
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Glitz: Hardware Accelerated Image Compositing using OpenGL
Peter Nilsson

Department of Computing Science
Umeå University, Sweden

c99pnn@cs.umu.se

David Reveman
Department of Computing Science

Umeå University, Sweden
c99drn@cs.umu.se

Abstract
In recent years 2D graphics applications and window

systems tend to use more demanding graphics features
such as alpha blending, image transformations and anti-
aliasing. These features contribute to the user interfaces
by making it possible to add more visual effects as well
as new usable functionalities. All together it makes the
graphical interface a more hospitable, as well as effi-
cient, environment for the user.

Even with today’s powerful computers these tasks
constitute a heavy burden on the CPU. This is why many
proprietary window systems have developed powerful
2D graphics engines to carry out these tasks by utilizing
the acceleration capabilities in modern graphics hard-
ware.

We present Glitz, an open source implementation of
such a graphics engine, a portable 2D graphics library
that can be used to render hardware accelerated graphics.

Glitz is layered on top of OpenGL and is designed to
act as an additional backend for cairo, providing it with
hardware accelerated output.

Furthermore, an effort has been made to investigate
if the level of hardware acceleration provided by the X
Window System can be improved by using Glitz to carry
out its fundamental drawing operations.

1 Introduction
There is a trend visible in the appearance of modern
window systems and 2D graphics in general these days.
They all become more and more loaded with graphi-
cal features and visual effects for each available product
generation.

Unfortunately, these features means heavy computa-
tions that takes a lot of time when carried out by the
general CPU. In the past this has meant a slowdown
throughout the entire system as well as a significant lim-
itation in the kind of visual effects that could be used.

In the field of 3D graphics, similar problems have
been solved by implementing the drawing operations in
dedicated 3D-graphics hardware. Hardware accelerated
rendering means that the graphics hardware contains its
own processor to boost performance levels. These pro-
cessors are specialized for computing graphical transfor-
mations, so they achieve better results than the general

purpose CPU. In addition, they free up the computer’s
CPU to execute other tasks while the graphics accelera-
tor is handling graphics computations.

Modern window systems have developed 2D-graphics
engines, which utilize the high performance rendering
capabilities inherent in today’s 3D-graphics hardware.
In fact, much of the visual effects and advanced graph-
ics that can be seen in these systems would not even be
feasible without hardware accelerated rendering.

This paper presents Glitz, an open source implemen-
tation of a 2D graphics library that uses OpenGL[17] to
realize a hardware accelerated high performance render-
ing environment.

Furthermore, these ideas have been applied to the
X Window System (X)[16], to see if they could im-
prove hardware acceleration of graphical applications
and thereby making way for more advanced graphics.

The software that is developed in this project will pri-
marily target users equipped with the latest in modern
graphics hardware.

1.1 Traditional X Graphics
X was not originally designed for the advanced graphics
that can be seen on modern desktops. The main rea-
son is that graphics hardware available at the time was
not fast enough. Application developers soon found the
core graphics routines inadequate and the trend became
to use client-side software rendering instead. Several
steps have been taken to rectify this since then.

One major improvement was made with the introduc-
tion of the X Render Extension (Render)[11]. Render
has widely been accepted as the new rendering model
for X. It brought the desired graphics operations to the
applications and thereby filled in the gaps of the core
protocol. Some of the features that Render supports are
alpha compositing, anti-aliasing, sub-pixel positioning,
polygon rendering, text rendering and image transfor-
mations. The core of Render is its image composit-
ing model, which borrows fundamental notions from the
Plan 9 window system[12]. Render provides a unified
rendering operation, which supports the Porter-Duff[13]
style compositing operators. All pixel manipulations are
carried out through this operation. This provides for a
simple and consistent model throughout the rendering



system.
Render allows us to perform advanced graphics op-

erations on server-side. Graphics operations that are
performed on server-side can be accelerated by graph-
ics hardware. XFree86’s[9] Render implementation
uses XFree86 Acceleration Architecture (XAA)[19] to
achieve hardware accelerated rendering. XAA breaks
down complex Render operations into simpler ones and
accelerates them if support is provided by the driver, oth-
erwise it falls back on software. To fall back on software
means that all graphics computations are processed by
the CPU. For most XFree86 drivers, image data lives in
video memory, so for the CPU to be able to access this
data it must first be fetched from video memory. The
CPU can then perform its computations and the image
data must then be transfered back to video memory. The
result of such a software fall-back is most likely to be
slower than if the operation would have been done on
client-side with all image data already local to the CPU.

The ideal situation would be to have XAA Render
hooks for all Render operations in every driver. This
requires graphics driver developers to add XAA Ren-
der hooks in each driver, which results in a duplicated
effort. Unfortunately, not many drivers have much sup-
port for XAA Render hooks at this point. This results
in inconsistent acceleration between different rendering
operations, different drivers and different hardware.

