
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Managing Volunteer Activity in Free Software Projects

Martin Michlmayr
Department of Computer Science and Software Engineering

University of Melbourne
Victoria, 3010, Australia

Centre for Technology Management
University of Cambridge

Mill Lane
Cambridge, CB2 1RX, UK

martin@michlmayr.org

Abstract

During the last few years, thousands of volunteers
have created a large body of free software. Even though
this accomplishment shows that the free software devel-
opment model works, there are some drawbacks asso-
ciated with this model. Due to the volunteer nature of
most free software projects, it is impossible to fully rely
on participants. Volunteers may become busy and ne-
glect their duties. This may lead to a steady decrease
of quality as work is not being carried out. The prob-
lem of inactive volunteers is intensified by the fact that
most free software projects are distributed, which makes
it hard to quickly identify volunteers who neglect their
duties. This paper shows Debian’s approach to inac-
tive volunteers. Insights presented here can be applied
to other free software projects in order to implement ef-
fective quality assurance strategies.

1 Introduction
The success of free software in the last few years, in-
cluding projects such as Linux and Apache, has clearly
demonstrated that the free software development model
is a viable alternative to proprietary software develop-
ment. Free software is a matter of liberty, rather than
price, since it offers the user more freedom than propri-
etary software, such as the freedom to run, copy, dis-
tribute, study, change and improve the software. One
reason for the success of the free software development
model, which is tightly connected to the Unix philos-
ophy [19], is related to the open nature of free soft-
ware: a large number of developers inspect the code
and get involved in a project. Eric S. Raymond studied
the free software development model in detail and pub-
lished his observations in a widely acclaimed paper [18].
During his case study, Raymond found that there is a

high amount of parallelization in the debugging process.
Due to the open nature of the source code in free soft-
ware projects, anyone can review the code, find defects
and contribute bug fixes. Raymond suggested that this
‘bazaar’ model, in which a large number of volunteers
review the code and contribute feedback and patches,
is the reason for the success and high quality of many
free software projects. This suggestion meshes well with
findings in software engineering which show that peer
review significantly contributes to quality [9].

Free software development is typically characterized
by two factors. First, free software projects are carried
out by volunteers. Second, the volunteers of a project
are distributed. However, not all projects exhibit these
two characteristics. Due to the success of free soft-
ware, an increasing number of companies get involved
in free software projects. Some companies allow their
paid developers to get involved in distributed free soft-
ware projects. Also, some software is being developed
in a traditional fashion by paid programmers working in
the same building and is then released as free software.
This example shows that it is important to make a clear
distinction between the way software is developed and
the license under which it is distributed. A piece of soft-
ware can be developed in a traditional way and then be
licensed as free software. However, this paper covers
a certain aspect of software developed according to the
free software development model, that is, projects which
are distributed and largely carried out by volunteers.

This free software development model has generated
a large amount of very popular and successful software
in the last few years. Due to the recent popularity of
free software, there is an increasing number of aca-
demic studies and papers which concentrate on success-
ful projects, such as Apache [16], GNOME [14] and
Linux [20]. However, there are also a large number



of unsuccessful free software projects which have not
yet attracted the attention of researchers. SourceForge
hosts over 70,000 projects, but a large number of them
are not actively developed. Since free software projects
do not have budgets, there is usually not a specific point
when unsuccessful projects get wrapped up. It is there-
fore hard to identify projects which have been failures.
Nevertheless, it is clear that some free software projects
fail or have severe quality problems.

The distributed and volunteer nature of free software
projects make them unique in software development,
and is related to certain advantages, such as the high
amount of peer review mentioned previously. However,
there are several drawbacks and challenges associated
with the free software development model as well. Due
to the volunteer nature of free software projects it is im-
possible to fully rely on participants [15]. Also, coor-
dination and management can be very complex in dis-
tributed projects with volunteer participants. For exam-
ple, it is impossible to put all participants of a distributed
free software project in a room, give out tasks, and only
leave the room when everyone agrees to perform the
tasks they have been given.

Free software projects have to deal with these chal-
lenges and find solid solutions. The success of free soft-
ware shows that many challenges have been overcome,
and the development model is continuously refined as
more experience is gained. One major challenge, which
is becoming an increasing problem, is volunteers who
suddenly stop carrying out their duties without inform-
ing others. In many free software projects, volunteers
have specific responsibilities. While a large number
of participants make infrequent contributions, there are
some volunteers who play crucial roles in a project, and
who therefore have to be constantly involved. For exam-
ple, the Linux kernel has a number of trusted lieutenants
through whom code submissions of specific parts of the
kernel are carried out [17]. They are central to the devel-
opment, since other volunteers cannot contribute if the
trusted lieutenants do not carry out their work. Simi-
larly, if the main developer of a very small project be-
comes inactive, the whole project may come to a halt.
If such volunteers become inactive, especially without
informing others so a backup can be arranged, projects
face important problems. There are therefore two prob-
lems: a project can stop completely if a core developer
becomes inactive, or the quality of a project may suffer.

