .5 1.24
15 .s 0.85 .tar 1.23

Total —— 66.76 —— 63.34

Table 6: Profile of the data stored by different research groups
of the Cambridge University Computer Laboratory. Files with-
out extension are denoted by the – symbol.

than 66% of the files. Moreover, the percentage of data
within the 15 extensions that use the most storage space
accounts for over 63% of the total size of the data set.

The percentage of identical data in whole files was
25%. It clearly demonstrates an increment over the pre-
vious data sets. Table 7 shows the percentages of data in
shared blocks for the other two methods: content-defined
chunks and fixed size blocks for different expected block
sizes. The rates of commonality obtained under the fixed
size approach also present high levels of commonality al-
though they are substantially behind the content-defined
chunks’ percentages.

Under this ideal scenario, not only due to the high
amount of identical data contained in whole files but also
due to the potential relationships between the files anal-
ysed, the use of Rabin fingerprints proved its efficiency.
Our results indicate that using an expected chunk size of
2 KB, a storage system would hold only 14 GB in unique
blocks in contrast with the 21 GB of the original data
set. This means a reduction in storage space of around
33%. Once more, the compressed collection of files (i.e.
tar.gz format) used less storage space than the duplicate
suppression techniques; it claimed only 8.9 GB of disk
space.

4.4 Data Stored in Scratch Directories

The 100 GB of data explored in this section represents
the largest data set studied. It contained a total of
1,959,883 files with an average file size of 55 KB. Ta-



% of Data in Identical Blocks
Size Content-defined chunks Fixed size blocks
8 KB 37.01 28.77
4 KB 39.61 29.62
2 KB 44.59 32.94

Table 7: Percentages of identical data found in several re-
search groups’ directories of the Cambridge University Com-
puter Laboratory. A 48-byte sliding window size was used in
the content-defined chunking method.

Popularity Storage Space
Rank Ext. % Occur. Ext. % Storage

1 .c 16.47 .log 33.41
2 .h 15.05 – 24.04
3 – 13.14 .gz 2.76
4 .o 6.55 .c 1.52
5 .0 4.00 .txt 1.46
6 .d 3.99 .o 1.24
7 .gz 1.94 .ps 0.81
8 .3 1.89 .a 0.70
9 .S 1.47 .pdf 0.69

10 .py 1.26 .ul2 0.60
11 .s 1.25 .xls 0.57
12 .ih 1.09 .dl1 0.56
13 .al 0.92 .il1 0.55
14 .1 0.84 .prof 0.55
15 .ast 0.81 .frag 0.53

Total —— 70.67 —— 69.99

Table 8: Profile of the data stored in scratch directories in
machines of the Cambridge University Computer Laboratory.
Files without extension are denoted by the – symbol.

ble 8 gives a partial characterisation of the data set. Once
more, it presents the information organised in two main
columns according to file-name extension popularity and
storage space used. This time the top 15 files, in terms of
storage space, account for almost 70% of the total size.
It is notable that a large portion of the data set is con-
tained in files without extension or with the .log exten-
sion; they represent more than 57% of the whole data
set. Apart from this fact, the information was evenly dis-
tributed over the whole set of files.

We explored this large data set with an 8 KB expected
chunk size which enabled us to reduce the potential num-
ber of chunks generated. All the percentages of similar-
ity dropped. Although the percentage of similar data in
fully identical files was 14%, the value obtained using
the content-defined chunking strategy was only slightly
over 20%. The advantages of using the content-defined
chunking method are minimal if we consider that the
fixed size blocking scheme offered a value of 17.52%.

According to our experiments, storage space used in
unique chunks for this data set would be 88.26 GB and
91.59 GB, using the content-defined chunking method
and fixed size blocks respectively. The compressed tar
version of this data set claimed 49 GB of disk space.