1.2 Glitz Fundamentals
The Render model seems to be ideal to build Glitz upon.
It provides the necessary operations needed to carry
out the rendering for modern 2D graphics applications.
Hence Glitz is designed to exactly match the Render
model semantics, adding an efficient and more consis-
tent hardware acceleration of the rendering process.

The Render model provides only low level fundamen-
tal graphics operations, not always suitable for direct use
by application developers. A higher level graphics API
is needed on top of the Render model to make it use-
ful for this purpose. The cairo library (formerly known
as Xr[20]) is a modern, open source, cross-platform 2D
graphics API designed for multiple output devices. With
its PDF[3]-like 2D graphics API, it provides an attractive
and powerful vector based drawing environment. Cairo
uses a backend system to realize its multiple output for-
mats. One thing missing thus far in cairo, is a backend
that efficiently accelerates the rendering process with to-
day’s high performance graphics hardware. The back-
end interface of cairo has the same semantics as Render.
Thus Glitz is designed to act as an additional backend
for cairo providing this hardware accelerated output.

The output of Glitz is accelerated in hardware by us-
ing OpenGL for all rendering operations. Figure 1 illus-
trates these ideas by showing the layers involved when

an application uses cairo to draw hardware accelerated
graphics through Glitz.

Figure 1: Different layers involved when an application uses
cairo to render graphics to an OpenGL surface.

OpenGL can be used to accelerate 2D graphics out-
put, just as with 3D. Most people think of OpenGL as
a 3D graphics API, which is understandable because it
was used primarily for 3D applications like visualiza-
tions and games in the past. However, it is just as well
suited for 2D graphics of the nature discussed in this pa-
per, where transformations and other visual effects play
a central part, much like in traditional 3D applications.
OpenGL is the most widely used and supported graph-
ics API available today, it is well supported in hardware
and very portable. It operates on image data as well as
geometric primitives and offers the necessary operations
needed for the creation of Glitz.

To sum up these ideas, Glitz is created to act as an
interface on top of OpenGL, which provides the same
consistent rendering model as Render. This interface is
implemented in such a way that it takes advantage of
the OpenGL hardware acceleration provided by modern
graphics cards. The semantics of the library are designed
to precisely match the specification of Render. Having
the same semantics as Render allows for a seamless inte-
gration with the cairo library that then provides an attrac-
tive environment for developing new high performance
graphical applications.

Hopefully, the work presented in this paper will be
useful in the design of a new generation of hardware ac-
celerated 2D graphics applications for X and the open
source community in general.

1.3 The OpenGL Rendering Pipeline
To fully utilize the hardware acceleration provided by
OpenGL, familiarity with the order of internal opera-



tions used in OpenGL implementations is of great im-
portance. This is often visualized as a series of process-
ing stages called the OpenGL rendering pipeline. This
ordering is not a strict rule of how OpenGL is imple-
mented but provides a reliable guide for predicting what
OpenGL will do.

Figure 2: The OpenGL Rendering Pipeline

The latest generations of graphics hardware allow the
application to replace the conventional vertex operations
and fragment operations processing stages shown in fig-
ure 2, with application defined computations. These
computations are defined with assembler-like languages
that an OpenGL implementation compiles into vertex
and fragment programs. The vertex and fragment pro-
grams provide an interface for directly accessing hard-
ware and have been proven very useful in the develop-
ment of Glitz.

2 Related Work
Some of the proprietary window systems have created
their own graphics engines that can perform hardware
accelerated rendering in a similar manner to the model
discussed here. The one, that has probably attracted
most attention is Apple’s Quartz Extreme[5] composit-
ing engine used in Mac OS X[6]. The user interface in
Mac OS X is loaded with advanced graphics effects of
the nature discussed in this paper. They all seem to run
smoothly without bringing too much load on the CPU.

Microsoft is also developing something similar in
their Avalon[2] graphics engine. It will be a fundamen-

tal part for hardware accelerated 2D graphics in the next
windows version, currently being developed under the
name Windows Longhorn[1].

Glitz is not the first Open Source graphics library
that has been layered on top of OpenGL. An example,
Evas[14]; a hardware accelerated canvas API, which is
part of the Enlightenment Foundation Libraries. Glitz is
unique compared to these libraries by using an imme-
diate rendering model designed for the latest hardware
extensions. Immediate data is resident in graphics hard-
ware and off-screen drawing is a native part of the ren-
dering model.

3 Implementation and Design
The development of Glitz and the other parts have been
made in an entirely open fashion. Input from the open
source community has been regarded.

3.1 Library Structure
As OpenGL layers are available for various platforms
and systems, the library is designed to be usable with
any of various OpenGL layers. Different OpenGL lay-
ers can be used by plugging them in to the core of Glitz
through a virtualized backend system. Each backend
needs to provide a table of OpenGL function pointers
and few additional functions, which will allow for the
core to perform its rendering operations unaware of the
structure of the underlying OpenGL layer.