It is therefore very important to observe and investi-
gate the problem of inactive volunteers from a quality
assurance perspective and to discuss possible solutions.
In the following, I will approach this problem from the
perspective of the Debian Project, and discuss mecha-
nisms Debian has implemented to deal with this prob-
lem. While some solutions described in this paper are

specific to Debian, many lessons can be learned from
Debian’s experience of dealing with inactive volunteers.
It is my hope that members of other projects will gain a
better understanding of the problem through this paper
and map Debian’s strategies to their respective projects.

2 Background
As discussed in the previous section, volunteers who are
not performing their duties can have a significant impact
on the quality of a project. Therefore, it is important to
take this problem into consideration in a project’s qual-
ity assurance effort. In this section, I will discuss and
summarize the problem, and describe why it is such a
big problem especially for Debian.

2.1 Inactive Volunteers
The motivation of volunteers in a free software project is
different than that of paid developers involved in the de-
velopment of a commercial application. Raymond has
observed that developers get involved in free software
projects to “scratch an itch” [18]. This explains why cer-
tain tasks are not carried out in free software projects.
For example, most free software projects do not have
a written specification, simply because writing one is a
tedious job most volunteers are not interested in. Simi-
larly, users of free software are not in a position to de-
mand new features from the developers of a project. If
they require functionality nobody else is interested in
developing, they can get involved themselves and con-
tribute to the project, or pay someone to implement the
missing features.

There are two schools of thought about the responsi-
bilities of a volunteer. One school maintains that a vol-
unteer is free to do whatever they wish at any time and
does not have any obligation at all. The other school
of thought claims that once a volunteer has agreed to
perform a specific function they have a responsibility
to fulfill it and to tell others when they cannot perform
their duties anymore. From a quality assurance perspec-
tive, it does not really matter what a particular volunteer
thinks – certain measures have to be taken in any case.
However, it is clear that it is easier to work with volun-
teers who have a certain diligence in their responsibili-
ties. Ideally, a volunteer will realize when they can no
longer perform their function, for example because they
are too busy or have lost interest, and will arrange for a
replacement or backup. Unfortunately, experience from
Debian and other projects shows that this is often not the
case.

The problem of inactive volunteers is tightly con-
nected to the nature of the free software development
model. The fact that most free software projects are per-
formed by volunteers makes solutions fairly complex.
Due to the volunteer nature of free software projects, it



is inevitable that participants become busy from time to
time. Student volunteers have exams and participants
who earn their living in companies might have less time
sporadically when a project is due. For all participants
it is true that personal circumstances may change and
leave less time to contribute to free software projects.
Furthermore, participants in free software projects can
sometimes experience ‘burnout’ [12]. There are many
variables that may change and affect the participation in
a free software project. However, it is clear that earn-
ing a living and ‘real life’ take precedence when time is
short. Hence, it is important that a free software project
does not rely on a specific volunteer for a crucial task
but instead implements redundant structures [15].

The problem is aggravated by the second character-
istic of free software projects: its participants are dis-
tributed. This fact makes it very hard to identify the
personal circumstances of a developer. In a traditional,
commercial software project, people would notice very
quickly if something happened to one of their develop-
ers. Their colleagues would wonder why a developer
is not coming in to work. They would easily see that
something is wrong because the developer is not present.
Unfortunately, it is not as easy in free software projects
where coordination and communication mainly relies on
e-mail – there is not much one can do when a volunteer
does not respond to inquiries by e-mail.

The combination of these two factors makes it very
hard to identify inactive volunteers in free software
projects. Moreover, the question whether a participant
is active is of a gradual rather than a binary nature. If
a volunteer has not performed their duties for a month,
it is possible that they are just temporarily busy and will
come back later. This makes it very hard to draw the line
and make a decision when to take action. A volunteer
might just be on holidays for three weeks, but one does
not know that because it was not explicitly announced.

Raymond covered the problem of free software main-
tainers who do not perform their duties anymore briefly
in his paper “Homesteading the Noosphere” [18]. It is a
well-known problem and some guidelines have been dis-
cussed, such as when to fork or take over an abandoned
project. There are also two terms which have been as-
sociated with inactive volunteers. AWOL, which stands
for “Absent Without Leave”, and MIA, short for “Miss-
ing In Action”, are both used to refer to volunteers who
become inactive without informing others.

While the problem is known, no solutions have been
developed which are generally applicable. It is also a
very delicate problem because one has to maintain the
balance between respecting a volunteer for what they
have done while at the same time pointing out that they
are not performing their duties anymore and suggesting
that it is time to move on. Before describing Debian’s

approach to the problem, an explanation of why inactive
volunteers are a severe problem specifically for Debian
is in order.

