
USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Early Experience with an Internet Broadcast System
Based on Overlay Multicast

Yang-hua Chu
�
, Aditya Ganjam

�
, T. S. Eugene Ng

�
, Sanjay G. Rao

�
,

Kunwadee Sripanidkulchai
�
, Jibin Zhan

�
, and Hui Zhang

�
�
Carnegie Mellon University

�
Rice University

Abstract
In this paper, we report on experience in building and deploy-
ing an operational Internet broadcast system based on Over-
lay Multicast. In over a year, the system has been provid-
ing a cost-effective alternative for Internet broadcast, used by
over 4000 users spread across multiple continents in home,
academic and commercial environments. Technical confer-
ences and special interest groups are the early adopters. Our
experience confirms that Overlay Multicast can be easily de-
ployed and can provide reasonably good application perfor-
mance. The experience has led us to identify first-order issues
that are guiding our future efforts and are of importance to
any Overlay Multicast protocol or system. Our key contribu-
tions are (i) enabling a real Overlay Multicast application and
strengthening the case for overlays as a viable architecture for
enabling group communication applications on the Internet,
(ii) the details in engineering and operating a fully functional
streaming system, addressing a wide range of real-world is-
sues that are not typically considered in protocol design stud-
ies, and (iii) the data, analysis methodology, and experience
that we are able to report given our unique standpoint.

1 Introduction
The vision of enabling live video broadcast as a common In-
ternet utility in a manner that any publisher can broadcast
content to any set of receivers has been driving the research
agenda in the networking community for over a decade. The
high cost of bandwidth required for server-based solutions or
content delivery networks, and the sparse deployment of IP
Multicast are two main factors that have limited broadcasting
to only a subset of Internet content publishers such as large
news organizations. There remains a need for cost-effective
technology for low-budget content publishers such as broad-
casters of seminars, workshops and special interest groups.

Recent work in Overlay Multicast [13, 9, 17, 7, 19, 28,
37, 20, 32, 23, 39, 10, 5] has made the case that overlay net-
works are a promising architecture to enable quick deploy-
ment of multicast functionality on the Internet. In such an ar-
chitecture, application end-points self-organize into an over-
lay structure and data is distributed along the links of the over-
lay. The responsibilities and cost of providing bandwidth is
shared amongst the application end-points, reducing the bur-
den at the content publisher. The ability for users to receive
content that they would otherwise not have access to provides
a natural incentive for them to contribute resources to the sys-
tem.

Most of the existing work, including our own earlier
work [9, 8], focus on issues related to “protocol design,” and
evaluate their potential using simulation or university-based
Internet test-beds. We believe that an equally important and
complementary style of research can be conducted using an
“application-centric” approach. In this approach, the experi-
ence gained from the wide-spread operational use of an ap-
plication by real users sets the direction for further research.
The more content publishers and receivers rely on the appli-
cation, the stronger the case for Overlay Multicast, validating
its relevance as a research question. In addition, the unique
experience obtained in the process leads to important insight
that can motivate future research in the area.

In adopting the “application-centric” approach, our pri-
mary consideration was to provide a useful and deployable
tool to the general public, and reach operational status as
quickly as possible. Therefore, we identify and address a
wide range of issues, some of which are not typically con-
sidered in protocol design studies, but affect the successful
deployment of Overlay Multicast. Our system copes with
dynamics in user participation, adapts to application per-
formance and Internet dynamics, supports users that have a
wide range of network bandwidth and supports users behind
network address translators (NATs) and firewalls. We have
built supporting mechanisms such as logging receiver per-
formance, monitoring of system components, and recovering
from component failures. In engineering our system, we have
adopted simple or natural solutions, with the provision that
the design decisions could be revisited in the light of future
experience. This approach has accelerated the deployment of
the system, and, consequently has led to faster feedback from
real deployment.

The challenges involved in obtaining the operational ex-
perience we report in this paper must not be underestimated.
First, we have invested significant effort in convincing con-
tent publishers and event organizers that it is worth their while
to experiment with the new technology. Second, while we
have made earnest efforts to get our system deployed, the par-
ticipation of viewers in our broadcasts depends on a range of
factors not under our control, including the content we have
access to. Third, unlike conventional research experiments,
we have frequently had to work under the pressure to succeed
in even our earliest broadcast attempts. Failures would signif-
icantly deter event organizers and limit future adoption of our
system. One consequence is that it is critical to adopt robust,
stable and well-tested code – a performance refinement that

may seem trivial to incorporate may take months to actually
be deployed.

In over a year, we have been building an operational broad-
cast system based on Overlay Multicast and deploying it
among more than 4000 real users in real Internet environ-
ments for over 20 events. We view the design and deployment
effort as an ongoing process, and report on the experience ac-
cumulated so far. Overall, our experience confirms that Over-
lay Multicast is easy to deploy and can provide reasonably
good application performance. In addition, we believe that
our unique set of data, analysis methodology, and experience
are useful to the research community.

The rest of this paper is organized as follows. In � 2, we
present an overview of the system. � 3, 4, and 5 presents
the deployment experience, analysis methodology, and per-
formance analysis of our system. � 6 presents key design
lessons learned from the experience that are guiding the fu-
ture research directions.

2 System Overview
Figure 1 gives a high-level overview of our broadcast sys-
tem. The encoder takes the multimedia signal from the cam-
era, converts into audio and video streams, and sends to the
broadcast source. The broadcast source and receivers run an
overlay multicast protocol to disseminate the streams along
the overlay. Each receiver gets the broadcast stream, and for-
wards to the media player running on the same machine. In
addition, the participating hosts send performance statistics to
the monitor and log server for both on-line and post-mortem
analyses.

The detailed software architecture at the source and the
receiver is depicted in Figure 2. Tracing the data flow, the
broadcast source encodes the media signal into audio and
multiple video packet streams ����� , marks the packets with pri-
ority bits �	�
� , and sends them to the overlay modules (shaded
blocks). Multiple streams and prioritization are discussed in
� 2.2. The overlay modules replicate packets to all of its chil-
dren ����� . Packets are translated from Overlay ID (OID) to IP
addresses ���� , and forwarded to each child using prioritiza-
tion semantics ����� . Once a child receives packets, it trans-
lates IP addresses back to OIDs ����� , selects the best video
stream, adjusts the RTP/RTCP headers ����� , and forwards to
the media player ����� . The use of OID is described in � 2.4.
The child also sends each data packet to the overlay module
which forwards the data to its descendants. The rest of this
section describes each of these blocks in detail.

2.1 Overlay Protocol
We provide a sketch of the overlay protocol below as a ba-
sis for the rest of the discussion. Because our application is
single-source, the protocol builds and maintains an overlay
tree in a distributed fashion. The tree is optimized primar-
ily for bandwidth, and secondarily for delay. Each node also
maintains a degree bound of the maximum number of chil-
dren to accept.

(ADSL, behind NAT)

(Wireless,
behind firewall)

(Ethernet)

Broadcast Source
(Ethernet)

EncoderA/V Signal

Media Interface

Monitor

Logger

Media Player

Figure 1: Broadcast system overview.

Connectivity Layer (OID/IP Translation)

Overlay Routing

LQ Video (100kbps)
Audio (20Kbps)

HQ Video
(300kbps)

Broadcast Source

Overlay Forwarding

Prioritized
Forwarding

UDP TCPTCP

Chooser
Serializer with

Priority Marking

(a)

(b)

(c)

(d)

(e)

(1)

(2)

(3)

Mixer

Receiver

Audio Video

Figure 2: Block diagram of the software architecture for the broadcast source
(left) and the receiver (right). Shaded blocks are shared by all hosts. Arrows
indicate data flow.

Group Management: New hosts join the broadcast by con-
tacting the source and retrieving a random list of hosts that are
currently in the group. It then selects one of these members as
its parent using the parent selection algorithm. Each member
maintains a partial list of members, including the hosts on the
path from the source and a random set of members, which
can help if all members on the path are saturated. To learn
about members, we use a gossip protocol adapted from [30].
Each host � periodically (every 2 seconds) picks one member
(say �) at random, and sends � a subset of group members
(8 members) that � knows, along with the last timestamp it
has heard for each member. When � receives a membership
message, it updates its list of known members. Finally, mem-
bers are deleted if its state has not been refreshed in a period
(5 minutes).
Handling Group Membership Dynamics: Dealing with
graceful member leave is fairly straight-forward: hosts con-
tinue forwarding data for a short period (5 seconds), while
its children look for new parents using the parent selection
method described below. This serves to minimize disruptions
to the overlay. Hosts also send periodic control packets to
their children to indicate live-ness.
Performance-Aware Adaptation: We consider three dy-
namic network metrics: available bandwidth, latency and
loss. There are two main components to this adaptation pro-

cess: (i) detecting poor performance from the current parent,
or identifying that a host must switch parents, and (ii) choos-
ing a new parent, which is discussed in the parent selection
algorithm.

Each host maintains the application-level throughput it is
receiving in a recent time window. If its performance is sig-
nificantly below the source rate (less than 90% in our im-
plementation), then it enters the probe phase to select a new
parent. While our initial implementation did not consider loss
rate as a metric, we found it necessary to deal with variable-
bit-rate streams, as dips in the source rate would cause re-
ceivers to falsely assume a dip in performance and react
unnecessarily. Thus, our solution avoids parent changes if
no packet losses are observed despite the bandwidth perfor-
mance being poor.