The core of Glitz is built as a separate library with
a minimal set of dependencies. Each backend is built
into its own library and different applications can use
different backend libraries with the same core library.

The advantages of having a virtualized backend sys-
tem and different backend libraries instead of just choos-
ing the code to compile using preprocessor macros are
important. It makes the link between the OpenGL im-
plementation and the core of the library more flexible.
It allows for the core of the library to be compiled for
multiple backends.

As of now Glitz has two backends, for GLX[7] and
AGL[4]. GLX is the OpenGL layer used on Unix[18]
like systems to provide a glue layer between OpenGL
and X. AGL is an OpenGL layer available in Mac OS.
Backends for other OpenGL layers can be added in the
future.

3.2 Rendering Model
The Render protocol describes an immediate rendering
model. This means that the application itself maintains
the data that describes the model. For example, with
Render you draw objects by completely specifying what
should be drawn. Render simply takes the data provided
by the application and immediately draws the appropri-
ate objects.



The opposite is to have a retained rendering model. A
rendering model is operating in retained mode if it re-
tains a copy of all the data describing a model. Retained
mode rendering requires a completely specified model
by passing data to the rendering system using predefined
structures. The rendering system organizes the data in-
ternally, usually in a hierarchical database.

Principal advantages of immediate mode rendering
includes a more flexible model and immediately avail-
able data that is not duplicated by the rendering system.
However, it is more difficult to accelerate the immediate
rendering model, because you generally need to specify
the entire model to draw a single frame, whether or not
the entire model has changed since the previous frame.

3.3 Off-screen Drawing
Off-screen drawing is an essential part of an immediate
mode 2D graphics API. Support for off-screen drawing
in OpenGL has been around for a long time on IRIX[8]
systems and other workstations, but it is not until re-
cently that it has become a standard feature on the regu-
lar home desktop computer.

Pixel buffers or so called pbuffers are what make off-
screen rendering possible in OpenGL. Pbuffers are al-
located independently of the frame-buffer and usually
stored in video memory. The process of rendering to
pbuffer is accelerated by hardware in the same way as
rendering to the frame-buffer. However, as the pbuffer
is a relatively new feature in the OpenGL world, it is
not yet supported by all hardware and all drivers. When
support for off-screen drawing is missing, the applica-
tion using Glitz will have to handle this on its own. Even
though Glitz is primarily designed for modern graphics
hardware, it is important to be able to fall back on soft-
ware rendering in cases where Glitz is not able to carry
out off-screen drawing operations. For example, the
cairo library handles this gracefully using image buffers.

3.4 User-Provided Immediate Data
As all representation of pixel data within Glitz reside in
the graphics hardware’s memory, application generated
images must be transmitted to the hardware in some way.
For this purpose Glitz provides two functions, one for
transmitting pixel data to graphics hardware and one for
retrieving pixel data from graphics hardware.

3.5 Image Compositing
The general composite operation is the fundamental part
of the rendering model. It takes two source surfaces
and one destination surface, where the second of the two
source surfaces is the optional mask surface. Figure 3
illustrates this operation.

To composite one surface onto another with OpenGL,
texturing of a rectangular polygon is used. This means

Figure 3: src IN mask OP dst

that the source surfaces must be available as textures.
The default method for making a surface available as a
texture is to have the graphics hardware copy the pixel
data from a drawable into a texture image. As this is a
relatively slow operation, Glitz does its best to minimize
the area and number of occasions for this copy opera-
tion. On some hardware, a feature called render-texture
is available that allows Glitz to completely eliminate the
need for this copy operation and instead use a pbuffer
directly as a texture.

The optional mask surface that can be provided to
the general composite operation creates some additional
complications. The source surfaces must first be com-
posited onto the mask using the Porter-Duff in-operator
and the result must then be composited onto the destina-
tion. The default method for handling this is to create an
intermediate off-screen surface, which can be used for
compositing using the in-operator. This surface can then
be composited onto the destination with an arbitrary op-
erator for the correct result.

The best way to do this would be to perform composit-
ing with a mask surface directly without the creation of
an intermediate surface. Even though the fixed OpenGL
pipeline does not seem to allow for such an operation,
Glitz is able to do this on hardware that support frag-
ment programs. Fragment programs allow for fragment
level programmability in OpenGL, and in combination



with multi-texturing, Glitz can perform composite oper-
ations with a mask surface very efficiently.

3.6 Image Transformations
Image transformation is a natural part of OpenGL and is
efficiently done on all available hardware and with all
available OpenGL implementations. Glitz transforms
the vertex coordinates of the rectangular polygon used
for texturing, and OpenGL will then in hardware handle
fetching of correct source fragments for this polygon.

