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Abstract

OpenCM is a configuration managment system that supports inter-organizational collaboration, strong con-
tent integrity checks, and fine-grain access controls through the pervasive use of cryptographic naming and
signing. Released as an alpha in June 2002, OpenCM is slowly displacing CVS among projects that have high
integrity requirements for their repositories. The most recent alpha version is downloaded 45 times per day (on
average) in spite of several flaws in the OpenCM’s schema and implementation that create serious performance
difficulties.

Since the core architecture of OpenCM is potentially suited to other archival applications, it seemed worth-
while to document our experiences from the first year, both good and bad. In particular, we review the original
OpenCM schema, identify several flaws that are being repaired, and discuss the ways in which cryptographic
integrity has influenced the evolution of the design. Similar design issues seem likely to arise in other crypto-
graphically checked archival storage applications.

1 Introduction

OpenCM [SV02a, SV02b] is a cryptographically pro-
tected configuration management system that provides
scalable, distributed, disconnected, access-controlled con-
figuration management across multiple administrative do-
mains. All of these features are enabled by the pervasive
and consistent exploitation of cryptographic names and
authentication. Originally prompted by the needs of the
EROS secure operating system project [SSF99], OpenCM
is slowly displacing CVS among projects that have high
integrity requirements on their repositories.

The essential goals of the OpenCM project are to pro-
vide proper support for configurations, incorporate cryp-
tographic authentication and access controls, retain the
“feel” of CVS [Ber90] to ease transition, provide excep-
tionally strong repository integrity guarantees, and lay the
groundwork for later introduction of replication support.
Performance is not a primary design objective, though we
hope to keep the user-perceived performance of OpenCM
comparable to that of CVS.

Security and storage architects use the term “integrity”
to mean slightly different things. A storage architect
is concerned with recovering from failures of media or
transmission. A security architect is additionally con-
cerned with detecting modification in the face of active,
knowledgeable efforts to compromise the content. Be-
cause OpenCM is used to manage trusted content (such
as trusted operating systems and applications), one of our
concerns is that a replicate server controlled by an adver-
sary might be used as a vehicle to inject trojan code. A
key design objective has been to provide “end to end”
authentication of change sets even when the replicating

host is hostile [SV02a]. This prompted us to adopt a se-
cure schema based on cryptographic (non-colliding, non-
invertable) hashes rather than cyclic redundancy checks as
our integrity checking mechanism.

One result is that an OpenCM branch can be compromised
only at its originating repository. When truly sensitive de-
velopment is underway, a suitable combination of host
security measures and repository audit practices should
be sufficient to detect and correct compromised branches.
We do not suggest that such auditing practices are pleas-
ant, nor are they necessary to run an OpenCM repository
for most purposes. The point is that they are possible, and
for life-critical or high assurance applications the ability
to perform such audits is essential. We are not aware of
any other source configuration management system with
this capability.

Though the techniques have long been known, delta-based
storage, cryptographic naming, and asynchronous wire
protocols are not widely used in current applications. The
importance of asynchrony in latency hiding is similarly
well known, but it is difficult to use in practice because
it does not follow conventional procedure call semantics.
Practical experience with the combination of these tech-
niques is limited. OpenCM has exceeded most of our
goals during its first year of operation, but it has also suf-
fered its share of design errors and object lessons, many
of which are described here.

While we anticipated most of the causes of our mistakes,
we failed in several cases to fully understand how various
design features would interact. As a result, some of our
expectations about how to solve these problems proved
misleading. One year later, the basic archival object stor-
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age model behind OpenCM appears to be validated, but
we are now able to identify some issues (and solutions)
that are likely to impact other applications built on top of
this type of store. Most of the issues we have found can be
viewed as factoring errors in our schema design. In each
case, the need to plan for delta storage and cryptographic
naming was the unforseen source of these mistakes. Taken
individually, none of these schema mistakes are particu-
larly unique or surprising. Taken collectively, we believe
they paint a somewhat unusual picture of the constraints
encountered by a cryptographically checked store.

While there are significant benefits to the use of crypto-
graphic names, there are also costs. Hashes are signifi-
cantly larger than conventional integer identifiers and do
not compress. They therefore interact with delta-based
storage mechanisms, impose potentially large size penal-
ties in network object transmission, and can create un-
forseen linkages between client and repository. Crypto-
graphic hashes provide strong defenses against hostile at-
tempts to modify content. A corollary to this strength
is the difficulty of legitimate modification – for example
when schemas need to be updated. We will discuss each
of these issues in detail.