One of the parameters that we have found important is the
detection time parameter, which indicates how long a host
must stay with a poor performing parent before it switches to
another parent. Our initial implementation employed a con-
stant detection time of 5 seconds. However our experience
reveals the need for the protocol to adaptively tune this timer
because: (a) many hosts are not capable of receiving the full
source rate, (b) even hosts that normally perform well may
experience intermittent local network congestion, resulting in
poor performance for any choice of parent, (c) there can be
few good and available parent choices in the system. Chang-
ing parents under these environments may not be fruitful. We
have implemented a simple heuristic for dynamically adjust-
ing the detection time, involving an increase if several parent
changes have been made recently, and a decrease if it has been
a long time since the last parent change.
Parent Selection: When a host (say �) joins the broadcast,
or needs to make a parent change, it probes a random subset
of hosts it knows (30 in our implementation). The probing is
biased toward members that have not been probed or have low
delay. Each host � that responds to the probe provides infor-
mation about: (i) the performance (application throughput in
the recent 5 seconds, and delay) it is receiving; (ii) whether it
is degree-saturated or not; and (iii) whether it is a descendant
of � to prevent routing loops. The probe also enables � to
determine the round-trip time to � . � waits for responses for
1 second, then eliminates those members that are saturated,
or who are its descendant. It then evaluates the performance
(throughput and delay) of the remaining hosts if it were to
choose them as parents. If � does not have bandwidth esti-
mates to potential parents, it picks one based on delay. Oth-
erwise, it computes the expected application throughput as
the minimum of the throughput � is currently seeing and the
available bandwidth of the path between � and � . History of
past performance is maintained so if � has previously chosen
� as parent, then it has an estimate of the bandwidth of the
overlay link ����� . � then evaluates how much improvement
it could make if it were to choose � .

� switches to the parent � either if the estimated appli-

ADSL

Stanford Wireless
(audio +LQ video)

Berkeley Ethernet
(audio +HQ video)

Source

120Kbps

120Kbps
420Kbps

Encoders

HQ Video (300Kbps)
LQ Video (100kbps)

Audio (20Kbps)

Figure 3: Single overlay approach to host heterogeneity.

cation throughput is high enough for � to receive a higher
quality stream (see the multi-quality streaming discussion in
� 2.3) or if � maintains the same bandwidth level as � ’s cur-
rent parent, but improves delay. This heuristic attempts to
increase the tree efficiency by by making hosts move closer
to one another.

In order to assess the number of children a parent can sup-
port, we ask the user to choose whether or not it has at least
a 10 Mbps up-link to the Internet. If so, we assign such
hosts a degree bound of 6, to support up that many number
of children. Otherwise, we assign a degree bound of 0 so
that the host does not support any children. We have been
experimenting with heuristics that can automatically detect
the access bandwidth of the host, but this turns out not to be
straightforward. We discuss this further in � 6.

2.2 Support for Receiver Heterogeneity
Internet hosts are highly heterogeneous in their receiving
bandwidth, thus a single-rate video coding scheme is not the
most appropriate. Various streaming systems have proposed
using scalable coding techniques such layered coding or mul-
tiple description coding (MDC) in their design [35, 23, 5],
however these technologies are not yet available in commer-
cial media players. To strike a balance between the goals of
rapid prototyping and heterogeneous receiver support, in our
system, the source encodes the video at multiple bit-rates in
parallel and broadcasts them simultaneously, along with the
audio stream, through the overlay as shown in Figure 3. We
run unicast congestion control on the data path between every
parent and child, and a prioritized packet forwarding scheme
is used to exploit the available bandwidth. That is, audio is
prioritized over video streams, and lower quality video is pri-
oritized over higher quality video. The system dynamically
selects the best video stream based on loss rate to display to
the user. Thus, audio is highly protected. When a receiver
does not have sufficient bandwidth to view the high quality
video stream, or when there are transient dips in available
bandwidth due to congestions or poor parent choices, as long
as the lower quality video stream is received, a legible image
can still be displayed. We note that while this design involves
some overhead, it can be seamlessly integrated with layered
codecs if available.

Much of the deployment experience reported in this pa-
per uses TCP as the congestion control protocol. We imple-
ment priority forwarding by having parents in the overlay tree
maintain a fixed size per-child priority buffer. Packets are
sent in strict priority and in FIFO order within each priority

class. If the priority buffer is full, packets are dropped in strict
priority and in FIFO order (drop head). The priority buffer
feeds the TCP socket, and we use non-blocking write for flow
control. Note that once packets are queued in kernel TCP
buffers, we can no longer control the prioritization. While
we were aware of this limitation with using TCP, we were re-
luctant to employ untested UDP congestion control protocols
in actual large scale deployment. Our subsequent experience
has revealed that while the choice of TCP has only a minor
hit on the performance of the prioritization heuristics, a more
first-order issue is that it limits connectivity in the presence of
NATs and firewalls. Faced with this, we have begun incorpo-
rating TFRC [12], a UDP-based congestion control protocol,
into the system.

To prevent frequent quality switches that could annoy a
user, we adopted a damping heuristic. Here, we aggressively
switch to lower quality when high quality video has consis-
tent loss for 10 seconds, and conservatively switch to higher
quality when no loss is observed in the higher quality video
stream for at least 50 seconds. Dynamically switching video
qualities required us to implement an RTCP mixer[14]. When
video qualities are switched, the mixer ensures the outgoing
video stream to QuickTime is (i) masked as one contiguous
stream; and (ii) time synchronized with the audio stream. One
limitation in our current implementation is that if a host is dis-
playing a low quality stream, the parent still forwards some
data from the high quality stream. We are currently refin-
ing the implementation by adding heuristics to have the child
unsubscribe from the higher quality stream, and periodically
conduct experiments to see when network condition has im-
proved so that it can start receiving the high quality stream.

2.3 Interface to Media Components
We use QuickTime [27] as the media player in our system
because it is widely available and runs on multiple popular
platforms. We use Sorenson 3 [36] and MPEG4, both of
which are supported by QuickTime, as video codecs. To sup-
port receiver heterogeneity, the source encodes the video at
two target bit-rates (100 kbps and 300 kbps), and the audio
at 20 kbps. We empirically determine the suitable encoding
rates by experimenting with various encodings of conference
talks. We find that a frame size of 640x480 is necessary to
read the words on the slides. A minimal rate of 100 kbps
yields watchable, 5 frames per second video motion. A rate
of 300 kbps produces good video quality with 15 frames per
second. To hide from the media player the fact that the over-
lay parent changes over time, we direct the player to a fixed
localhost:port URL which points to the overlay proxy run-
ning at the same host. The overlay proxy handles all topol-
ogy changes and sends data packets to the player as though it
were a unicast streaming media server.

2.4 NATs and Firewalls
Our initial prototype did not include support for NATs and
firewalls. We were motivated to address this as we consis-

Child Parent
Public NAT Firewall
UDP Transport

Public � � �
NAT � � � �
Firewall � � ���

TCP Transport
Public � � �
NAT � � !
Firewall � ! �

Table 1: Connectivity Matrix. " means connectivity is always possible. #
means connectivity is possible for some cases of NAT/firewall and $ means
connectivity is only possible if the hosts are in the same private network.

tently needed to turn down �&%'�(��%*) of viewers in our early
broadcasts for the lack of such support. NATs and firewalls
impose fundamental restrictions on pair-wise connectivity of
hosts on the overlay. In most cases, it is not possible for NATs
and firewalls to communicate directly with one another. How-
ever, there are specific exceptions, depending on the trans-
port protocol (UDP or TCP), and the exact behavior of the
NAT/firewall. Adopting the classification from STUN [15],
Full Cone NATs can receive incoming packets to a port from
any arbitrary host once it sends a packet on that port to any
destination. Many hosts can address a host behind a full cone
NAT using the same port number. In contrast, Symmetric
NATs allow incoming packets only from the host that it has
previously sent a packet to. Different hosts address a host be-
hind a symmetric NAT using different port numbers. Table 1
characterizes these restrictions for the different transport pro-
tocols, where columns represent parents and rows represent
children. For example, communication is not possible be-
tween two NATed hosts using TCP unless they happen to be
in the same private network. In addition, “ + ” denotes that
communication is possible using UDP between two NATed
hosts if one of them is behind a Full Cone NAT. The firewalls
which we refer to in Table 1 allow UDP packets to traverse
in either direction. The system does not support firewalls that
block UDP.

The primary goals in supporting NATs and firewalls are:
(i) enable connectivity, a generic problem shared by many
applications wishing to support these hosts and (ii) address
protocol-specific enhancements to become “NAT/firewall-
aware” to improve efficiency and performance.

2.4.1 Enable Connectivity

Use Overlay Identifier for Unique Naming: In the overlay
protocol, each host needs to have a distinct and unique identi-
fier. The straightforward use of public and private IP address
and port does not serve this purpose because of symmetric
NATs. To resolve this, we assign a unique overlay identi-
fier(OID) to each host and decouple it from its IP address,
separating overlay naming from addressing. When a host �
joins the group, it is assigned an OID by the source. The
source creates a binding that maps the OID of � to its public
and private addresses and ports. This binding is distributed as
part of the group membership management protocol.

Learn, Maintain, and Translate Bindings: There are two
ways for a host � to learn bindings for host � . First, it can
learn the binding as part of the group membership operations.
Second, it may receive packets directly from � . Bindings
learned by the second method are prioritized because they are
the only ones that can be used to talk to a host behind a sym-
metric NAT. Each host � maintains the OID and associated
binding for every other member � that it knows. The OID is
translated into the appropriate binding when � wishes to send
a packet to � . In some cases � and � may be behind the same
private network, but have different public IP addresses. This
is common in the case of large corporations that use multi-
ple NAT gateways. We use a simple heuristic to match the
prefixes in the public IP address. This matching expires if �
does not receive packets from � after a short while.
Set up TCP Parent-Child Connection for Data: We use bi-
directional connection initiation, by which both parent and
child attempt to open a connection to the other. If one is
a public and the other is NAT/firewall, then only one of the
connections will be successful. If both are public, then both
connections will be successful and we arbitrarily close the
connection initiated by the host with higher IP address.