We investigated separately the two main categories
of files in our data set in terms of storage space used:
.log files and files without extension. Using the content-
defined chunking strategy .log files and files without ex-
tension showed values of around 0.3% and 30% of identi-
cal data respectively. Files without extension represent a
considerably large amount of data that is difficult to char-
acterise. However, they presented better levels of cor-
relation compared to those obtained for the whole data
set (20%). When the fixed size blocking strategy was
used on files without extension, the percentage of identi-
cal data reached a value of 24.5%.

On the other hand, files with the .log extension offered
extremely low levels of similarity and none of the .log
files analysed were identical. It negatively influenced the
sharing levels of the whole data set. Pathological cases
such as these may be difficult to foresee and handle given
the limited information that file names in these two cat-
egories provide about their contents; no relationship can
be inferred a priori just by looking at the file names.

4.5 Software Distributions

In this experiment, we looked at five successive Linux
kernel source distributions. Initially, we ran the content-
defined chunking method over one of the kernels (2.5.34)
and then added successive kernel versions one by one;
we recorded the results at each step. Furthermore, we
analysed the three possible states of the distributions
(tar.gz, .tar, and raw files).

When the files were in the tar.gz format the percentage
of data in shared chunks was 0% in all cases. Table 9
presents the values obtained in the other formats (tar and
raw files) with two different expected chunk sizes. The
amount of information shared was substantially greater
in tar files when the expected chunk size was smaller.
Once more, this result suggests that a smaller expected
chunk size increases the likelihood of content overlap.

Furthermore, the last column of Table 9 shows the val-
ues obtained when we explored the whole file content of
the original files. Comparing these values with those ob-
tained in the 4 KB expected chunk size over raw files,
which was the best scenario, in none of the cases the dif-
ference is greater than 2%. This lead us to the conclusion
that, although the content-defined chunking method effi-
ciently found identical portions of data, their main source
was in wholly identical files. As would be expected, no
similarity was found among the files in their tar.gz and
tar formats when the whole file technique was used.



8 KB 4 KB File
Version tar raw tar raw raw
2.5.34 1.49 2.39 2.26 3.18 1.5

+2.5.35 43.42 94.46 57.41 95.43 93.8
+2.5.36 44.17 96.33 58.24 96.94 95.12
+2.5.37 44.62 97.09 58.85 97.71 95.31
+2.5.38 44.99 98.33 59.25 98.70 96.86

Table 9: Sharing pattern percentages in a succession of five
Linux kernel distributions. A 48-byte sliding window size was
used in this experiment.

Figure 4 shows the discrete cumulative distribution
function of chunk occurrences that was obtained consid-
ering the five kernels in their raw state and using an ex-
pected chunk size of 4 KB. These results indicate that the
kernel distributions are very similar. When an ordinary
file system holds different versions of Linux kernels in its
primal state, it is storing the same information almost as
many times as versions it holds. Storing a Linux kernel in
its primal state adds around 145 MB of data but at least
95% of this information is already contained in chunks
of precedent versions of the kernel. Therefore, a hypo-
thetical storage utility would add only 7 MB of new data
if reuses the chunks already stored. However, distribut-
ing patches of the kernels in their compressed format
continues being the most efficient method of propaga-
tion. For example, the largest patch in our set of kernels
accounts for only 977 KB. Even if we uncompress this
patch file, its size is smaller than the size of non identical
chunks that were found using the content-defined chunk-
ing method. Using the content-defined chunking method
a hypothetical storage utility would transmit 7 MB in
new chunks while the size of the uncompressed patch is
only about 3.7 MB.

However, if these five kernels are decompressed and
untarred, then processed with the content-defined chunk-
ing method in order to eliminate repetitions, and finally
compressed again, the resulting size is only 38 MB. This
value is considerably smaller than the original 171 MB
used by five tar.gz kernel files, and only slightly over the
34 MB of an individual compressed kernel.

4.6 Associated Overheads

System designers considering employing any of these
techniques to reduce data duplication must be aware of
computational and storage overheads. Computational
overheads are due to the calculation of SHA-1 digests
and Rabin fingerprints. Additional CPU time and mem-
ory is spent in maintaining the data structures that keep
track of the chunks generated (a hash table in our case)
and their reference counters.
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Figure 4: Discrete cumulative distribution function of chunk
occurrences of five uncompressed and untarred kernels.