Online delta compression strategies rely on identifying
common substrings between two objects for the purpose
of computing a derivation of one from the other. In addi-
tion to problems with the particular delta storage strategy
we adopted (an “improved” version of Xdelta [Mac00]),
there are some unfortunate interactions between delta
compression and cryptographic names. We will discuss
these and their implications for schema design.

Though asynchronous messaging is a well-known solu-
tion for avoiding network round trips and hiding net-
work latency, OpenCM does not lend itself readily to
this approach. Some of the issues are inherent in cryp-
tographic naming, while others are inherent in the schema
of OpenCM (and probably any configuration management
system).

While each of the areas we discuss has been a source of
inconvenience for OpenCM users, we emphasize that each
creates problems of performance (storage size, computa-
tion, or wire latency) rather than problems of integrity.
Over the last year, we have had occasion to uncleanly ter-
minate our repository server on many occasions. During
that time, we have observed only two storage-related er-
rors in the OpenCM alpha releases. One was a serializer
error, while the other was the result of an internal com-
putation generating incorrect values in an object. We got
lucky on the second error in that it didn’t actually get trig-
gered in the field; repair might have proven very difficult
because of the integrity properties of the store. We will
discuss this at length and the provisions that we made in
the schema to make repair of this form possible when nec-

essary.

The balance of this paper proceeds as follows. We first
review the design of OpenCM, providing a basis against
which to measure our experiences. We then identify those
areas in which OpenCM has been an unqualified success
– most notably in the area of integrity preservation. We
then describe in sequence the issues that have arisen from
cryptographic names, mistakes in the original schema,
delta storage, and communication. We also describe the
changes that are being made as a result of what we have
learned.

2 Design of OpenCM

Before turning to a discussion of successes and mistakes,
it is useful to provide a sense of how the OpenCM ap-
plication is structured. The schema described here has
evolved from that described in earlier OpenCM papers
[SV02a, SV02b]. Earlier descriptions characterized the
application as having a single unified schema, but noted
our belief that the repository schema could be cleanly dis-
tinguished from the schema of the OpenCM application.
The description that follows reflectsthat separation.

2.1 The RPC Layer

OpenCM is a client/server application. The client and
server communicate via a wire protocol implementing an
extended form of remote procedure call (RPC) [Nel81,
BN84]. The low-level OpenCM RPC protocol extends
conventional RPC by allowing the server to respond with
an arbitrary sequence of optional “infograms” before
sending a response to the original request. The final re-
sponse may consist of either an exception or a response:

� � request
� � infogram*
� � reply-or-exception

The ability to transmit exceptions is a reflection of the
design of the OpenCM runtime system. Though the ap-
plication is written in C, we have extended the language
using macros to provide an exception handling system.
In support of this, OpenCM application is built using the
Boehm-Weiser conservative garbage collector [BW88] in
place of a conventional memory allocator.

Lesson: Given our past experience with the SGI VIEW
debugger and other distributed applications, we went to
some care to design infograms into the protocol from the
beginning. The idea was to allow clients in a future pro-
tocol version to send a series of asynchronous “send” re-
quests terminated by a normal RPC:
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� � SendEntity name
� � . . .
� � SendEntity name
� � Flush

� � EntityGram (Infogram)
� � EntityGram (Infogram)
� � OK (Response)

Using an asynchronous protocol, trip delays can be re-
duced where the application’s control flow is not inher-
ently data dependent. In hindsight, OpenCM’s control
flow is much more data dependent than we realized, and
this feature will have limited value. Fortunately, this func-
tionality carries no performance penalty.

2.2 Core Repository Schema

The OpenCM application is constructed on top of a repos-
itory schema that is largely application-neutral. The
repository layer handles versioning, permissions, authen-
tication and (eventually) replication.

2.2.1 Mutables, Revisions

The OpenCM store may be imagined as a versioning file
system whose content model is a graph of immutable con-
nected objects. The primitive schema of the repository
consists of mutables, revisions and buffers (Figure 1). The
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Figure 1: Core schema.

Buffer object serves as the univesal “envelope” for se-
rialization of all content objects. The Mutable corre-
sponds approximately to a “file” or “document” in a con-
ventional file system. Each Mutable has a readGroup
and writeGroup fields identifying the users and groups

that can perform the respective operations. Since the basic
mutating operation on a Mutable is “revise,” members
of the writeGroup are also allowed to read the object.