2.4.2 Making the Protocol Aware of NATs and Firewalls

The protocol works correctly with the connectivity service,
without needing to make any changes. However, being aware
of connectivity constraints can improve protocol efficiency
and performance. We have identified 2 changes to the proto-
col to make it explicitly aware of connectivity constraints.
Group Management and Probing: To increase the effi-
ciency of control messages, we enhance the group manage-
ment protocol to explicitly avoid control messages between
pairs of hosts that cannot communicate (e.g., NAT-NAT).
Similarly, for probing, we do not allow NATs/firewalls to
probe other NATs/firewalls.
Self-Organization: If the overlay protocol is aware of the
NAT and firewall hosts in the system, it can support more
of them by explicitly structuring the tree. For example, an
efficient structure is one in which public hosts use NAT or
firewall hosts as parents to the extent possible. In contrast, a
structure in which a public host is a parent of another pub-
lic host is inefficient because it reduces the potential parent
resources for NAT hosts. While we have not deployed this
mechanism, we evaluate its potential in � 6.

3 Deployment Status

3.1 System Status

To make the broadcast system easily and widely accessible,
and attract as many participants as possible, we have taken
effort to support multiple OS (Linux, Windows, MAC) and
player platforms (QuickTime, Real Player) and develop user-
friendly interfaces for both publishers and viewers. With the

subscriber Web interface, any receiver can tune in to a broad-
cast by a single click on a web-link.

The broadcast system is also designed for ease of deploy-
ment. We learned from our first broadcast event that having 5
graduate students spend 2 days to manually set up a broadcast
was a barrier for deployment. Our publishing toolkit [11] has
evolved since then into a user-friendly web based portal for
broadcasting and viewing content. This portal allows content
publishers to setup machines, machine profiles (such as which
machines should be the source, log servers, and encoders),
and events. With this information configured, the broadcast
can be launched directly from the web. With no prior expe-
rience using the system and minimal support from us, most
content publishers spend a couple hours to set up and run a
broadcast. A monitoring system has been built to provide
content publishers with online information about individual
participating hosts, the current overlay tree, the bandwidth on
each overlay link, and the current group membership. In ad-
dition, the system can recover from simple failures such as
automatically re-starting the log server when it crashes.

As a research vehicle, the broadcast system has a built-in
logging infrastructure that enables us to collect performance
logs from all hosts participating in the broadcast for post-
mortem analysis. The logs are sent on-line to a log server
during the session. The data rate is bounded at 20 kbps to
avoid interfering with the overlay traffic.

3.2 Deployment Experience
Over the last year, the system has been used by 4 content pub-
lishers and ourselves to broadcast more than 20 real events,
the majority of which are conferences and lectures, accumu-
lating 220 operational hours. In all, the system has been used
by over 4000 participants. We summarize some of our key
experience with regard to how successful we were in attract-
ing publishers and viewers to use the system, the extent of our
deployment, and some of the factors that affected our deploy-
ment.
Attracting content publishers: One of the key challenges
we face is finding content. It has been difficult to access popu-
lar content such as movies and entertainment, as they are not
freely available and often have copyright limitations. How-
ever, we have been more successful at attracting owners of
technical content, such as conferences, workshops and lec-
tures. Typically event organizers have expressed considerable
interest in the use of our system. However given the wariness
toward adopting new technology, convincing an event orga-
nizer to use the system involves significant time and ground-
work. The key element of our success has been finding enthu-
siastic champions among conference organizers who could
convince their more skeptical colleagues that it is worth their
while to try the new technology even when they are already
overwhelmed by all the other tasks that organizing a confer-
ence involves. We have also learned that the video production
process is important, both in terms of cutting costs given that

conferences operate with low-budgets, and in terms of deal-
ing with poor Internet connectivity from the conference sites
to the outside world.
Viewer Participation: Table 2 lists the major broadcasts,
duration, number of unique participants, and the peak group
size. The broadcast events attracted from 15 to 1600 unique
participants throughout the duration and peaked at about 10 to
280 simultaneous participants. Most of the audience tuned in
because they were interested in the content, but could not at-
tend the events in person. The Slashdot broadcast is different
in that wanting to explore a larger scale and wider audience,
we asked readers of Slashdot [34], a Web-based discussion
forum, to experiment with our system. While some of the au-
dience tuned in for the content, others tuned in because they
were curious about the system.

While our deployment has been successful at attracting
thousands of users, the peak group sizes in our broadcasts
have been relatively low with the largest broadcast having a
peak size of about 280. One possible explanation for this is
that the technical content in these broadcasts fundamentally
does not draw large peak group sizes. Another possibility is
that users do not have sufficient interest in tuning in to live
events, and prefer to view video archives. Our ongoing ef-
forts to draw larger audience sizes include contacting non-
technical organizations, and incorporating interactive features
such as questions from the audience to the speaker.

We wish to emphasize that our limited operational experi-
ence with larger group sizes has been constrained by the lack
of appropriate content, rather than due to specific known lim-
itations of our system. We have had encouraging results eval-
uating our system in Emulab [40] using 1020 virtual nodes,
multiplexed over 68 physical nodes, as well as simulation
environments with over 10,000 nodes. Our hope is to use
the workloads and traces of environment dynamics, resources
and diversity from our broadcasts to design more realistic
simulations and emulations in the future.
Diversity of Deployment: The diversity of hosts that took
part in two of the large broadcasts (SIGCOMM 2002 and
Slashdot), excluding waypoints, can be seen from Table 3.
The deployment has reached a wide portion of the Internet -
users across multiple continents, in home, academic and com-
mercial environments, and behind various access technolo-
gies. We believe this demonstrates some of the enormous
deployment potential of overlay multicast architectures - in
contrast, the usage of the MBone [4] was primarily restricted
to researchers in academic institutions.
Decoupling development version from deployment ver-
sion: One of the challenges associated with operational de-
ployment is the need for robust, well-tested and stable code.
Bugs can not only affect the performance of a broadcast, but
can also significantly lower our credibility with event orga-
nizers championing our cause. This requires us to adopt ex-
tensive testing procedures using Emulab [40], Planetlab [26],
and Dummynet [31] before code is marked ready for deploy-

Event Duration Unique Hosts/ Peak Size/
(hours) Waypoints Waypoints

SIGCOMM 2002 25 338/16 83/16
SIGCOMM 2003 72 705/61 101/61
DISC 2003 16 30/10 20/10
SOSP 2003 24 401/10 56/10
Slashdot 24 1609/29 160/19
DARPA Grand Challenge 4 800/15 280/15
Distinguished Lectures Series 9 358/139 80/59
(8 distinct events)
Sporting Event 24 85/22 44/22
Commencement 5 21/3 8/3
(3 distinct events)
Special Interest 14 43/3 14/3
Meeting 5 15/2 10/2

Table 2: Summary of major broadcasts using the system. The first 4 events
are names of technical conferences.

ment. Further, in actual deployment, we typically use an
older version of our system (several months) compared to our
development version. One consequence of this is that even
though certain design enhancements may seem trivial to in-
corporate, it may take several months before being used in
actual broadcasts.

Use of Waypoints: Right from the early stages of our work
on Overlay Multicast, we have been debating the architectural
model for deploying Overlay Multicast. On the one hand, we
have been excited by the deployment potential of purely ap-
plication end-point architectures that do not involve any in-
frastructure support and rely entirely on hosts taking part in
the broadcast. On the other hand, we have been concerned
about the feasibility of these architectures, given that they
depend on the ability of participating hosts to support other
children. When it came to actual deployment, we were not
in a position to to risk the success of a real event (and conse-
quently our credibility and the content provider’s credibility)
by betting on such an architecture. Thus, in addition to real
participants, we employed PlanetLab [26] machines, which
we call waypoints, to also join the broadcast (also listed in Ta-
ble 2). From the perspective of the system, waypoints are the
same as normal participating hosts and run the same proto-
col – the only purpose they served was increasing the amount
of resources in the system. To see this, consider Figure 4,
which plots a snapshot of the overlay during the Conference
broadcast. The shape and color of each node represents the
geographical location of the host as indicated by the legend.
Nodes with a dark outer circle represent waypoints. There are
two points to note. First, the tree achieves reasonable clus-
tering, and nodes around the same geographical location are
clustered together. Second, we see that waypoints are scat-
tered around at interior nodes in the overlay, and may have
used normal hosts as parents. Thus they behave like any other
user, rather than statically provisioned infrastructure nodes.
While our use of waypoints so far has prevented direct con-
clusions about purely application end-point architectures, we
can arrive at important implications for these architectures
leading to reduced use of waypoints in subsequent broadcasts,
as we have done in � 6.

SIGCOMM 2002 broadcast 8/2002 9am-5pm (total 141 hosts)
Region North America (101) Europe (20) Oceania (1) Asia (12) Unknown (7)
Background Home (26) University (87) Industry (5) Government (9) Unknown (14)
Connectivity Cable Modem (12) 10+ Mbps (91) DSL (14) T1 (2) Unknown (22)

Slashdot broadcast 12/2002 2pm-10:30pm (total 1316 hosts)
Region North America (967) Europe (185) Oceania (48) Asia (8) Unknown (108)
Background Home (825) University (127) Industry (85) Government (80) Unknown (199)
Connectivity Cable Modem (490) 10+ Mbps (258) DSL (389) T1 (46) Unknown (133)
NAT NAT (908) Public (316) Firewall (92)

Table 3: Host distributions for two broadcast events, excluding waypoints, shown only for a portion of the broadcast.