2.2 Debian
Debian is one of the most popular and certainly the
largest Linux distribution available to date [11]. The
mission of Debian is to provide a complete operating
system comprising free software. While Debian devel-
ops some software itself, such as Debian’s package man-
ager dpkg, the main task of Debian is not to develop
software. Instead, Debian obtains software from other
sources (the so-called “upstream” developers) and inte-
grates the different pieces of software into one system.
The integration is done through the creation of a Debian
package which complies to certain guidelines which are
outlined in a document known as the Debian Policy man-
ual [5]. Every package is under the control of one or
more maintainers, and most volunteers in Debian main-
tain one or more packages. While there are some volun-
teers who help out with other tasks, such as maintaining
the web site or the software archive, publishing security
updates, or performing quality assurance functions, the
majority of volunteers in Debian are package maintain-
ers.

Although there are some packages which are being
maintained as a team, the majority of packages are cur-
rently maintained by one person. As the sole responsi-
bility for keeping a package up-to-date and free of de-
fects rests on that package’s maintainer, there exists a
heavy reliance on those volunteers. Achieving more re-
dundancy by having backup maintainers and maintainer
teams has been suggested [15]. While there is a slow
trend away from having a single maintainer for a pack-
age, the majority of packages are still maintained by one
person. Therefore, there is a high liability to packages
becoming unmaintained as volunteers become busy or
entirely inactive. This mapping of one package to one
single maintainer is the reason why inactive maintainers
are such a huge problem for Debian. In some respects,
Debian is like a bazaar of cathedrals: a project compris-
ing a large number of individual projects of varying size,
each with its own owner.

There is one additional factor which makes the situa-
tion very complex: Debian’s growth. Debian has grown
in size over the years, and especially in recent years,
quite drastically (see figure 1). The enormous size of De-
bian makes it very hard to keep track of every maintainer.
With over 800 maintainers, it is impossible to know each
volunteer in Debian, and it is very hard to spot if one out
of over 8,000 packages in the archive is not maintained
properly. Also, while Debian as a whole has grown in
size, the quality assurance team has remained about the
same size.



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

01/96 01/97 01/98 01/99 01/00 01/01 01/02 01/03 01/04 01/05

The number of packages in Debian

Figure 1: The size of Debian has steadily increased over the years. At the beginning of 2004, the project featured
over 8,000 packages.

Taken together, these factors constitute a large quality
assurance problem which has to be solved. In the fol-
lowing sections, I will describe ways to locate and track
inactive maintainers, and show tools which have been
developed to assist in these tasks. Before covering inac-
tive maintainers, it is important to give some attention to
the full life cycle of a maintainer and to discuss how one
actually becomes a package maintainer in Debian.

3 Debian’s New Maintainer Process
Over the ten years of Debian’s existence, many pro-
cesses have been adapted and refined in adherence to the
ways in which Debian has changed. Debian’s admis-
sion process was very informal in the early days. Ev-
eryone knew each other at that time. Prospective mem-
bers could simply send an e-mail stating their interest
and they would be added to the project. It was also very
common to help out with the packages of another main-
tainer when they were busy. As Debian mushroomed,
the processes slowly became more formal in order to
deal with the large number of developers and the size
of the Debian system.

As Debian reached a size where it was impossible to
know every other volunteer, a new admission process
was needed. The New Maintainer process [4] was intro-
duced to handle new volunteers. Debian’s New Main-
tainer process is much more elaborate than the admis-
sion processes of most free software projects. One rea-
son for this is that every Debian developer has to be fully
trusted. Since Debian packages are installed as root on a
user’s machine (that is, with full permissions), it is nec-
essary to strictly control who can upload packages to the

Debian archive. Each software package uploaded to the
archive must be digitally signed with the GPG (GNU
Privacy Guard) or PGP (Pretty Good Privacy) key of a
Debian developer. When a volunteer fulfils all steps in
the New Maintainer process and gets accepted as a De-
bian developer, their GPG key is added to the Debian
keyring against which signatures of every package up-
load to the archive is verified.

The New Maintainer process is composed of three
steps. First, every volunteer needs a GPG key which
is digitally signed by an existing Debian developer. This
involves a face-to-face meeting which allows performs
a social function and intends to get new members bet-
ter integrated. Second, the volunteer’s philosophy with
regards to free software and understanding of Debian’s
Social Contract [7] is checked. Third, the volunteer’s
technical skills are tested in various ways. Once an ap-
plicant has passed all three steps, a thorough report is
sent to the Debian Account Manager (DAM) who de-
cides whether an account is created. Debian’s constitu-
tion grants the Debian Account Manager the authority
to admit new people to the project or to remove existing
developers [2]. Traditionally, the DAM has exercised the
former right, but as inactive maintainers get identified it
also becomes important to remove volunteers from the
project.