To compare the computational overhead in the three
methods analysed, we created a 300 MB file containing
random chunks of data taken from the data set corre-
sponding to the Research Groups’ files and then ran each
of the methods on it. All the experiments were performed
using a network-isolated machine with an Intel Pentium
III 500 MHz processor. The content-based chunking
method involves the generation of Rabin fingerprints and
SHA-1 digests of the chunks. It took around 340 CPU
seconds to process all the file. Around 76% of the total
execution time was spent in tasks related to the computa-
tion of fingerprints over a sliding window. The fixed size
blocking method took approximately 71 CPU seconds to
compute all the necessary SHA-1 digests. Finally, the
whole file approach used a total of 62 CPU seconds to
calculate the digest. However, the reader should notice
that our goal was to analyse data sharing patterns and
potential storage space savings in diverse data sets; the
prototypes were not implemented having performance as
a compelling factor.

SHA-1 computations have been made extremely effi-
cient. Commercially available hardware and operating
systems’ cryptographic services can be used to compute
SHA-1 digests at very high speeds. Furthermore, Rabin
fingerprints of a sliding window can be computed effi-
ciently in software due to their algebraic properties, es-
pecially if the internal loop of the Rabin fingerprinting
method is coded in assembly language [4]. An efficient
implementation and computation of Rabin fingerprints
on real-life data sets have already been reported [6].

Storage overhead is correlated to the number of unique
blocks produced and the data structure used to keep track
of their number of occurrences. As mentioned before,
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Figure 5: Storage overhead in three different data sets using
a 4 KB expected chunk or fixed block size. Original data sets
sizes: Sunsite=35 GB, Users=2.9 GB, and Research=21 GB

we used a hash table with this purpose. Figure 5 shows
the storage space needed to store the hash table. The
overhead has been computed for a 4 KB expected chunk
size and fixed block size. It also compares these values
with the overhead introduced by the whole-file strategy
in which only one digest per file is required. In all the
cases the amount of extra space required is small com-
pared with the total size of the data set, but would pose a
significant burden were it to be stored in memory.

5 Summary and Discussion

We found remarkable patterns in our results. The
content-defined chunking algorithm was the best strat-
egy to discover redundancy in the data sets studied. It
consistently reported the largest amounts of data dupli-
cation. However, the fixed size blocking strategy also re-
vealed useful levels of similarity. In the sunsite data set
these values were considerably close to those obtained
using the content-defined chunking method. For other
data sets our results are similar to the numbers reported
in [9] which revealed a more important difference in du-
plicated data detected by the content-defined chunking
method. As may be expected, the whole-file approach
was always at the bottom of the ranking.

The content-defined chunking strategy is specially ef-
ficient with potentially correlated data. We obtained high
levels of similarity when the program was executed on
data held by research groups (44.59%), and expanded
source code distributions and software projects (98.7%).
When this method was used on more diverse data sets,
such as our sunsite.org.uk mirror and scratch directo-
ries, the similarity levels dropped (25% and 20% re-

spectively), and were noticeably closer to sharing lev-
els found using a fixed size block approach (22.23% and
17.53% respectively). The whole file content approach
reported modest levels of similarity with exceptionally
high values in research groups’ data (25%) and expanded
source code distributions (96.86%). In data sets with a
not-so-evident correlation such as the sunsite.org.uk mir-
ror the similarity levels plummeted (5%).

In terms of storage space savings, the tar.gz version
of the data sets consistently outperformed the other tech-
niques. However, for systems that need to access and
update separate files, probably in a distributed environ-
ment, compression is not easy to implement effectively.
Chunk or block-based strategies such as the explored in
this paper might be a better option in this domain.

In general, packed (i.e. rpm) and compressed data pre-
sented low levels of similarity; compression algorithms
have already removed a degree of redundancy in the data
set. Apparently, the storage space savings that can be
obtained by decompressing a large number of arbitrarily
selected files in order to remove data duplication from
their expanded versions and finally compressing only
non-identical chunks (see figure 3) does not justify the
extra computational effort involved in this process.