U.S. East Coast
U.S. Central

U.S. West Coast
Europe

Asia
Unknown

Figure 4: Snapshot of the overlay tree during Conference 1. Participants,
marked by geographical regions, were fairly clustered. Waypoints, marked
by outer circles, took on many positions throughout the tree.

4 Analysis Methodology
We conduct off-line analysis on the performance logs col-
lected from hosts participating in the broadcasts. Our eval-
uation and analysis focus on the following questions:, How well does the system perform in terms of giving good
performance to the user?, What kind of environments do we see in practice? How
does the environment affect system performance? Are there
quantitative indices we can use to capture environment infor-
mation?, Using trace-based simulations on the data, can we ask
“what-if” questions and analyze design alternatives that could
have led to better performance?

The data that we use for the analysis is obtained from per-
formance logs collected from hosts participating in the broad-
cast. We have instrumented our system with measurement
code that logs application throughput sampled at 1 second
intervals, and application loss rate sampled at 5 second in-
tervals. Note that the sample period is longer for loss rates
because we found from experience that it is difficult to get
robust loss measurements for shorter sampling periods.

We define an entity as a unique user identified by its -.0/ �21�34��5�687 .09 34:*�*;���5�6=< pair. An entity may join the broad-
cast many times, perhaps to tune in to distinct portions of the
broadcast, and have many incarnations. The following sec-
tions, report analysis on incarnations unless otherwise stated.

Some of the analysis requires logs to be time synchronized.
During the broadcast, whenever a host sends a message to the
source as part of normal protocol operations (for example,
gossip or probe message), the difference in local offsets is
calculated and printed as part of the log. In the offline anal-
ysis, the global time for an event is reconstructed by adding

this offset. We have found that the inaccuracy of not consid-
ering clock skew is negligible.

In this section, we provide an overview of our analysis
methodology. We present results from broadcasts in � 5. Fi-
nally, in � 6, we quantitatively analyze the performance bene-
fits that may accrue from key design modifications motivated
by our experience.

4.1 User Performance Metrics
We evaluate the performance that individual users observe by
measuring their average and transient network-level perfor-
mance. In addition, user-level feedback is also presented to
provide a more complete picture of the user experience., Average performance is measured as the mean application-
level throughput received at each incarnation. This provides
a sense of the overall session performance., Transient performance is measured using the application-
level losses that users experience. Using the sampled loss rate
from the performance logs, we mark a sample as being a loss
if its value is larger than 5% for each media stream, which
in our experience is noticeable to human perception. We use
three inter-related, but complementary metrics: (i) fraction of
session for which the incarnation sees loss; (ii) mean interrupt
duration; and (iii) interrupt frequency.

Fraction of session for which the incarnation sees loss is
computed as follows. If an incarnation participates for 600
seconds, it would have about 120 loss samples. If 12 of those
samples are marked as being a loss, then the incarnation sees
loss for 10% of its session.

We define an interrupt to be a period of consecutive loss
samples. Interrupt duration is computed as the amount of time
that loss samples are consecutively marked as losses. The
interrupt durations are then averaged across all interrupts that
an incarnation experiences. Note that this metric is sensitive
to the sampling period.

Interrupt frequency is computed as the number of distinct
interrupts over the incarnation’s session duration, and reflects
the dynamicity of the environment. A distinct interrupt is de-
termined to be a consecutive period for which the loss sam-
ples are marked as a loss. This metric is biased by incarna-
tions that have short session durations. For example, if an
incarnation stays for 1 minute, and experiences 2 distinct 5-
second interrupts, the interrupt frequency would be once ev-
ery 30 seconds.

Quality Index:

P

P

P

NAT

P

PP

NAT

P

P

P

P

Public only NAT and Public
Inefficient structure

NAT and Public
Connectivity-optimal structure

8/3 = 2.7
(a)

6/3 = 2.0
(b)

8/3 = 2.7
(c)

Figure 5: Example of Resource Index computation.

, User Feedback complements the network-level metrics de-
scribed above. We encouraged users to fill in a feedback form
and rate their satisfaction level for various quality metrics
such as ease of setup, overall audio and video quality, fre-
quency of stalls, and duration of stalls. The results are, how-
ever, subjective and should be considered in conjunction with
the more objective network-level metrics.
, Additional Metrics to capture the quality of the overlay
have also been analyzed. For example, we have looked at
the efficiency of the overlay based on resource usage [9], and
overlay stability based on the rate of parent changes. Due to
space limitations, we do not present these results.

4.2 Environmental Factors

A self-organizing protocol needs to deal with events such as
an ancestor leaving, or congestion on upstream overlay links
by making parent changes. Two key factors that affect perfor-
mance then are: (i) the dynamicity of the environment; and
(ii) the availability of resources (parents) in the environment.
The more dynamic an environment, the more frequently a
host is triggered to react; the poorer the resources, the longer
it could potentially take to discover a good parent.

4.2.1 Dynamics

The two key aspects of dynamics are: (i) group dynamics; and
(ii) dynamics in the network. We measure group dynamics
using mean interarrival time and session duration. We note
however that the membership dynamics and overlay perfor-
mance may not follow a strict cause and effect relationship.
For example, users that see poor performance may leave, thus
creating more dynamics in the system.

Our measurements are not conducive to summarizing net-
work dynamics in terms of frequency and duration because
of several reasons. First, we have measurements only for the
subset of overlay links chosen and used by the protocol for
data transfer. Second, the measurements could be biased by
the protocol’s behavior. For example, the observation of con-
gestion duration may be shorter than in reality because the
protocol attempts to move away from congestion and stops
sampling that path. Instead, we characterize network dynam-
ics by looking at the causes and location as described in � 4.3.

4.2.2 Environment Resources

Two key factors capture the resources in an environment: (i)
outgoing bandwidth of hosts, which directly bounds the num-
ber of children hosts can take; and (ii) the presence of NATs
and firewalls which places connectivity restrictions on parent-
child relationships. In this section, we introduce a metric
called the Resource Index to capture the outgoing bandwidth
of hosts, and then extend it to consider NATs and firewalls.

We define the Resource Index as the ratio of the number of
receivers that the members in the group could potentially sus-
tain to the number of receivers in the group for a particular
source rate. By number of hosts that can be potentially sus-
tained, we mean the sum of the existing hosts in the system
and the number of free slots in the system. For example, con-
sider Figure 5(a), where each host has enough outgoing band-
width to sustain 2 children. The number of free slots is 5, and
the Resource Index is �	>@?A���CB��EDGF�B�� . Further, for a given
set of hosts and out-going bandwidth, the Resource Index is
the same for any overlay tree constructed using these hosts.
A Resource Index of 1 indicates that the system is saturated,
and a ratio less than 1 indicates that not all the participating
hosts in the broadcast can receive the full source rate. As the
Resource Index gets higher, the environment becomes less
constrained and it becomes more feasible to construct a good
overlay tree. Note that the Resource Index is sensitive to the
estimation of number of slots in the system.

We have extended the definition of Resource Index to in-
corporate the connectivity constraints of NATs and firewalls,
by only considering free slots available for NAT hosts. For
example, in Figure 5(b), the number of slots available for
NAT hosts is 3, and the Resource Index is H*BI� . However, we
note that the Resource Index not only depends on the set of
hosts, but also becomes sensitive to the structure of the over-
lay for that set of hosts. Thus, while Figure 5(c) has the same
set of hosts as Figure 5(b), we find the number of free slots
for NATs is 5 and the Resource Index is F*B�� .

We observe that the optimal structure for accommodat-
ing NATs is one where public hosts preferentially choose
NATs as parents, leaving more free slots at public hosts
which NATs can then choose as parents. Based on this ob-
servation, the optimal Resource Index for a set of hosts in-
volving NATs and firewalls is defined as JKB
L , where JMD
JON�P�Q�RTSVUW?YXG34Z[�	J]\&^`_`7aLbN�P�Q�RTScU2� . Here, JdN�P�Q�ReSVU and Jf\&^`_ are the
maximum number of children that can be supported by the
public and NAT hosts, LgN�P�Q�RTScU is the number of receivers that
are public hosts and L is the total number of receivers. Figure
5(c) is an optimal structure for the set of hosts, and it can be
verified that the formula confirms to the result stated above.

We wish to close with two practical issues that must be
borne in mind with the Resource Index . First, it captures
only the availability of resources in the environment, but
does not account for factors such as performance of Inter-
net paths. Also, the Resource Index is computed assuming
global knowledge, but in practice, a distributed protocol may

not be able to use the resources as optimally as it could have.