The New Maintainer process plays an important role
in the problem of inactive maintainers because it se-
lects which volunteers are admitted to the project. In
many large free software projects, it seems fairly typ-
ical to make a one-time contribution of source code.
The project benefits from this contribution as the code



gets integrated in the project and is then maintained by
others. The original contributor does not have to show
a high level of commitment, as the code has been in-
tegrated and the contribution is therefor useful. How-
ever, in Debian few people are interested in contribut-
ing patches for old bugs or assisting other maintainers.
Most volunteers are interested in maintaining packages
on their own. For that, however, you need a constant
level of contribution. Otherwise, the package is not
maintained well.

The New Maintainer process is vital in ensuring that
only volunteers who show a high level of commitment
get admitted to the project. If large numbers of new vol-
unteers who do not understand the problem they cause
by neglecting their commitments are admitted, the prob-
lem is intensified. It is therefore important to tackle the
problem at its root and educate new maintainers. It is im-
portant to take into account that the problem is largely a
social one. In many cases, volunteers realize that they
are busy, but they do not admit to themselves that they
are actually too busy, and are harming the project. They
often think they will find the time “tomorrow”, but in re-
ality it never happens. Hence, it is important to discuss
this problem from the beginning, and the New Main-
tainer process is a good venue for this.

Over the last years, the New Maintainer process has
become more elaborate and longer than in the past.
While this change was not a conscious decision, I think
this is partly because of inactive maintainers. If the ad-
mission process takes a long time and is quite complex,
only those volunteers who are really interested will go
through the process. Once they have cleared this hurdle,
it is likely that they will stick around for a long time.
The New Maintainer process therefore acts as a screen-
ing process not only to select volunteers with good tech-
nical skills, but also those who are likely to show a high
level of commitment to the project in the future. How-
ever, this is only speculation on my part, and it is too
early to tell whether this strategy really works out. It will
be interesting to conduct a study in a few years to see
whether the duration of the admission process is linked
to the likelihood of a volunteer neglecting their duties.
For this study, you would first investigate how long or
complex the joining process was for someone, and then
check whether they are still active a certain number of
years after joining. Even without an elaborate study, it is
clear, though, that the admission process has to take the
problem of inactive maintainers into account.

4 Locating Inactive Maintainers
As mentioned before, finding volunteers who are ne-
glecting their duties is much harder in a distributed vol-
unteer project than in a company where everyone comes
to work every day. In this section, I will describe the

sources of information Debian takes into account when
searching for inactive maintainers.

Due to the volunteer nature of free software projects,
it is quite likely that some volunteers will neglect their
commitments, especially in large projects. It is there-
fore important to take this possibility into account and
to mention it in the developer’s documentation. For ex-
ample, the Debian Developer’s Reference explicitly asks
volunteers to inform other members of the project when
they go on holiday and provides a section describing
how to retire from the project properly [3]. This way,
arrangements can be made so other volunteers take over
their tasks, either temporarily while they are on holiday
or permanently when a volunteer retires. Most commu-
nication in free software projects is based on e-mail or
IRC (Internet Relay Chat, a form of real-time communi-
cation) and many participants have never met in person.
While e-mail is usually a very effective means of com-
munication, it completely fails if someone does not an-
swer their e-mail – unfortunately, this is likely the case
if someone is busy or something serious has happened.
Contacting the person by phone is often a more effective
alternative in this case. Hence, having the phone num-
ber of each volunteer and additionally also an emergency
contact, either a relative or a friend, are very helpful in
finding out what happened to a volunteer if they do not
respond to e-mail. While Debian currently does not re-
quire either a phone number or an emergency contact in
its developer database due to privacy concerns, partici-
pants will be able to enter this information on a voluntary
basis in the future.

4.1 Sources of Information
In most free software projects, many sources of infor-
mation are available which can be used in order to form
a judgement whether a volunteer is inactive. In the fol-
lowing, I will describe sources typically used to locate
inactive maintainers in Debian.

4.1.1 Echelon
Like most free software projects, Debian relies on elec-
tric means of communication. While IRC is used by a
large number of volunteers in Debian, the primary in-
frastructure is based on e-mail. Debian has an automatic
system which monitors every mailing list and looks for
postings sent by a Debian developer. The system, known
as Echelon, uses various means to determine whether a
mail is sent by a Debian developer, such as recognition
of the e-mail address or verification of the signature of
a GPG or PGP signed message. When a message has
been recognized as one posted by a Debian developer,
an activity value is updated in Debian’s internal LDAP
database. This database is used to store various bits of
information about every official Debian developer.