The data structures needed to keep track of the extra
information (SHA-1 block digests and reference counts)
introduced a very small amount of storage overhead. The
amount of extra storage required depends on the number
of unique blocks managed by the hash table. As was ex-
pected, the whole file approach created only a very small
number of unique entries in the hash table (i.e. one per
file in the data set). The fixed size and content-defined
methods produced comparable amounts of storage over-
head, considerably greater than those exhibited by the
whole file approach (see figure 5). A practical study of
computational overheads incurred in each of the methods
remains to be done. Our analysis, together with other
experimental results [9], simply point out that there is
an important amount of extra computation that has to
be considered when using the content-based chunking
method.

File access patterns should also be taken into consider-
ation. Whole file content and fixed size blocking strate-
gies present the disadvantage that file updates may lead
to the recomputation of SHA-1 digests for large amounts
of data. File updates under the whole file technique cre-
ate the need to recompute the SHA-1 digest for the whole
file. Using the fixed size blocking approach, any update
that causes a shift at any position of the file will inval-
idate the SHA-1 digests for the rest of the blocks. As
a consequence, reference counters of these blocks have
to be decremented and SHA-1 digests have to be com-
puted for the new blocks. However, a fixed size blocking
scheme may offer the advantage that blocks can be page-



aligned and consequently improve memory performance
as is pointed out by Sapuntzakis et al. [25]. On the con-
trary, updates in the content-defined chunking scheme
are self-contained into the blocks where they occurred,
thus SHA-1 digests are recomputed only for the modi-
fied blocks.

In light of our results, we consider there is no one
method able to perform satisfactorily on all data sets.
The extra processing and storage space required for each
of the techniques, together with usage patterns and typi-
cal workloads of specific data sets can be decisive factors
when deciding to employ these techniques. The fixed
size blocking method offers high processing rates which
make it a good candidate for interactive contexts. Despite
the fact that the recomputation of SHA-1 digests could
represent an inconvenience, especially under workloads
in which file updates are common, our experimental re-
sults showed that the similarity patterns seen in passive
data sets were relatively close to those obtained using the
content-defined chunking strategy.

The question seems to be whether in practice the ma-
jority of the common blocks would remain valid after
file updates and how often these updates occur. File ac-
cess patterns [24, 30] indicate that file updates present
significant locality: only a very small set of files is re-
sponsible for most of the block overwrites. Files tend
to have a bimodal access, they are either read-mostly or
write-mostly. Finally, an important percentage of files,
even under different workloads, are accessed only to be
read [24]. Considering this experimental evidence we
feel persuaded to believe that, in the general case, an im-
portant number of blocks will remain valid for their life-
time.

Overall, the levels of data redundancy that can be
identified using the fixed size blocking strategy are re-
spectably high and sometimes close to those obtained
using the content-defined chunking method. With file
access patterns in consideration, the fixed size block-
ing strategy seems to be a sensible option for the gen-
eral case; it is simple, acceptably effective, and quite
efficient. We consider that the content-defined chunk-
ing method is justified only in contexts in which poten-
tial data repetition is high and the costs of not identify-
ing redundant portions of data due to scattered updates
throughout the file are high. Suppressing duplication
at the file level still seems to be a good option espe-
cially where the amount of duplicated data is high and
enclosed in a group of well connected machines [3]. Sys-
tem designers should take a decision based on the prac-
tical trade-offs between saving storage space, bandwidth
consumption, and the computational and storage over-
heads necessary to support each of these methods; the
results presented in this work can assist them in such a
decision.
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Notes(
ftp://sunsite.org.uk)
The maximum number of blocks obtained for any single

data set in all of our experiments was *�+-,�. X ,�/10 . We indexed
these blocks using the first 2436587 bits of their SHA digests.
The probability of having one or more collisions is given by
,:9<;=,>9@?BADC�E=F . This small probability can be neglected in our
experimental results.