4.3 Loss Diagnosis
When evaluating a self-organizing protocol, we need to dis-
tinguish between losses that could possibly be fixed by ap-
propriate self-organization techniques from the losses that
are fundamental to the system (i.e. those caused by access
link capacity limitations, trans-oceanic bottleneck link con-
gestions and local congestions). Further, we are interested in
identifying the location of losses in the overlay tree, and at-
tribute causes to the loss. We now summarize steps in our
loss diagnosis methodology below:, Identifying Root-Events: If a host sees bad performance,
then all of its descendants downstream see bad performance.
Our first step filters out losses at descendants, and isolates
a set of “root-events”. If a host sees losses at a particular
time, we determine whether its parent saw losses in a 5 second
window around that time. This correlation relies on the time
synchronization mechanism that we described earlier in the
section., Identifying Network Events: Next, we classify the losses
between the host and its parent based on cause. In our system,
there are potentially two primary causes: (i) parent leave or
death, and (ii) network problems (congestion or poor band-
width) between the parent and child. There could be other
miscellaneous causes such as host with slow processors and
implementation bugs. Parent leave or death events are ex-
plicitly detected by the protocol and logged. Hosts with slow
processors are detected by abnormal gaps in time-stamps of
operations that log messages at periodic intervals. Implemen-
tation bugs are revealed by abnormal patterns we detect dur-
ing manual verification and analysis of logs. Thus, after a
detailed elimination process and exhaustive manual verifica-
tion, we classify the remaining losses that we are not able to
attribute to any known cause as due to network problems., Classifying constrained hosts: Network losses can occur at
several locations: (i) local to the child where a parent change
is not needed; or (ii) local to the parent, or on the link be-
tween parent and child. As a first step, we identify hosts
that see persistent losses near it using the following heuris-
tic. If a host has seen losses for over F&%*) of the session, all
of which are “root losses”, and has tried at least 5 distinct par-
ents during the session, then we decide the host is bandwidth
constrained. Inherent here is the assumption that the protocol
is doing a reasonable job in parent selection. This heuris-
tic works well in environments with higher Resource Index.
Finally, we manually verify these hosts and look for other ev-
idence they are constrained (for example, location across a
trans-oceanic link, names indicating they are behind wireless
links etc.)., Classifying congestion losses: The remaining losses cor-
respond to hosts that usually see good performance but see
transient periods of bad performance. If its siblings experi-
ence loss at around the same time, it is evidence that the loss
is near the parent and not near a child; if a child has made

0

1

2

3

4

5

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

R
es

ou
rc

e
In

de
x

Time Since Broadcast Start (Hours)

SIGCOMM 2002
Slashdot(Bandwidth)

Slashdot

Figure 6: Resource Index as a function of time for (i) SIGCOMM 2002,
(ii) Slashdot with bandwidth constraint, (iii) Slashdot with bandwidth and
connectivity constraints.

several parent changes during an extended loss period, it is
evidence that the loss is near the child. For the events that
we are unable to classify, we label them as having “unknown
location”.

5 Analysis Results
We present results from 6 of our larger broadcasts, 5 of which
were conference/lecture-type broadcasts, and the other being
Slashdot. For multi-day events, such as SIGCOMM 2002
and 2003, we analyzed logs from one day in the broadcast.
For Slashdot, we present analysis results for the first 8 hours.
In this section, we will present environment characteriza-
tions and performance results of the broadcasts. The anal-
ysis will indicate strong similarities in the environment for
the conference/lecture-type broadcasts. However, they dif-
fer significantly from Slashdot. When we wish to illustrate a
more detailed point, we use data from the SIGCOMM 2002
and Slashdot broadcasts. The SIGCOMM 2002 broadcast is
one of the largest conference/lecture-type broadcasts, and is
representative of these broadcasts in terms of application per-
formance and resources.

5.1 Environment Dynamics
Table 4 lists the mean session interarrival time in seconds for
the 6 broadcasts in the fourth column. For the five broadcasts
of conferences and lectures, the mean interarrival time was
a minute or more, whereas the interarrival time for Slashdot
was just 17 seconds. Slashdot has the highest rate of group
dynamics compared to all other broadcasts using our system.
Note that the session interarrival times fit an exponential dis-
tribution.

Two different measures of session duration are listed in Ta-
ble 4: individual incarnation duration and entity duration (cu-
mulative over all incarnations) which captures the entity’s en-
tire attention span. For entity session duration, again, we find
that all 5 real broadcasts of conferences and lectures have a
mean of 26 minutes or more, and a median of 16 minutes or
more. In the SIGCOMM 2002 broadcast, the median was 1.5
hours which corresponds to one technical session in the con-
ference. To contrast, the Slashdot audience has a very short

Event Duration Incarnations Mean Session Incarnation Session Entity Session % Eligible Parents
(hours) Excluding Interarrival Duration (minutes) Duration (minutes)

Waypoints Time (sec) Mean Median Mean Median NAT, Firewall, Public Public
SIGCOMM 2002 8 375 83 61 11 161 93 57% 57%
SIGCOMM 2003 9 102 334 29 2 71 16 46% 17%
Lecture 1 1 52 75 12 2 26 19 62% 33%
Lecture 2 2 72 120 31 13 50 53 44% 21%
Lecture 3 1 42 145 31 7 42 31 73% 43%
Slashdot 8 2178 17 18 3 11 7 19% 7%

Table 4: Summary of group membership dynamics and composition for the 6 larger broadcasts using the system.

attention span of 11 and 7 minutes for the mean and median.
This indicates that the Slashdot audience may have been less
interested in the content. The incarnation session duration
also follows a similar trend with shorter durations. Note that
SIGCOMM 2003 and Lecture 1 have very short median in-
carnation session durations. This is caused by 1 or 2 entities
testing the system, joining and leaving frequently. Once we
removed such entities, the median went up to 12 minutes or
more, bringing it closer to the other 3 conferences and lec-
tures.

5.2 Environment Resources
We look at the percentage of incarnations in the system that
were eligible as parents, the last 2 columns in Table 4. The 5
conference and lecture broadcasts have the same trend, with
44% or more incarnations that can serve as parents. On the
other hand, only 19% of incarnations could be parents in
Slashdot. Further, when we consider the fraction of public
hosts that could be parents, we find this ranges from ��hi��>*h&)
for the conference-style broadcasts, but is just h&) for the
Slashdot broadcast. This indicates that there were much less
available resources in the system in the Slashdot broadcast.
Note that we did not have NAT/firewall support in the SIG-
COMM 2002 broadcast.

Figure 6 depicts the Resource Index of the system as a
function of time of the broadcast. The top and the lowest
curves represent the Resource Index for the SIGCOMM 2002
and Slashdot broadcasts, and are consistent with the defini-
tion in � 4.2.2. We note that the lowest curve corresponds to
the actual overlay tree that was constructed during the broad-
cast. The middle curve, Slashdot (Bandwidth) considers a
hypothetical scenario without connectivity constraints (that
is, all NAT/firewall hosts are treated as public hosts). The
SIGCOMM 2002 broadcast has a Resource Index of 4, po-
tentially enough to support 4 times the number of members.
In contrast, the Slashdot (Bandwidth) has a Resource Index
of 2, and Slashdot has a Resource Index that is barely over
1. Thus, not only was the distribution of out-going band-
width less favorable in the Slashdot broadcast, but also the
presence of connectivity constraints made it a much harsher
environment.

5.3 Performance Results
The previous analysis indicates that 5 of our broadcasts have
similar resource distributions and dynamics patterns, but the

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
B

an
dw

id
th

 R
at

io
 (n

or
m

al
iz

ed
 to

 s
ou

rc
e

ra
te

)

Cumulative Percent of Receivers (%)

SIGCOMM 2002
SIGCOMM 2003

Lecture 1
Lecture 2
Lecture 3
Lecture 4
Slashdot

Figure 7: Cumulative distribution of mean session bandwidth (normalized to
the source rate) for the 6 larger broadcasts.

Setup Audio Video
ease Quality Quality

SIGCOMM 2002 95% 92% 81%
Slashdot 96% 71% 66%

Table 5: Summary of user feedback for two broadcast events. Each number
indicates the percentage of users who are satisfied in the given category.

Slashdot environment was more diverse and more dynamic.
This section evaluates how the system performs.

Figure 7 plots the cumulative distribution of mean session
bandwidth, normalized to the source rate for the 6 broadcasts.
Five of the broadcasts are seeing good performance with more
than 90% of hosts getting more than 90% of the full source
rate in the SIGCOMM 2002, Lecture 2, and Lecture 3 broad-
casts, and more than 80% of hosts getting more than 90%
of the full source rate in the SIGCOMM 2003 and Lecture 1
broadcasts. In the Slashdot broadcast, fewer hosts, 60%, are
getting the same performance of 90% of the full source rate.

To better understand the transient performance, and per-
formance of different stream qualities, we zoom in on the
SIGCOMM 2002 , which we will refer to as Conference ,
and Slashdot broadcasts. Figure 8 depicts the cumulative
distribution of the fraction of time all incarnations saw more
than 5% packet losses in all three streams in Slashdot and the
Conference broadcast, for incarnations that stay for at least
1 minute. For the Conference broadcast, the performance is
good. Over H�%*) of the hosts see no loss in audio and low
quality video, and over j*%*) of the hosts see no loss in high
quality video. Further, over 90) of the hosts see loss for less
than >*) of the session in the audio and low quality streams,
and over F�%*) of the hosts see loss for less than >�) of the
session in the high quality stream. We will further analyze

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

of
 D

ur
at

io
n

w
ith

 L
os

s

Cumulative Percent of Receivers (%)

Slashdot Audio
Slashdot Low
Slashdot High

Conference Audio
Conference Low
Conference High

Figure 8: Cumulative distribution of fraction of session time with more than
5% packet loss of hosts in the two broadcasts.

the performance of the hosts that are seeing the worst per-
formance in � 5.4 and demonstrate that these are mostly hosts
that are fundamentally constrained by their access bandwidth.
For the Slashdot broadcast on the other hand, the low quality
video and audio streams see reasonable performance, but the
performance of the high quality stream is much less satisfac-
tory. Over h�%*) of the users see loss for less than �k%*) of
the session in low quality video, but only >I%*) of users see
loss for less than �k%�) of the session for high quality video.
Note that the audio and low quality streams are seeing better
performance than the high quality because of the use of the
priority buffer described in � 2.2. For sessions with a high
loss rate of high quality video, the low quality one was actu-
ally displayed to the user.