In addition to fields for name, login and other personal
information, there is a field which indicates the time a
message has been last posted on the Debian lists by a
developer. This field also lists the Message-ID of the e-
mail so it can be found easily. In addition to the activity
value, there is a field which indicates when the last dig-
itally signed message has been posted. Since all Debian
uploads have to be signed, this activity field gives an in-
dication when the maintainer has last uploaded one of
their packages.

Debian’s Echelon system is a tremendous resource
during the search for inactive maintainers. While it is
not 100% reliable, since it sometimes does not recog-
nize a message to be from a Debian developer, it gives
a very good first indication of whether a participant has
been around recently or not. This system is very use-
ful to see whether it is worth looking at other sources of
information.

4.1.2 Package Information
Many sources of information are directly related to the
job of a Debian maintainer – maintaining packages. If
the packages of a specific maintainer appear unmain-
tained, this is a clear indication from a quality assurance
point of view that certain measures have to be taken.
While unmaintained packages do not necessarily imply
that a maintainer is inactive, the situation has to be dealt
with. It is sometimes the case that some packages are not
maintained well because a maintainer is overwhelmed
by the amount of work they have. In that case, it may be
that they maintain their important packages well but ne-
glect others which they deem to be less important. How-
ever, in some cases, unmaintained package are due to a
maintainer simply neglecting all their duties.

There is a wide range of information which can be
used to judge how well a package in the Debian archive
is being maintained.

Release Critical Bugs: Debian has a Bug Tracking
System through which bugs can be reported [1]. Each
bug has a severity, ranging from minor to critical. De-
bian defines bugs of the severities serious, grave and
critical to be “release critical”, meaning that a package
with bugs of that class is not considered to be ready
for release. The Bug Tracking System provides an easy
overview of all bug reports of a specific maintainer. This
information can be used to see how well their packages
are being maintained. If a maintainer has release criti-
cal bugs which have been outstanding for a while, this
is a good indication that they are not performing their
duties. This is especially the case if no activity can be
found in the bug history, which is the case, for example,
if the maintainer has never responded to the bug submit-
ter asking for more information or clarifying the bug.

FTBFS Bugs: Debian supports a large number of

architectures, and each package which is uploaded to
the Debian archive is built automatically on all architec-
tures. If a package has previously built on an architecture
but no longer builds, a release critical bug is filed saying
that the package “fails to build from source” (FTBFS).
As with other release critical bugs, these give a good in-
dication of the activity of a Debian maintainer.

In Debian’s Bug Tracking system, bugs can be marked
as closed in two ways. If the maintainer of a Debian
package closes the bug, it is marked as done and the
bug submitter is informed. On the other hand, if some-
one else closes a bug, it is merely marked as fixed and
the bug submitter is not notified. It is the responsibil-
ity of the maintainer to confirm that the bug has been
dealt with and to close the bug for good. This distinc-
tion is very helpful in the search for inactive maintainers:
a large number of bugs marked as fixed might indicate
that someone else is performing the maintainer’s duties,
maybe because they are not doing it themselves. Fixed
bugs are especially interesting in the case of release crit-
ical and FTBFS bugs.

Old Standards-Version: The Debian Policy manual
describes what Debian compliant packages have to look
like, and this document is continuously updated to reflect
new procedures. Each Debian package has a field which
indicates which version of the Policy it complies with.
This field, known as the Standards-Version, is very help-
ful to find packages which are out of date with regards to
current Debian procedures. Similarly, if a package has
not been updated a year after a stable release of Debian
has been made, this is a good sign that a package is not
maintained well. Even if a piece of software is not de-
veloped anymore, the Debian package has to be updated
regularly as Debian procedures change. Hence, pack-
ages have to be updated regularly regardless of how fast
the upstream software is developed (or whether it is still
in development at all).

New upstream version: It is a good sign of an in-
active maintainer if a new upstream version of the soft-
ware has been available for a while which has not yet
been packaged for Debian. While there are sometimes
good reasons not to package the new version immedi-
ately (such as when a release is not deemed to be stable
or of release quality yet), in most cases it hints at an in-
active or busy maintainer.

4.1.3 Hints From Developers
With the current size of Debian, it is impossible for
the fairly small quality assurance team to monitor each
package to find inactive maintainers. It is therefore very
beneficial to have a well-documented contact address
where other developers and users can report maintain-
ers who they think are not active anymore. The quality
assurance team which has experience in tracking down



inactive maintainers can then use this pointer to inves-
tigate further whether a maintainer is really neglecting
their duties.

5 Contacting Maintainers
Once a maintainer has been identified who is believed to
be neglecting their duties, they have to be contacted be-
fore any measure is taken. There might be a good reason
why they are momentarily not active and it is recom-
mended to discuss the situation with them before any-
thing else is done.