Revisions are made by first uploading a new content
graph and then performing a ReviseMutable opera-
tion on some Mutable object to create a new Revi-
sion record. There is no direct equivalent to a file system
“root” directory; the repository keeps a record of the set of
authorized users. Each user has a corresponding Mutable
that describes their authentication information and names
their top-level directory object in the repository. The live
state of the repository is defined by the set of transitively
reachable objects beginning from the set of current users.

Figure 1 uses two different types of arrows to indicate
two different types of names. Content objects are named
by the cryptographic hash of their canonically serialized
form (written as H(target)). This hash can be recomputed
by the repository without deserializing the object. Muta-
ble objects are named by a URI of the form:

opencm://server-name/swiss-number

Where server-name is the cryptographic hash of the
server’s initial signature verification key, and swiss-
number is a cryptographically strong random number cho-
sen by the server at the time of object creation. The swiss-
number has meaning only with respect to objects from the
same server – there is no risk of collision across servers.
As a shorthand, we will use the notation URI(User) to
refer to a mutable whose content is an object of type User
in the rest of this paper.

Revision records are named by appending their revision
number to the mutable URI.

Integrity and Security The cryptographic hashes in-
herently provide an unforgeable check on their content.
Since all pointers in the OpenCM content graph are cryp-
tographic hashes, the top-level hash stored in the Revi-
sion record provides a transitive check on the entire con-
tent graph. Content-based naming also allows the server
to store repeated objects once.

For mutables and revisions, integrity and security are pro-
vided by digital signatures. The mutable or revision is first
serialized in canonical form and an RSA signature is com-
puted using the server’s signing key (written S(target)).
Both objects have a field reserved to contain this signa-
ture. The signature is computed with this field set to
NULL. Provided that the OpenCM client has access to
the server’s signature verification key (the server’s public
key), compromises of mutable or revision content can be
detected. Until a repository changes its signing key, the
key’s validity can be checked by computing the crypto-
graphic hash of the server public key and comparing it to
the server name. The client stores this association with an
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IP address on initial connection in much the same way that
OpenSSH does [Ylo96]. A technique for validating sub-
sequent changes to the repository’s signing key has been
described elsewhere [SV02a].

The net result is that the signature checks on the initial
mutable and revision records provide a complete end to
end integrity check of the content graph associated with
that mutable. All of this is handled transparently by the
OpenCM client application.

Lesson: In principle, the repository layer has no need
for specific knowledge of the application semantics. In
practice, we did not attempt to separate these layers fully
in the first implementation. Our thought was that we
would achieve a better separation after building at least
one real application. In hindsight, this was a good deci-
sion, because before building the OpenCM application we
did not fully understand the layering interactions between
the repository and the application.

Lesson: There is no forward linkage (pointer) in the
schema from mutable objects to their revisions. In the
earliest versions of the primitive schema, revision records
contained a predecessor field, and a linked-list traversal
was required in order to locate earlier revisions. Each step
in the traversal required a round trip in the wire proto-
col, and it is frequently true that the client knows exactly
which revision they require. The revision record was al-
tered to facilitate faster retrieval of specific versions, and
to permit selective replication of versions.

2.2.2 Authentication and Permissions

The repository is responsible for connect-time authenti-
cation of users. Our current authentication mechanism
is built on SSL3/TLS [DA99]. The client presents the
server with the public key of the connecting user. The
server serializes this key as a PubKey object, computes
H(PubKey(user-public-key)), and uses the result as an in-
dex into its user database. This index contains a set of
(H(PubKey), URI(User)) pairs, from which the identity
of the per-user mutable for that user is obtained.

The per-user mutable has the same permissions structure
as any other mutable. When adding a new user, the repos-
itory sets up their mutable to have self-modify access, and
to be readable by the distinguished group Everyone.
This allows users to alter their own read group. Note that
the user’s home directory is not initially readable by Ev-
eryone. At the time users are created, other users can
see their existence, but not their work.

The User object is in turn a mapping from the user’s pub-
lic key to their “home directory.” Every repository main-
tains a directory hierarchy for each user in which objects

can be bound with human-readable names.

User: PubKey key
URI(Directory) directory

Group: URI(User or Group) members[]

Table 1: Authentication-related schema

Groups are simply a set of URIs for other users or groups.
Group membership is transitive: if a user is a member of
group

�
, and group

�
is a member of group � , then the

user is also a member of group � . In practice, this transi-
tivity is not often used. It is based on an earlier permission
system designed for the Xanadu global hypertext system
[SMTH91], and is designed to allow a limited form of
delegation for purposes of project administration.