Next, we analyzed the interrupt duration and found that the
interrupt duration is typically short for all 3 streams in Con-
ference, and low quality video and audio in Slashdot. More
than hI%*) of hosts see a mean interrupt duration of less than
10 seconds, and l�%*) of hosts see a mean interrupt duration
of less than 25 seconds for all 5 streams. However, the high
quality video in Slashdot sees a pronounced higher interrupt
duration. Roughly 60% of hosts see a mean interrupt duration
of longer than 10 seconds.

We have also analyzed the cumulative distribution of the
frequency of interrupts seen by each incarnation. We find
that the interrupt frequency is higher for Slashdot, probably
reflecting the more dynamic environment. For example, in
the Conference broadcast over F&%�) of hosts see an interrupt
less frequent than once in five minutes and l�%*) see an in-
terrupt less frequent than once in two minutes. In Slashdot,
H&%�) of hosts see an interrupt less frequent than once in five
minutes and F�%*) see an interrupt less frequent than once in
two minutes.

User Feedback: Table 5 summarizes statistics from a
feedback form users were encouraged to fill when they left
the broadcast. Approximately 18% of users responded and
provided feedback. Most users were satisfied with the overall
performance of the system, and more satisfied with the overall
performance in the Conference broadcast, which is consistent
with the network level metrics in Figures 7 and 8.

May not be
fixable via
self-org.
18%

Problems at
ancestors

Fixable 31%

Network congestion near
broadcast source (rare)

Parent leave

Not fixable via
self-organization

51%

Network
congestion
(unknown
location)

Host is bandwidth
constrained

Network congestion near host

Network
congestion
near parent

Figure 9: Loss diagnosis for Conference.

5.4 Loss Diagnosis
Figure 8 shows that for the Conference broadcast, while most
users saw good performance, there is a tail which indicates
poor performance. To better understand the tail, we analyze
the data using the loss diagnosis methodology presented in
� 4.3. Figure 9 shows the breakdown of all loss samples
across all hosts. We find that almost >W��) of losses are not
fixable by self-organization. j�l�) corresponded to hosts that
were bandwidth constrained, while �*) of losses belonged
to hosts that were normally good, but experienced network
problems close to them for a prolonged period. H*) of losses
corresponded to network events that may be fixable by adap-
tation, while �mF*) of losses corresponded to network events
that we were not able to classify. Manual cross-verification
of the tail revealed about 30 incarnations that were marked
as constrained hosts. This corresponded to about 17 distinct
entities. Of these, 5 are in Asia, 1 in Europe, 3 behind wire-
less links, 1 behind a LAN that was known to have congestion
issues, and 7 behind DSL links.

Finally, Figure 9 indicates that dynamics in the network is
responsible for significantly more losses than group dynam-
ics. In some cases, even well-provisioned paths see prolonged
periods of congestion. As an anecdotal example, we observed
that a gigabit link between a U.S. academic institution and the
high-speed Internet2 backbone that typically provides good
consistent performance, had a congestion epoch that lasted
up to 3 minutes. Both observations are consistent with other
broadcasts including Slashdot.

6 Lessons Learned
Our experience over the last year, substantiated with data and
analysis, has pointed us toward four key design lessons that
are guiding future refinements of our system.

Our first lesson sheds light on the potential of purely appli-
cation end-point based overlay multicast architectures that
rely entirely on the hosts taking part in the broadcast. As dis-
cussed in � 3.2, our deployment used waypoints, additional
hosts that help increase the resources in the system but were
otherwise no different than normal clients. We analyze how
important the resources provided by waypoints was to the
success of our broadcasts.

Our next three lessons deal with techniques that can enable
good performance in environments with low Quality Index,

0

1

2

3

4

5

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

R
es

ou
rc

e
In

de
x

Time Since Broadcast Start (Hours)

Conference with Waypoints
Conference without Waypoints

Slashdot with Waypoints
Slashdot without Waypoints

Figure 10: Resource Index as a function of time with and without waypoint
support.

even in the absence of waypoints. The analysis for these
lessons assume that the resources provided by waypoints is
unavailable, and consequently a purely application end-point
architecture.

Lesson 1: There is opportunity to reduce the dependence on
waypoints and use them in an on-demand fashion.

In order to understand whether or not waypoints are nec-
essary to the success of a broadcast, we look at Figure 10
which plots the Resource Index in the Conference and Slash-
dot broadcasts, with and without waypoints. The Conference
broadcast had enough capacity to sustain all hosts even with-
out waypoint support. Furthermore, most of the broadcasts,
similar to the Conference broadcast, are sustainable using a
purely application end-point architecture. In one of the lec-
ture broadcasts, all the waypoint left simultaneously in the
middle of the broadcast due to a configuration problem, and
we found that the system was able to operate well without the
waypoints.

On the other hand, we find that the connectivity constraints
in the Slashdot broadcast resulted in a low Resource Index
that occasionally dipped below � in Figure 10. This indicates
that it was not feasible to construct an overlay among all par-
ticipating hosts that could sustain the source rate. Dealing
with such environments can take on two complementary ap-
proaches (i) design techniques that can enable good perfor-
mance in purely application end-point architecture, even in
the absence of waypoints (which forms the thrust of the sub-
sequent lessons in this section), or (ii) use a waypoint archi-
tecture, with the insight that waypoints may not be needed for
the entire duration of the broadcast, and can be invoked on-
demand. For ease of deployment, our objective is to explore
both approaches and gradually decrease the dependence on
waypoints, using them as a back-up mechanism, only when
needed.

We note that in the long-term, waypoint architectures may
constitute an interesting research area in their own right,
being intermediate forms between pure application end-point
architectures and statically provisioned infrastructure-centric
solutions. The key aspect that distinguishes waypoints

0

500

1000

1500

2000

2500

02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00

C
um

ul
at

iv
e

N
um

be
r o

f R
ej

ec
te

d
H

os
ts

Time Since Broadcast Start (Hours)

All Joins
FCFS

Contributor-Aware
Contributor-Aware + Rate Adaptation

Figure 11: Number of rejected hosts under three different protocol scenarios
in the simulated Slashdot environment.

from statically provisioned nodes is that the system does
not depend on these hosts, but leverages them to improve
performance.

Lesson 2: Exploiting heterogeneity in node capabilities
through differential treatment is critical to improve the per-
formance of the system in environments with low Resource
Index. Further, there is considerable benefit to coupling such
mechanisms with application-specific knowledge.

If the Resource Index dips below 1, the system must reject
some hosts or degrade application quality. In this section, we
evaluate performance in terms of the fraction of hosts that are
rejected, or see lower application quality. We consider three
policies. In the First-Come-First-Served (FCFS) policy that
is currently used in our system, any host that is looking for a
new parent, but finds no unsaturated parent is rejected. In the
Contributor-Aware policy, the system distinguishes between
two categories of hosts: contributors (hosts that can support
children), and free-riders (hosts that cannot support children).
A contributor n that is looking for a new parent may preempt
a free-rider (say o). n can either accommodate o as a child,
or kick it out of the system if n is itself saturated. This policy
is motivated by the observation that preferentially retaining
contributors over free-riders can help increase overall system
resources. Finally, we consider Rate-Adaptation where a par-
ent reduces the video rate to existing free-riders in order to ac-
commodate more free-riders. For example, a parent can stop
sending the high quality video (300 kbps) to one child, and in
return, support three additional 100 kbps children. This pol-
icy is an example that not only differentially treats hosts based
on their capabilities, but also exploits application knowledge.

We evaluate the potential of these policies by conducting a
trace-based simulation using the group membership dynam-
ics pattern from the Slashdot broadcast. We retain the same
constitution of contributors and free-riders, but remove the
waypoints from the group. We simulate a single-tree protocol
where each receiver greedily selects an unsaturated parent,
and we assume global knowledge in parent selection. If there
is no unsaturated parent in the system, then we take action
corresponding to the policies described above. Figure 11

0

200

400

600

800

1000

1200

03:5403:54 03:5503:55 03:56

R
ec

ei
ve

d
B

an
dw

id
th

 (k
bp

s)

Time Since Broadcast Start (Hours)

0

1

2

3

4

N
um

be
r o

f c
hi

ld
re

n

received bandwidth
number of children

Figure 12: An example of a misconfigured DSL host taking children, causing
poor performance to itself and its children.

10+Mbps Below 10Mbps Total
User truthful 11.1% 60.8% 71.9%
User lied 5.4% 4.9% 10.3%
User inconsistent 4.3% 13.5% 17.8%
Total 20.8% 79.2% 100.0%

Table 6: Accuracy in determining access bandwidth based on user input in
Slashdot.

shows the performance of the policies. We see that through-
out the event, 78% of hosts are rejected using the FCFS pol-
icy. Contributor-Aware policy can drastically reduce the
number of rejections to 11%. However, some free-riders are
rejected because there are times when the system is saturated.
With the Rate Adaptation policy however, no free-rider is re-
jected. Instead, 28% of the hosts get degraded video Resource
for some portion of the session.

Our results demonstrate the theoretical potential of
contributor-aware rejection and rate adaptation. A practical
design has to deal with many issues, for example, robust
ways of automatically identifying contributors (see next les-
son), techniques to discover the saturation level of the system
in a distributed fashion, and the trade-offs in terms of larger
number of structure changes that preemption could incur. We
are currently in the process of incorporating these policies in
our design and evaluating their actual performance.

Lesson 3: Although many users are honest about contributing
resources, techniques are needed for automatically estimat-
ing the outgoing access bandwidth of nodes.