When contacting a maintainer who is believed to be
inactive, it is important to be polite. After all, due to
the distributed nature of free software projects, one may
not be aware what happened to a volunteer. One always
has to keep in mind that there might be a good reason
why they are not performing their duties. For example,
something might have happened to a relative or close
friend. What they need the least at this point is a hostile
e-mail asking why they are not spending time on their
volunteer activities. It is even possible that something
has happened to the volunteer and that a relative will
read their e-mail.

Additionally, when contacting a maintainer, it is im-
portant to keep in mind that we are all volunteers. While
I firmly believe that a participant in a free software
project has certain responsibilities once they have vol-
unteered, it is not consistent with voluntary work to ex-
pect someone to respond to your inquiry within a day.
Similarly, one cannot demand from volunteers that they
perform their duties. All you can do is politely ask that
they do so, or ask them to officially let go so other vol-
unteers can take over their tasks.

With this in mind, it is time to contact the maintainer.
A short message summarizing one’s findings, for exam-
ple stating which packages are unmaintained, is in or-
der. In the e-mail, one can politely ask what their sit-
uation is, and whether they still have the time and in-
terest to carry out their duties. If the maintainer does
not respond within two or three weeks, another mes-
sage can be sent. This should refer to the first message,
note that nothing has since been done and suggest that
the packages should be given away so other maintainers
can take over. In this mail, it should also be mentioned
that action will be taken if the maintainer does not re-
spond or does something soon. Again, if the maintainer
does not react after two or three weeks, it can be as-
sumed that the maintainer is really not active anymore.
In this case, their packages should be given away so
other maintainers can take over. In Debian, there is a
listing for this known as “Work-Needing and Prospec-
tive Packages” [8]. Through this system, Debian devel-
opers can indicate to other maintainers that they are no
longer interested in a particular package and that they

are looking for a new maintainer.
At this point, it is also important to think about au-

thority in the project. In Debian, there is not a written
document which explicitly describes the authority of the
quality assurance team. From this point of view, it is not
clear whether they possess the authority to take packages
away from a maintainer and make them available to oth-
ers. However, this is a very important task which has
to be done in order to maintain the quality of the whole
system.

Hence, the quality assurance team started looking for
inactive maintainers and took their packages away. The
task was performed very carefully so no active main-
tainer was mistaken as inactive. Over time, other mem-
bers of the project acknowledge that the quality assur-
ance team had the authority to perform this function.
While the authority was firmly established over time in
the case of Debian, it is important to discuss this matter
before taking action.

6 Tracking Inactive Maintainers
In large projects, such as Debian, there are many volun-
teers and it is possible that a large number are inactive.
All of them have to be contacted and records have to be
kept of who was contacted at what time and what the
current status is. At some point, the number of people
who have been contacted reaches a number where it is
no longer feasible to keep the information in one’s head.
Therefore, a system is needed which allows one to easily
keep track of what has happened so far. Such a system
additionally allows multiple people to work on this task
and to coordinate their efforts.

To make this possible for Debian, I have implemented
a simple system which aims to be an effective means
of keeping track of developer activity. New information
can be added by e-mail, and the status of a maintainer or
package can be queried on the command line. This col-
lection of utilities, collectively known as mia, consists
of three core tools:

mia-record: This tool processes e-mail and stores
the information. When an inactive maintainer is con-
tacted, a blind copy of the message can be sent to a
mail alias which pipes the message into mia-record.
The tool will store the e-mail and ask for a summary of
this message by e-mail. Once the e-mail is answered,
a summary of the message is stored. Alternatively, an
X-MIA-Summary header can be added to the original
message and that summary is stored automatically.

mia-history: This tool shows the previously added
summaries of a specific volunteer or of all volunteers
who have been recorded so far. This tool is hence very
useful to easily see what has happened already. For this
tool to be helpful, it is crucial that the summaries sup-
plied to mia-record are content-rich. Additionally,



it is useful if the summaries correspond to a specific
schema so they can be easily parsed automatically. For
Debian, I have introduced a set of arbitrary keywords
which summarize different states. As an example, the
output of mia-history might look like this:

foo:
2002-01-06: Hint: bar
2002-04-02: lost interest
2002-04-03: Orphaned: bar

The person foowas contacted because someone gave
a hint that the package bar was in a bad shape. The
maintained responded saying that they are no longer in-
terested in maintaining the package, and therefore the
package was given away (“orphaned” in Debian’s termi-
nology).

mia-check: If proper keywords are used in the sum-
maries, mia-check can automatically show which
volunteer has any tasks outstanding. For this to work,
different keywords belong to certain classes. The key-
words “hint” adds an item to the TODO list of a volun-
teer. There are other keywords, such as “RC” (release
critical bugs) or “S-V” (the Standards-Version is very
old, i.e. the package does not conform to current poli-
cies), which add items. On the other hand, keywords
such as “orphaned” or “removed” take an item from the
TODO list. mia-check goes through all keywords,
and if anything is left on the TODO list at the end and the
volunteer has not been contacted recently, mia-check
shows that this volunteer has to be contacted again.