When using fragment programs for direct composit-
ing with mask surfaces, some transformations cannot
be done since the source surface and the mask surfaces
share vertex coordinates. If this is the case, Glitz will be
forced to not use direct compositing.

3.7 Repeating Patterns
To provide for solid colors and repeating patterns, sur-
faces have a ‘repeat’ attribute. When set, the surface is
treated as if its width and height were infinite by tiling
the contents of the surface along both axes.

Normally OpenGL only supports tiling of textures
with dimensions that are power of two sized. If sur-
face dimensions are of this size Glitz can let OpenGL
handle the tiling for maximum efficiency. For surfaces
that do not have power of two sized dimensions, Glitz
will repeat the surfaces manually by performing multi-
ple texturing operations.

Some OpenGL implementations support tiling of
none power of two sized textures as well. If this is the
case, Glitz will let OpenGL handle tiling of all surfaces.

3.8 Polygon Rendering
Glitz supports two separate primitive objects; triangles
and trapezoids. Triangles are specified by locating their
three vertices. Trapezoids are represented by two hori-
zontal lines delimiting the top and bottom of the trape-
zoid, and two additional lines specified by arbitrary
points. These primitives are designed to be used for
rendering complex objects tessellated by higher level li-
braries.

Glitz only supports imprecise pixelization. Precise
pixelization is not supported since OpenGL has rela-
tively weak invariant requirements of pixelization. This
is because of the desire for high-performance mixed
software and hardware implementations. Glitz matches
the following set of invariants for imprecise polygons.

• Precise matching of abutting edges
• Translational invariance
• Sharp edges
• Order independence

Hence the visual artifacts associated with polygon tes-
sellation and translation are minimized.

3.8.1 Anti-aliasing
Aliasing is a general term used to describe the problems
that may occur whenever an analog signal is point sam-
pled to convert it into a digital signal, and the sample rate
is to low. The number of samples do not contain enough
information to represent the actual source signal. Instead
the samples seem to represent a different signal of lower
frequency, called an aliased signal.

In computer graphics, aliasing translates to the prob-
lems related to point sampling an analogous mathemat-
ical representation of an image into discrete pixel posi-
tions. With the currently available display devices it is
simply not feasible to sample a non aliased signal, the
resolution of the screen (the number of samples) is sim-
ply not high enough.

The results of aliasing are called artifacts. The most
common artifacts in computer graphics include jagged
profiles, disappearing or improperly rendered fine detail
and disintegrating textures. The most obvious one, and
the one that most applies to 2D graphics, is the jagged
profile artifact. Figure 4 illustrates an aliased graphical
image suffering from a jagged edge.

Figure 4: (1) The mathematical representation of an edge (2)
The edge, point sampled to screen pixels (3) The anti-aliased
edge

Anti-aliasing, naturally enough, is the name for tech-
niques designed to reduce or eliminate this effect, usu-



ally by shading the pixels along the borders of graphi-
cal elements. There are several techniques that can be
used to achieve anti-aliased graphics rendering with the
OpenGL API. The most common techniques include:

• OpenGL’s built in polygon smooth hint
• Multi-pass using accumulation buffering
• Multi-pass using blending
• Full-scene anti-aliasing using software super-

sampling
• Full-scene anti-aliasing using hardware assist

All these anti-aliased drawing techniques are approx-
imations. Each has its advantages and disadvantages.
Different methods are suitable in different application
contexts and have various support in graphics hardware
and drivers. These methods have been investigated and
evaluated with regards to performance and the result of
the actual visual output. The challenge is to find a tech-
nique, or a combination of techniques, that will be able
to provide nice anti-aliasing of the rendered scene in an
as wide spectra of hardware and drivers as possible. As
important as a nice on-screen result might be, perfor-
mance issues are given a high priority in the search for a
suitable anti-aliasing model. Another important criteria
has been that they do not all fit well into the immediate
rendering model used in Glitz.

The anti-aliasing model chosen for Glitz is flexible
and other techniques can easily be added for special
cases later on. The current implementation uses hard-
ware assisted full-scene anti-aliasing.

This technique has been found suitable because it has
a functional easy to use interface in OpenGL (through
the multi-sample extension) and it fits well into Glitz
without complicating the structure of the rendering
model. It is relatively fast on current hardware and it
produces adequate results in real-time rendering. The
trend among graphics hardware manufacturers seems to
be to favor multi-sampling over other anti-aliasing tech-
niques in new products.