As the previous lesson indicates, it is important to design
protocol techniques that differentially treat nodes based on
their contributions. An issue then is determining the contri-
bution level of a node to the system, and in particular, de-
termining the outgoing access bandwidth of a node. In our
current system, the user is asked if his access bandwidth has
a 10Mbps up-link to the Internet to help determine whether
the host should have children (� 2.1). This approach is sus-
ceptible to free-loaders[33], where a user declares that he has
less resources than he really does. However, an equally dam-
aging problem in the context of Overlay Multicast is when a
user declares he has more resources than he does. To see this,
consider Figure 12 which depicts the performance of a DSL

0

0.5

1

1.5

2

2.5

03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

R
es

ou
rc

e
In

de
x

Time Since Broadcast Start (Hours)

Slashdot(TCP)
Hypothetical Slashdot(UDP)

Figure 13: Resource Index comparison of two connectivity solutions for
NAT/firewall: (i) Slashdot (TCP), (ii) Hypothetical Slashdot (UDP).

host that lied about having a 10Mbps up-link to the Internet,
during the Slashdot broadcast. Whenever the host accepts a
child, it affects not only the child’s performance, but also its
own performance. Further, a similar problem arises when a
host can support less children (e.g. 4) than it claimed (e.g. 6).
In a future design that prioritizes hosts that contribute more
(Lesson 2), these effects can get further exacerbated.

To appreciate how reliable users were in selecting the cor-
rect access bandwidth in the Slashdot broadcast, consider
Table 6. Each column represents a true access bandwidth,
and each row represents a particular type of user behavior.
“User Inconsistent” refers to users that had joined the group
multiple times during the broadcast, and had selected both
10+Mbps option and lower than 10 Mbps option between
consecutive joins, perhaps trying to figure out whether the
choice yielded any difference in video quality. We deter-
mined the real access bandwidth using an off-line log anal-
ysis involving the following techniques: (i) DNS name, (ii)
the TCP bandwidth of the upload log, (iii) online bottleneck
bandwidth measurement, and (iv) Nettimer [18] from our uni-
versity to target hosts. Since no single methodology is �k%&%�)
accurate, we correlate results from all these techniques. We
omit the details for lack of space.

From the table, we see that overall h��&p l*) of hosts are
truthful. However, for the �&%Wp F*) of hosts that were behind
�k%*Xq� .dr links, only half of them (�&��pe��) of total) were truth-
ful. Our trace-based simulation on the Slashdot log indicates
that on average, this results in a 20% increase in Quality Index
. Further, we find that while h�l0p �*) of the users were behind
links lower than �m%�Xq� .ir , about j0p l*) chose the higher option
or were being inconsistent (13.5%) about their connectivity.

We have been experimenting with techniques to explicitly
measure the static outgoing access capacity of hosts and
passively monitor the performance of parents to dynamically
track their available bandwidth. These techniques show
promise and we hope to deploy them in the future.

Lesson 4: Addressing the connectivity constraints posed by
NATs and Firewalls may require using explicit NAT/firewall-
aware heuristics in the protocol.

In light of our experience, NATs and firewalls can con-
stitute an overwhelming fraction of a broadcast (for exam-
ple, >&%*) - hI%*) in Slashdot), and thus significantly lower the
Resource Index. Clearly, using UDP as the transport pro-
tocol could improve the situation by increasing the amount
of pair-wise connectivity, particularly connectivity between
Full-Cone NATs. However, a less obvious improvement,
which we briefly presented in � 2.4 is to make the self-
organizing protocol explicitly aware of NAT/firewalls. In par-
ticular public hosts should preferentially choose NATs as par-
ents, leaving more resources available for NATs/firewalls.

We now evaluate the potential of these two design improve-
ments to help determine whether or not the additional com-
plexity is worth the performance gains. Figure 13 shows the
Resource Index for the system for the various design alter-
natives as a function of time, again omitting waypoint hosts.
The lowest curve corresponds to the optimal Resource Index
that can be achieved with a TCP-based protocol. The top-
most curve corresponds to the optimal Resource Index with
UDP and a NAT/firewall-aware self-organizing protocol. We
see a significant increase of h�j�) . The combination of the
two techniques above can significantly improve the Resource
Index. Both techniques are being implemented in the latest
version of our system and will soon be used for upcoming
broadcasts.

7 Related Work

In this section, we discuss how our work relates to (i) other
existing Internet broadcast systems and (ii) work in the Over-
lay Multicast community.
Broadcast Systems: The MBone [4] Project, and its associ-
ated applications such as vic [22], vat [16], and MASH [21]
made a great effort to achieve ubiquitous Internet broadcast-
ing However, the MBone could only touch a small fraction
of Internet users (mostly networking researchers) due to the
fundamental limitations of IP Multicast and dependence on
the special MBone infrastructure. In contrast, our system has
over a short time already reached a wide range of users, in-
cluding home users behind a range of access technologies,
and users behind NATs and firewalls.

Commercial entities, such as Akamai [2] and Real Broad-
cast Network [29], already provide Internet broadcasting as
a charged service. They rely on dedicated, well-provision
infrastructure nodes to replicate video streams. Such an ap-
proach has some fundamental advantages such as security and
stable performance. However, these systems are viable only
for larger-scale publishers, rather than the wide-range of low
budget Internet broadcasting applications we seek to enable.

Recently, several peer-to-peer broadcast systems have been
built by commercial entities [3, 6, 38] and non-profit
organizations[24]. To our knowledge, many of these systems
focus on audio applications which have lower bandwidth re-
quirements. However, given the limited information on these
systems, we are unable to do a detailed comparison.

Overlay Multicast: Since overlay multicast was first pro-
posed four years ago many efforts [13, 9, 17, 7, 19, 28, 37, 20,
32, 23, 39, 10, 5] have advanced our knowledge on protocol
construction by improving performance and scalability. Most
of this work has been protocol-centric, and has primarily in-
volved evaluation in simulation, and Internet testbeds such
as PlanetLab. In contrast, this paper adopts an application-
centric approach, which leverages experience from actual
deployment to guide the research. We address a wide range of
issues such as support for heterogeneous receivers, and NATs
and firewalls, which are not typically considered in proto-
col design studies. To our knowledge this paper is among
the first reports on experience with a real application deploy-
ment based on overlay multicast involving real users watch-
ing live content. We believe our efforts complements ongoing
research in overlay multicast, by validation through real de-
ployment, and providing unique data, traces and insight that
can guide future research.

The overlay protocol that we use is distributed, self-
organizing and performance-aware. We use a distributed pro-
tocol, as opposed to a centralized protocol [25, 23], to min-
imize the overhead at the source. The self-organizing proto-
col constructs an overlay tree amongst participating hosts in a
tree-first manner, similar to other protocols [17, 39, 13], mo-
tivated by the needs of single source applications. In contrast
there are protocols that construct a richer mesh structure first
and then construct a tree on top [9, 7], or construct DHT-
based meshes using logical IDs and employ a routing algo-
rithm to construct a tree in the second phase [20]. Such pro-
tocols are typically designed for multi-source or multi-group
applications.

In our protocol, members maintain information about hosts
that may be uncorrelated to the tree, in addition to path infor-
mation, while in protocols like Overcast [17] and NICE [32],
group membership state is tightly coupled to the existing tree
structure: While Yoid [13] and Scribe [20] also maintain such
information, the mechanisms they adopt are different. Our
system uses a gossip protocol adapted from [30], while Yoid
builds a separate random control structure called the mesh,
and Scribe constructs a topology based on logical identifiers.

Overcast [17] and Narada [9] discuss adaptation to dy-
namic network metrics such as bandwidth. Our experience
indicates that a practical deployment must consider several
details such as dynamic tuning of network detection time to
the resources available in the environment, consider hosts that
cannot sustain the source rate, and consider VBR streams,
and indicate the need for further research and understanding
in this area.

Recent work such as CoopNet [23], and Splitstream [5]
has demonstrated significant benefits by tightly coupling
codec-specific knowledge and overlay design. In these works,
the source uses a custom codec to encode the multimedia
stream into many sub-streams using multiple description cod-
ing, and constructs an overlay tree to distribute each sub-

stream. This approach not only increases overall resiliency of
the system, but also enables support for heterogeneous hosts
by having each receiver subscribe to as many layers as its
capacity allows. While we believe this a great direction for
future research, our design has been influenced by practical
system constraints on an immediately deployable operational
system, and our desire to interoperate with commercial me-
dia players and a wide range of popular codecs. We hope
to leverage ideas from this approach as the research attains
greater maturity, and when custom codecs become available.
NATs and Firewalls: Several efforts such as UPnP [1]
and STUN [15] focus their efforts in enabling connectivity
of NATs and firewalls. Our focus in this paper has been on
the interplay between the application and NAT/firewall sup-
port. In particular, we have examined how the connectivity
constraints imposed by NATs and firewalls can impact over-
lay performance, and on issues related to the integration of
protocol design with NATs and firewalls. While Yoid [13]
supports NATs and firewalls, it supports such hosts as chil-
dren only, whereas we try to use NATs as parents when pos-
sible. We believe this is one of the first reports on experience
with an overlay multicast system in the presence of NATs and
firewalls.

8 Summary and Future Work

In this paper, we have reported on our operational experience
with a broadcast system based on Overlay Multicast. To our
knowledge this is among the first reports on experience with
real application deployment based on Overlay Multicast, in-
volving real users. Our experience has included several pos-
itives, and taught us important lessons both from an opera-
tional deployment stand-point, and from a design stand-point.