While these tools are very simple, they make the
work tremendously easier. They allow the quality as-
surance team to keep track of what has been done al-
ready. Data is stored with mia-record, queried with
mia-history, and mia-check is a useful reminder
showing outstanding tasks. Once a maintainer is con-
tacted several times without response, it is time to act
and make the packages available to other developers.

While these tools allow easy track keeping, I firmly
believe that finding and contacting inactive maintainers
cannot be fully automated in a sensible way. Some tasks,
such as obtaining an overview of the packages of a main-
tainer, can be automated or at least semi-automated, but
the whole process of identifying and dealing with inac-
tive maintainers relies on human judgement. This makes
the whole process very time consuming. However, in
order to maintain the quality in a system inactive volun-
teers who play important roles have to be identified and
solutions found.

7 Debian and Inactive Maintainers
Debian has recognized the problem of maintainers who
neglect their packages and began approaching the issue
systemically in 2001. Since then, various activities have

been carried out. In particular, two different kind of ac-
tivities can be distinguished. First, there is a continu-
ous effort to track down inactive maintainers and to sort
out solutions for their packages. Second, all maintainers
without packages were contacted once to see whether
they are still interested in volunteering for Debian.

7.1 Continuous Activities
Since 2001, there have been continuous activities to find
and contact inactive package maintainers, and in case
they do not respond to make their packages available
to other developers or remove them if they are obso-
lete. From 2001 to the end of 2003, around 180 pack-
age maintainers were contacted, more than 320 pack-
ages were given away to other maintainers and around
25 packages were removed. These figures suggest that
finding and dealing with inactive maintainers might have
a real impact on quality.

7.2 The MIA Ping
In addition to the continuous activities carried out by the
quality assurance team, the Debian Account Manager,
who has the authority to add and remove volunteers from
the project, conducted a ‘MIA ping’. He contacted ev-
ery Debian developer without a package in the archive
in March 2003 to determine whether they are still in-
terested in volunteering for Debian. If they did not re-
spond to the mail after two months, their account would
be deactivated and they would be put in an “emeritus”
class. Recent compromises of GNU [10] and Debian [6],
both involving local root exploits, show the importance
of purging old users from project machines.

This MIA ping revealed that the e-mail of 34 volun-
teers was bouncing, 94 volunteers did not respond at all,
28 wanted to retire officially, 10 said they were still ac-
tive, and 26 expressed their continued interest but it was
not clear whether they would really do any work. It
turned out later that the majority of those who were not
sure about their involvement remained inactive. These
numbers are very interesting because it was the first time
in Debian’s ten year history that anything like this was
carried out. It helps to get a better grasp of the actual
number of volunteers in a project, and improves security
as unused accounts can be removed or locked.

8 Proposed Remedies
There are many factors which contribute to the sever-
ity of the problem of inactive volunteers. In addition
to the distributed and volunteer nature of free software
projects, tracking inactive volunteers is a complicated
task because it cannot be fully automated. It requires
human judgement to distinguish whether a volunteer is
temporarily busy but likely to return or whether they
are really inactive and neglecting their duties. Some



mechanisms for finding inactive volunteers can be au-
tomatated, but the whole tasks remains very time inten-
sive. Furthermore, there is usually a long time span be-
tween realizing that a volunteer is neglecting their duties
and something is done about it. As I argued before, it
is polite so send several messages and to wait for two
or three weeks for a reply to each message. Therefore,
it can take months until the problem is resolved and the
situation improves. During that time, the quality of the
software suffers.

In order to keep quality high at all times, it is vital to
take preventive measures. For example, the admission
process should take the problem of inactive volunteers
into account and make sure that prospective volunteers
understand the problem. Another recommendation is to
limit the introduction of low-interest packages into the
distribution. A package that only one developer is even
potentially interested in maintaining carries a large risk
of being neglected or abandoned. Another possible way
to assure quality is to have a dedicated group of devel-
opers who can temporarily maintain a package when its
maintainer is busy. Finally, another recommendation for
Debian is to move away from having a single maintainer
per package to having teams who are responsible for a
package [15]. This way, more redundancy is created and
the reliance on a specific volunteer is smaller.

Fortunately, an increasing number of volunteer
projects, including GNOME [21] and KDE [13], are
paying more attention to quality assurance, and it is my
hope that mature QA processes for free software projects
will be developed in the next few years. It would also be
beneficial if free software hosting sites, such as Source-
Forge, would actively classify inactive projects as such
and had quality assurance teams.