Full-scene anti-aliasing using hardware assist is typi-
cally implemented as multi-sampling, sometimes super-
sampling. This is a very fast model that works for all
primitives, interrelationships, and rendering models. It
is also well supported in current hardware, since a couple
of graphics card generations back. Some extra memory
is required, but typically less than for software super-
sampling or accumulation buffering. It yields decent-
quality results but some people may not find them ac-
ceptable for small text. This does not affect the choice
in this case however, as anti-aliasing of text will prefer-
ably be handled by an external font rendering library. On
high end systems this technique has potential for gener-
ating extremely high quality results with a relatively low
cost. Unfortunately, it is not always available for off-

screen buffers (pbuffers).
The other techniques have been discarded mainly due

to poor hardware support, high memory consumption,
bad performance or poor results.

3.8.2 Indirect Polygons
Glitz has two different methods for rendering indirect
polygons. Using an intermediate off-screen surface or
using a stencil buffer.

The first method creates an off-screen surface con-
taining only an alpha channel. The polygons are then
rendered into this intermediate surface, which is used
as mask when compositing the supplied source surface
onto the destination surface. This method requires off-
screen drawing support, and anti-aliased polygon edges
can only be rendered if off-screen multi-sample support
is available.

Whenever a stencil buffer is available, it will be used
for drawing indirect polygons. The polygons are then
rendered into the stencil buffer and the stencil buffer is
used for clipping when compositing the supplied source
surface onto the destination surface. This method for
drawing indirect polygons is faster and does not re-
quire off-screen drawing support. When rendering to
on-screen surfaces only on-screen multi-sample support
is needed for anti-aliased polygons.

Indirect polygons can be used for pattern filling of
complex objects.

3.8.3 Direct Polygons
Glitz is able to render polygons directly onto a desti-
nation surface. Each polygon vertex has a specific color
associated with it and colors are linearly interpolated be-
tween the vertices. Direct polygons have the advantages
of not requiring an intermediate off-screen surface or
stencil buffer and are therefore faster, and supported on
more hardware. Direct polygons might not produce the
same results as indirect polygons when the alpha color
component is not equal to one and should as a result not
be used for complex objects with these properties. The
more general indirect polygons should instead be used
in these cases.

3.9 Text Rendering
Current version of Glitz has no built in text support.
Glyph rasterization and glyph management could how-
ever be handled by the application or a higher level li-
brary. For efficient text rendering, glyph-sets with off-
screen surfaces containing alpha masks, should be used.
With external glyph management, Glitz renders text at
approximately 50000 glyphs per second on the test setup
described in section 4.

Built in text handling is planned for future versions
of the library and tests have indicated that this should



increase glyph rendering speed to around 200000 glyphs
per second.

3.10 Clipping
Render can restrict read and writes to a drawable using
a clip-mask. Clients can create this clip-mask on their
own or implicitly generate it using a set of rectangles.
Glitz has a similar clipping interface but the clip-mask
cannot be created by the application, it must always be
implicitly generated from a set of rectangles, triangles
and trapezoids. With Glitz, clipping only restricts writ-
ing to a surface. Glitz’s clipping interface cannot restrict
reading of a surface.

3.11 Programmatic Surfaces
Glitz allows you to create programmatic surfaces. A
programmatic surface does not contain any actual image
data, only a minimal set of attributes. These attributes
describe how to calculate the color for each fragment of
the surface.

Not containing any actual image data makes initializa-
tion time for programmatic surfaces very low. Having a
low initialization time makes them ideal for representing
solid colors.

Glitz also support programmatic surfaces that repre-
sent linear or radial transition vector patterns. A linear
pattern defines two points, which form a transition vec-
tor. A radial gradient defines a center point and a radius,
which together form a dynamic transition vector around
the center point. The color of each fragment in these pro-
grammatic surfaces is fetched from a color range, using
the fragments offset along the transition vector.

A color range is a one dimensional surface. The color
range data is generated by the application and then trans-
fered to graphics hardware where it can be used with lin-
ear and radial patterns. This allows applications to use
linear and radial patterns for a wide range of shading ef-
fects. For example, linear color gradients and Gaussian
shading. By setting the extend attribute of a color range
to pad, repeat or reflect, the application can also con-
trol what should happen when patterns try to fetch color
values outside of the color range.

Most programmatic surfaces are implemented using
fragment programs and they will only be available on
hardware supporting the fragment program extension.

Figure 5 shows the results from using programmatic
surfaces for linear color gradients.

3.12 Convolution Filters
Convolutions can be used to perform many common im-
age processing operations including sharpening, blur-
ring, noise reduction, embossing and edge enhancement.

A convolution is a mathematical function that replaces
each pixel by a weighted sum of its neighbors. The ma-

Figure 5: Programmatic surfaces used for linear color gradi-
ents

trix defining the neighborhood of the pixel also speci-
fies the weight assigned to each neighbor. This matrix is
called the convolution kernel.

Glitz supports user defined convolution kernels. If a
convolution kernel has been set for a surface, the convo-
lution filter will be applied when the surface is used as a
source in a compositing operation. The original source
surface remains unmodified.