Our system is satisfying the needs of real content publish-
ers and viewers, and demonstrating the potential of Overlay
Multicast as a cost-effective alternative for enabling Internet
broadcast. The system is easy to use for both publishers and
viewers. We have successfully attracted over 4000 users from
diverse Internet locations to use our system. However, we
have had limited success in attracting larger scales of par-
ticipation, primarily because of the difficulty in getting ac-
cess to non-technical content. Our experience with several
conference/lecture-type broadcasts indicate that our system
provides good performance to users. In such environments,
we consistently observe that over F�%g�sl�%*) of the hosts see
loss for less than 5% of their sessions. Further, hosts that per-
form poorly are typically bandwidth constrained hosts. Even
in a more extreme environment with a low Resource Index,
users see good performance in audio and low Resource video.

Getting the system deployed has frequently required find-
ing an enthusiastic champion of the technology to convince
their colleagues to use it. This has raised the stakes to ensure
the success of a broadcast, which could in turn trigger fur-
ther interest in the use of the system. Consequently, we have
needed to use stable and well-tested code in our deployment,

rather than code that implements the latest performance en-
hancements. Another consequence has been our use of way-
points, additional hosts that help increase the resources in the
system, but were otherwise no different than normal clients.
The use of waypoints has been motivated by the need to bal-
ance between conflicting goals - on the one hand we want
to understand the resource availability in purely application
end-point architectures; on the other hand we need to have a
series of successful broadcasts in the first place before such
knowledge can be obtained.

Our subsequent analysis has investigated the potential of
purely application end-point architectures, that do not rely
on the use of waypoints. Our analysis both show the promise
for such architectures, but also the need to incorporate addi-
tional key design elements. For most of our broadcasts, there
is sufficient bandwidth resources to enable a solution purely
within the application end-point framework. In broadcasts
with lower Resource Index, techniques that exploit the hetero-
geneity in node capabilities through differential treatment and
application-specific knowledge bear significant promise. Our
broadcasts have also forced us to better appreciate the connec-
tivity constraints posed by NATs and firewalls, and have led
us to investigate explicit NAT/firewall-aware heuristics in the
protocol. While our lessons have been derived in the context
of our system, we believe they are of broader applicability to
the community as a whole.

With the experience accumulated over the last year, we
have set several milestones for the next 1 year horizon. Our
milestones include:
, At a design level, we hope to incorporate some of the
design refinements described above which can enable bet-
ter performance in purely application end-point architectures.
Our hope is to gradually minimize dependence on waypoints,
through the use of on-demand waypoint invocation mecha-
nisms.
, At an operational level, we hope to pursue wider and larger-
scale deployment by attracting more publishers of both tech-
nical and non-technical content to the system, and convincing
them to conduct their own broadcasts, incorporating interac-
tivity features that might attract larger scales in synchronous
applications, and encouraging other groups to run the broad-
casts. Finally, while we have been conducting studies on
the scalability of the system using emulations and simula-
tions, we hope to gain deployment experience with larger
peak group sizes.

In this paper, we use the broadcast system as a research
vehicle for networking. However, we believe it has value ex-
tending into other areas of research. For example, one po-
tential direction is in social science: is there a demand for
interactivity in video broadcast and what are effective means
of interactivity? Unlike traditional TV broadcast, Internet
broadcast provides opportunities for viewers to actively en-
gage in the event. We believe interaction among viewers are
new and valuable social capital that did not previously exist in

traditional TV broadcast. If interactivity is used effectively, it
can enhance the viewing experience, create positive feedback,
and grow into a virtual community.

Availability
Our system is available at http://esm.cs.cmu.edu.

Acknowledgements
This research was sponsored by DARPA under contract num-
ber F30602-99-1-0518, by NSF under grant numbers Ca-
reer Award NCR-9624979 ANI-9730105, ITR Award ANI-
0085920, and ANI-9814929, and by the Texas Advanced Re-
search Program under grant No. 003604-0078-2003. Ad-
ditional support was provided by Intel. Views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of DARPA, NSF, Texas ARP,
Intel, or the U.S. government. Special thanks go to James
Crugnale, Brian Goodman, Tian Lin, Nancy Miller, Jiin Joo
Ong, Chris Palow, Vishal Soni, and Philip Yam for the help
with the implementation and experimentation of the broad-
cast system. We also thank the early adopter event organizers
who use our system to broadcast their events over the Inter-
net, and the early adopter users who use our system to view
the content. Finally, we thank our anonymous reviewers for
their feedback and insight.

References
[1] Understanding Universal Plug and Play. Microsoft White Pa-

per.
[2] Akamai. http://www.akamai.com/.
[3] Allcast. http://www.allcast.com/.
[4] S. Casner and S. Deering. First IETF Internet audiocast. ACM

Computer Communication Review, pages 92–97, 1992.
[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,

and A. Singh. SplitStream: High-bandwidth Content Distri-
bution in Cooperative Environments. In Proceedings of SOSP,
2003.

[6] Chaincast. http://www.chaincast.com/.
[7] Y. Chawathe. Scattercast: An architecture for Internet broad-

cast distribution as an infrastructure service. Fall 2000. Ph.D.
thesis, U.C. Berkeley.

[8] Y. Chu, S.G. Rao, S. Seshan, and H. Zhang. Enabling Con-
ferencing Applications on the Internet using an Overlay Multi-
cast Architecture. In Proceedings of ACM SIGCOMM, August
2001.

[9] Y. Chu, S.G. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM Sigmetrics, June 2000.

[10] J. Albrecht D. Kostic, A. Rodriguez and A. Vahdat. Bullet:
High Bandwidth Data Dissemination Using an Overlay Mesh.
In Proceedings of SOSP, 2003.

[11] End system multicast toolkit and portal.
http://esm.cs.cmu.edu/.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Multicast
Routing in Internetworks and Extended LANs. In Proceedings
of the ACM SIGCOMM, August 2000.

[13] P. Francis. Yoid: Your Own Internet Distribution,
http://www.aciri.org/yoid/. April 2000.

[14] R. Frederick H. Schulzrinne, S. Casner and V. Jacobson. RTP:
A Transport Protocol for Real-Time Applications. RFC-1889,
January 1996.

[15] C. Huitema J. Rosenberg, J. Weinberger and R. Mahy. STUN
- Simple Traversal of UDP Through Network Address Trans-
lators. IERF-Draft, December 2002.

[16] V. Jacobson and S. McCanne. Visual Audio Tool (vat). In
Audio Tool (vat), Lawrence Berkley Laboratory. Software on-
line, ftp://ftp.ee.lbl.gov/conferencing/vat.

[17] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O’Toole Jr. Overcast: Reliable Multicasting with an
Overlay Network. In Proceedings of the Fourth Symposium
on Operating System Design and Implementation (OSDI), Oc-
tober 2000.

[18] K. Lai and M Baker. Nettimer: A Tool for Measuring Bottle-
neck Link Bandwidth. In Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, March 2001.

[19] J. Liebeherr and M. Nahas. Application-layer Multicast with
Delaunay Triangulations. In IEEE Globecom, November 2001.

[20] A.M. Kermarrec M. Castro, P. Druschel and A. Rowstron.
Scribe: A large-scale and decentralized application-level mul-
ticast infrastructure. In IEEE Journal on Selected Areas in
Communications Vol. 20 No. 8, Oct 2002.

[21] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir,
Y. Chawathe, A. Coopersmith, K. Mayer-Patel, S. Raman,
A. Schuett, D. Simpson, A. Swan, T. L. Tung, D. Wu, and
B Smith. Toward a Common Infrastucture for Multimedia-
Networking Middleware. In Proceedings of NOSSDAV, 1997.

[22] S. McCanne and V. Jacobson. vic: A Flexible Framework for
Packet Video. In ACM Multimedia, November 1995.

[23] V.N. Padmanabhan, H.J. Wang, and P.A Chou. Resilient Peer-
to-peer Streaming. In Proceedings of IEEE ICNP, 2003.

[24] Peercast. http://www.peercast.org/.
[25] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:

An Application Level Multicast Infrastructure. In Proceedings
of 3rd Usenix Symposium on Internet Technologies & Systems
(USITS), March 2001.

[26] Planetlab. http://www.planet-lab.org/.
[27] Quicktime. http://www.apple.com/quicktime.
[28] Sylvia Ratnasamy, Mark Handley, Richard Karp, and

Scott Shenker. Application-level Multicast using Content-
Addressable Networks. In Proceedings of NGC, 2001.

[29] Real broadcast network. http://www.real.com/.
[30] R. Renesse, Y. Minsky, and M. Hayden. A gossip-style fail-

ure detection service. Technical Report TR98-1687, Cornell
University Computer Science, 1998.

[31] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. In ACM Computer Communication Review,
January 1997.

[32] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable
Application Layer Multicast. In Proceedings of ACM SIG-
COMM, August 2002.

[33] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proceedings
of Multimedia Computing and Networking (MMCN), January
2002.

[34] Slashdot. http://www.slashdot.org/.
[35] S.McCanne, V.Jacobson, and M.Vetterli. Receiver-driven lay-

ered multicast. In Proceedings of ACM SIGCOMM, August
1996.

[36] Sorenson. http://www.sorenson.com/.
[37] S.Q.Zhuang, B.Y.Zhao, J.D.Kubiatowicz, and A.D.Joseph.

Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-area Data Dissemination, April 2001. Unpublished Re-
port.

[38] Streamer. http://streamerp2p.com/.
[39] W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay op-

timizations for end-host multicast. In Proceedings of Fourth
International Workshop on Networked Group Communication
(NGC), October 2002.

[40] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. In OSDI02, pages 255–270, Boston, MA, Decem-
ber 2002.