9 Conclusions
Volunteers who neglect their duties are a potential prob-
lem in any free software project. In large projects, it
is often difficult to recognize immediately when a vol-
unteer does not carry out the tasks they are responsible
for. Unlike in commercial companies where it is ob-
vious when an employee does not come in to work, it
requires much effort in distributed, volunteer projects to
find who is inactive. While there are various sources of
information which can be taken into account, the pro-
cess of finding inactive maintainers and contacting them
is time intensive and requires human judgement. It is
therefore impossible to fully automate the task. The pro-
cess of moving from realizing that a volunteer might be
inactive to resolving the situation also takes a long time
as it is polite to first contact the volunteer to see whether
they can explain the situation. During this time, quality
in the project decreases as the functions the volunteer is
responsible for are not carried out. Due to this, it is im-

portant to take preventive measures and to consider this
problem up front.

In this paper, I have described Debian’s approach to
the problem of package maintainers who do not per-
form their duties. Several sources of information have
been introduced which are used in tracking down inac-
tive maintainers. While these sources of information are
specific to Debian, they help other projects gain a better
understanding of the problem and this allows them to de-
velop strategies which apply to their respective projects.
Various tools have been described which are used to
keep track of inactive maintainers in Debian and which
allow multiple members of the quality assurance team to
work on the problem together.

Free software projects have to acknowledge their vol-
unteer nature and introduce more redundancy. They
have to realize that certain volunteers will become in-
active at some point, and take precautions. The problem
of volunteers neglecting their duties has to be recognized
and dealt with in order to maintain the high quality found
in many free software projects as well as an effective de-
velopment process.

10 Availability

The tools mentioned in this paper which are used in De-
bian to track inactive maintainers are available under
the GNU General Public License (GPL) from http://
cvs.debian.org/mia/?cvsroot=qa. Debian
consists completely of free software as per the Debian
Free Software Guidelines and is available from http:
//www.debian.org/.

11 Acknowledgements

This work was in part funded by the NUUG Foundation.
I would like to thank Bart Massey for his valuable com-
ments and suggestions.

References
[1] Debian Bug Tracking System. http://bugs.

debian.org/, accessed April 6, 2004.

[2] Debian constitution. http://www.debian.
org/devel/constitution, accessed
April 6, 2004.

[3] Debian Developer’s Reference.
http://www.debian.org/doc/
developers-reference/, accessed April 6,
2004.

[4] Debian New Maintainer process. http://www.
debian.org/devel/join/newmaint, ac-
cessed April 6, 2004.



[5] Debian Policy. http://www.debian.org/
doc/debian-policy/, accessed April 6,
2004.

[6] Debian Project machines compromised. http://
www.debian.org/News/2003/20031121,
accessed April 6, 2004.

[7] Debian Social Contract. http://www.
debian.org/social_contract, accessed
April 6, 2004.

[8] Debian Work-Needing and Prospective Pack-
ages. http://www.debian.org/devel/
wnpp/, accessed April 6, 2004.

[9] Michael E. Fagan. Design and code inspections to
reduce errors in program development. IBM Sys-
tems Journal, 15(3), 1976.

[10] GNU Project FTP server compromised.
http://lwn.net/Articles/44310/,
accessed April 6, 2004.

[11] Jesús M. González-Barahona, Miguel A.
Ortuño Pérez, Pedro de las Heras Quirós, José
Centeno González, and Vicente Matellán Olivera.
Counting Potatoes: The Size of Debian 2.2.
Upgrade, II(6):60–66, December 2001.

[12] Guido Hertel, Sven Niedner, and Stefanie Her-
rmann. Motivation of software developers in open
source projects: an Internet-based survey of con-
tributors to the Linux kernel. Research Policy,
32(7):1159–1177, 2003.

[13] KDE Quality Team. http://quality.kde.
org/, accessed April 6, 2004.

[14] Stefan Koch and Georg Schneider. Effort, cooper-
ation and coordination in an open source software
project: GNOME. Information Systems Journal,
12(1):27–42, 2002.

[15] Martin Michlmayr and Benjamin Mako Hill. Qual-
ity and the reliance on individuals in free software
projects. In 3rd Workshop on Open Source Soft-
ware Engineering, pages 105–109. ICSE, 2003.

[16] Audris Mockus, Roy T. Fielding, and James D.
Herbsleb. Two case studies of open source
software development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

[17] Glyn Moody. The greatest OS that (n)ever was.
Wired, 4 August 1997.

[18] Eric S. Raymond. The Cathedral and the Bazaar.
O’Reilly & Associates, Sebastopol, CA, 1999.

[19] Eric S. Raymond. The Art Of Unix Programming.
Addison-Wesley, 2003.

[20] Stephen R. Schach, Bo Jin, David R. Wright,
Gillian Z. Heller, and A. Jefferson Offutt. Main-
tainability of the Linux kernel. IEE Proceedings -
Software, 149(1):18–23, 2002.

[21] Luis Villa. Large free software projects and
Bugzilla. In Proceedings of the Linux Symposium,
Ottawa, Canada, 2003.