In Glitz, convolution filtering is implemented using
fragment programs and is only available on hardware
with fragment program support. The alternative would
be to use OpenGL’s imaging extension, which would
require a transfer of all pixels through OpenGL’s pixel
pipeline to an intermediate texture. Even though the al-
ternative method would be supported by older hardware,
Glitz uses fragment programs in favor of performance.

This is an example of a convolution kernel represent-
ing a gaussian blur filter.





0 1 0

1 4 1

0 1 0





Figure 6 shows an image before and after applying a
gaussian filter using the convolution kernel above.

3.13 A Cross-platform OpenGL Layer
Glitz’s backend system works as an abstraction layer
over the supported OpenGL layers and has genuine sup-
port for off-screen drawing.

In addition to the 2D drawing functions, Glitz also
provides a set of functions that make it possible to use
Glitz as a cross-platform OpenGL layer.



Figure 6: An image before and after applying a Gaussian
convolution filter

The following three functions allow the application to
use ordinary OpenGL calls to draw on any Glitz surface.

• glitz gl begin (surface)
• glitz gl end (surface)
• glitz get gl texture (surface)

An application can initiate ordinary OpenGL render-
ing to a Glitz surface by calling the glitz gl begin func-
tion with the surface as parameter. The surface can
be either an on- or off-screen surface. After a call to
glitz gl begin, all OpenGL drawing will be routed to the
Glitz surface. The glitz gl end function must be called
before any other Glitz function can be used again.

An application can use both Glitz’s 2D drawing func-
tions and ordinary OpenGL calls on all surfaces as
long as all OpenGL calls are made within the scope of
glitz gl begin and glitz gl end.

glitz get gl texture allows the application to retrieve a
texture name for a Glitz surface. The application can use
this texture name with ordinary OpenGL calls.

Figure 7 shows an example that render 2D graphics to
an off-screen surface and then use it as a texture when
drawing in 3D.

Applications, libraries and toolkits that use Glitz as
rendering backend will get both 2D and 3D support with
the ability two use all 2D surfaces as textures for 3D
rendering.

offscreen_surface =
glitz_glx_surface_create (display, screen,

GLITZ_STANDARD_ARGB32,
width, height);

glitz_fill_rectangle (GLITZ_OPERATOR_SRC,
offscreen_surface,
clear_color,
0, 0, width, height);

/* draw things to offscreen surface using
glitz’s 2D functions ... */

texture =
glitz_get_gl_texture (offscreen_surface,

&name, &target,
&tex_width,
&tex_height);

glitz_gl_begin (onscreen_surface);

/* set up projection and modelview
matrices ... */

glEnable (target);
glBindTexture (target, name);

glBegin (GL_QUADS);
glTexCoord2d (0.0, 0.0);
glVertex3d (-1.0, -1.0, 1.0);
glTexCoord2d (tex_width, 0.0);
glVertex3d (1.0, -1.0, 1.0);
glTexCoord2d (tex_width, tex_height);
glVertex3d (1.0, 1.0, 1.0);
glTexCoord2d (0.0, tex_height);
glVertex3d (-1.0, 1.0, 1.0);
glEnd ();

glitz_gl_end (onscreen_surface)

glitz_surface_destroy (offscreen_surface);

Figure 7: Rendering 3D graphics with a Glitz surface as
texture



4 Results
Right now the library has not been tested that much in
real applications since it is relatively early in the devel-
opment process. Some test and benchmark utilities have
been developed to analyze library functionality with re-
spect to accuracy and performance.

4.1 Accuracy
The quality of the visual output from Glitz compares
quite well to the corresponding output from XFree86’s
Render implementation (Xrender). Most objects tessel-
lated by the cairo library are rendered without noticeable
differences compared to Xrender using Glitz. However,
in some complex objects a slight variation can be seen
between Glitz’s output and Xrender’s output. Figure 8
and 9 illustrates the output inconsistencies for aliased
rendering. The infinite sign is tessellated into 370 trape-
zoids by the cairo library, which are then rendered using
Glitz and Xrender. Both figures are magnified to better
show the output differences.

Figure 8: Aliased OpenGL output

Figure 9: Aliased xrender output

Anti-aliased rendering may introduce some additional
inconsistencies in the output between Glitz and Xren-
der. The number of samples used for multi-sampling
has a big effect on the anti-aliasing quality. On older
hardware, anti-aliasing is not even guaranteed, as it de-
pends on relatively new OpenGL extensions. Neverthe-
less, if Glitz is run on fairly modern graphics hardware,
very similar results are achieved with anti-aliased out-
put. Figure 10 and 11 show the same infinite sign and
illustrates the output inconsistencies for anti-aliased ren-
dering.

Even though these results appear somewhat different
in these magnified figures, the performance gained by
using these OpenGL accelerated anti-aliasing techniques
by far makes up for this. In most cases the generated

Figure 10: Anti-Aliased OpenGL output (using 4 samples
multi-sampling)

Figure 11: Anti-Aliased Xrender output

results are close to indistinguishable.

4.2 Performance

A number of test and demo applications have been cre-
ated during the development of Glitz to verify perfor-
mance and functionality. This section presents results
from a benchmark utility named rendermark. Ren-
dermark compares the rendering performance of Glitz,
Xrender and Imlib2[15] by doing a set of basic opera-
tions a repeated number of times. Comparison with Im-
lib2 is interesting as it is promoted as the fastest image
compositing, rendering and manipulation library for X.
Imlib2 performs all its rendering operations on client-
side image buffers, so no on-screen rendering results are
available for Imlib2.

Table 1 lists the tested output formats and table 2
shows the test setup.

im-off Imlib2 off-screen
xr-on Xrender on-screen
xr-off Xrender off-screen
gl-on GL on-screen
gl-off GL off-screen

Table 1: Rendermark Output Formats

CPU 1GHz Pentium 3
OS Linux 2.4.22
X11 XFree86 4.3.0
GPU Nvidia GeForce FX-5600 (Nvidia’s binary driver)

Table 2: Test Setup

Each test is repeated a thousand times and the total
time is shown in the tables.



4.2.1 Image Compositing

Image compositing performance is very important. For
Xrender and Glitz this tests the composite primitive
used for basically all rendering operations. Good per-
formance here means good performance throughout the
whole system.

• over. blends one image onto another using the over
operator.

• scale. blends one image onto another using the over
operator with additional scaling factors. Bilinear
filtering is used.

• blend. blends one image onto another using the
over operator with half opacity.

• blur. blends one image onto another using the over
operator with a blur filter. For Glitz, this means ap-
plying a 3x3 mean blur convolution filter. The ver-
sion of Xrender used for this test does not support
convolution filters, and the test is therefore skipped.

Table 3 shows the image compositing results.

im-off xr-on xr-off gl-on gl-off
over 3.809 3.870 3.850 0.109 0.107
scale 16.444 85.504 86.924 0.126 0.132
blend 4.349 73.222 69.613 0.264 0.263
blur 26.499 - - 3.089 3.078

Table 3: Seconds to complete composite test (lower is better)

4.2.2 Color blend

This test evaluates color blend performance by drawing
rectangles.

Table 4 shows the color blend results.

im-off xr-on xr-off gl-on gl-off
rect 3.824 75.346 73.617 0.108 0.105

Table 4: Seconds to complete color blend test (lower is better)

4.2.3 Polygon Drawing

Polygon drawing is extensively used when rendering
vector graphics. These tests show the performance when
rendering the simplest polygon type, the triangle.

• tri1. Draws a set of triangles, each in a separate
rendering operation.

• tri2. Draws a set of triangles in one single rendering
operation. This type of operation is often used for
rendering complex objects, which have been tessel-
lated into (in this case) triangles. Imlib2 skips this
test as it lacks support for it.

Table 5 shows polygon drawing results.

im-off xr-on xr-off gl-on gl-off
tri1 2.977 66.555 63.191 0.072 0.072
tri2 - 2.078 1.950 0.030 0.030

Table 5: Seconds to complete triangle drawing test (lower is
better)

4.2.4 Gradient Drawing
Tests linear color gradient performance. Xrender skips
this test as it lacks support for it.

Table 6 shows gradient drawing results.

im-off xr-on xr-off gl-on gl-off
grad 6.281 - - 1.065 1.117

Table 6: Seconds to complete gradient drawing test (lower is
better)

4.2.5 Hardware Accelerated Xrender
Nvidias’s[10] binary XFree86 drivers contains an exper-
imental feature that allows the driver to hardware accel-
erate the Render extension on XFree86’s X server. Some
Render operations are known to perform extremely good
with this feature turned on.

xr-on xr-off gl-on gl-off
over 0.113 0.185 0.109 0.107
scale 84.659 86.217 0.126 0.132
blend 0.116 0.181 0.264 0.263
blur - - 3.089 3.078
rect1 0.066 0.159 0.111 0.108
rect2 0.070 0.228 0.113 0.118
tri1 3.300 3.085 0.072 0.072
tri2 1.597 1.688 0.030 0.030
grad - - 1.065 1.117

Table 7: Seconds to complete test (lower is better)

Table 7 shows that nvidia’s driver performs well com-
pared to Glitz in the cases where no transformations are
used. In cases where transformations are used, Glitz is
much faster than nvidia’s driver, which most likely falls
back on software rendering.

5 Conclusion
During the development of Glitz we have found that
with the OpenGL API and the extensions available to-
day, along with the wide range of hardware supporting
them, a Render-like interface on top of OpenGL is vi-
able and very efficient. This is an important conclusion
as the desire for having an X server running on top of
OpenGL grows rapidly.

The benchmark results points out Glitz’s remarkable
rendering performance. Even Imlib2’s highly optimized
rendering engine is no where near Glitz’s performance.

Although performance is of high importance, the



greatest advantage with Glitz is that it provides a gen-
eral way for accelerating the Render imaging model.

6 Future Work
Today, the existing implementation of the library sup-
ports all the basic functionality, which where initially
set up for the project. However, there are still some
important features missing, and the software is in an
early stage of development with a lot of work remaining
to make it stable and optimized with regards to perfor-
mance and accuracy.

The following list contains those features that most
importantly need to be addressed in future versions of
the library.

• Text rendering. Built in text rendering will allow
much higher glyph rendering speeds and remove
complex glyph management from the application.

• Sub-pixel rendering. Sub-pixel rendering can be
used to effectively increase the horizontal resolu-
tion of LCD displays. This will require support for
compositing each color component with different
masks.

The future will most certainly demand new features
from the library, since it is an area of continuous devel-
opment.

7 Visions
The X desktop seems to be going into a new era and
cairo is definitely the 2D graphics API that will be used
in tomorrow’s X applications. The support for hardware
accelerated surfaces in cairo might then be of great im-
portance. Plans for the creation of an X server that will
use OpenGL for all rendering are currently being made
and this library, or the work behind the library, can hope-
fully be usable for this purpose.

8 Acknowledgments
We would like to thank Keith Packard, Carl Worth, and
all of the people involved in the development of cairo
for being helpful and encouraging. We would also like
to thank our internal supervisor Berit Kvernes, along
with the staff at the department of Computing Science
at Umeå University, for supporting us in this project by
approving it for financial funding in terms of study al-
lowances.

9 Availability
All source code related to this project is free software
currently distributed under the MIT license. The license
of Glitz will follow that of cairo in case of changes.

The source can be retrieved via anony-
mous pserver access from the cairo CVS
(anoncvs@cvs.cairographics.org:

/cvs/cairo). The current status of Glitz and
some additional information is available at http:
//www.freedesktop.org/software/glitz.

References
[1] Microsoft Corporation. Online Resources: Win-

dows Longhorn, December 2003. http://
msdn.microsoft.com/longhorn.

[2] Microsoft Corporation. Online Resources: Avalon,
April 2004. http://msdn.microsoft.
com/Longhorn/understanding/
pillars/avalon/default%.aspx.

[3] Adobe Systems Inc., editor. PDF Reference: Ver-
sion 1.4. Addison-Wesley, 3rd edition, 2001.

[4] Apple Computer Inc. Online Resources: AGL,
April 2004. http://developer.apple.
com/opengl/.

[5] Apple Computers Inc. Online Resources:
Quartz Extreme, Faster Graphics, December
2003. http://www.apple.com/macosx/
features/quartzextreme.

[6] Apple Computers Inc. Online Resources: Mac
OS X, April 2004. http://www.apple.com/
macosx.

[7] Silicon Graphics Inc. Online Resources:
GLX, April 2004. http://www.sgi.com/
software/opensource/glx/.

[8] Silicon Graphics Inc. Online Resources:
IRIX, April 2004. http://www.sgi.com/
software/irix/.

[9] XFree86 Project Inc. XFree86: an open source
X11-based desktop infrastructure, April 2004.
http://www.xfree86.org.

[10] Online Resources: NVIDIA. Nvidia, April 2004.
http://www.nvidia.com.

[11] Keith Packard. A New Rendering Model for X.
In FREENIX Track, 2000 Usenix Annual Technical
Conference, pages 279–284, San Diego, CA, June
2000. USENIX.

[12] Rob Pike. draw - screen graphics. Bell Laborato-
ries, 2000. Plan 9 Manual Page Entry.

[13] Thomas Porter and Tom Duff. Compositing Digital
Images. Computer Graphics, 18(3):253–259, July
1984.

[14] Rasterman. Online Resources: EVAS, April 2004.
http://enlightenment.org/pages/
evas.html.

[15] Rasterman and the imlib2 development team. Im-
lib2: An image processing library, December



2003. http://www.enlightenment.org/
pages/imlib2.html.

[16] Robert W. Scheifler and James Gettys. X Window
System. Digital Press, third edition, 1992.

[17] Mark Segal, Kurt Akeley, and Jon Leach (ed). The
OpenGL Graphics System: A Specification. SGI,
1999.

[18] K. Thompson. Unix implementation. The Bell
System Technical Journal, 57(6):1931–1946, July-
August 1978.

[19] Mark Vojkovich and Marc Aurele La France.
XAA.HOWTO. Technical report, The XFree86
Project Inc., 2000.

[20] Carl D. Worth and Keith Packard. Xr: Cross-
device Rendering for Vector Graphics. 2003 ottawa
linux symposium, July 2003.