2.2.3 Directories

Every user has a home directory that serves as the root
of their accessable state. OpenCM directories provide a
shared namespace mechanism that is controlled by the
OpenCM permissions scheme rather than the host permis-
sions scheme. Cryptographic monikers are not especially
readable; directories serve a critical role as a human-
readable name space. For collaborative groups that strad-
dle many administrative organizations, this can greatly
simplify day to day development, and it is necessary that
such namespaces exist within the repository (as opposed
to in the host namespace) for successful replication.

Directory: DirEnt[*] entries

DirEnt: string key
URI(target) value

Table 2: Directory schema

It is common for project working groups to wish to main-
tain a common directory namespace that several mem-
bers can modify – for example as a place to publish new
branches for inspection. In the EROS project, we keep all
of the publicly accessable branches in a common direc-
tory, and bind this directory into the directories of all of
the project team members.

Lesson: Directory objects did not need to be part of
the OpenCM core schema. They became part of the core
repository to resolve a bootstrapping problem: when a
User object is initially created, what content should its ini-
tial Revision object point to? In hindsight, the correct
answer is “allow NULL to be a well-defined value for the
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content pointer in a Revision record.” If this is done, the
responsibility for creating, maintaining, and binding di-
rectories can be taken entirely out of the repository code.
Once created, their handling is no different from any other
mutable. The “tip off” is that only the user creation code
manipulates Directory objects.

Lesson: Readers familiar with remote file system de-
signs such as 9fs [PPT � 92] or NFS [SGK � 85] might be
tempted to think that directory traversal should be per-
formed on the server for reasons of protocol efficienc y.
OpenCM uses a distributed namespace in which the cli-
ent may be able to resolve URIs that are not visible to the
server. For this reason, directory traversal must be per-
formed on the client.

2.3 Application Schema

OpenCM is a configuration management application lay-
ered on top of the OpenCM core repository schema. Its
content schema consists of a very small number of object
types (Figure 2).

Branch
Mutable

Revision Revision

Older Revisions

Revision

Change Change

CommitInfo TnVec (vector of sha1 names)

Entity Entity Entity

Change

Buffer

(file content)
Buffer

(file content)
Buffer

(file content)

, , ,

Entity =  (name, attribute, EntityBits) tuple

Figure 2: Application schema.

No explicit Branch object is needed in the OpenCM ap-
plication, because the underlying repository keeps a his-
tory trail for every mutable object. Every revision results
in a new Change, and each Change object records a new
configuration for this line of development. Entity ob-
jects and Change objects both record predecessor point-
ers, but the former are omitted from the figure for clar-
ity. The history of a branch is therefore encoded in two
ways: through the predecessor hashes in the Entity and
Change objects, and through the revision records of the
per-branch mutables.

Lesson: Figure 2 shows the current object diagram for

OpenCM. In the original schema, the vector of Entity
objects was inlined into the Change object. This was a
source of tremendous performance loss, and is discussed
in Section 5.2.

3 Successes
With the exception of performance, the initial implemen-
tation of OpenCM has met its overall goals extremely
well. Using SSL3/TLS for authentication [DA99] makes
it easy to allow “guest” users write access to our repos-
itory. Our hope that this would ease integration by re-
placing the patch application with merges has been val-
idated. One of the OpenBSD team members has main-
tained the OpenBSD port in a branch that we periodically
re-integrate. The ability to successfully hand this task
off and smoothly re-integrate the results has greatly sim-
plified maintenance. This is particularly important given
that we do not run OpenBSD and are therefore unable to
test these results. We have had similar assistance with
ports for MacOS X and IRIX. We have likewise used the
merge mechanism within the EROS project group, allow-
ing each developer to play in their own branch before
merging working code back into the tree.

Subjectively, our attempts to preserve the feel of CVS
have been successful. The OpenCM command interface
is not a clone of CVS. We preserved the most common
commands in similar form, but regularized options across
the board and favored a sensibly structured command set
over compatibility. Users of CVS quickly find that they
are comfortable with OpenCM. Subjectively, it is some-
what painful to revert to the less regular command struc-
ture of CVS. This result meets our goals on all fronts: we
want it to be easy for developers to adopt OpenCM and
we want them to notice when they are forced to revert to
less functional tools. Several users report that they have
simply switched their new projects over to OpenCM.

The integrity objectives for the OpenCM repository have
also been achieved, and the results have exceeded our ex-
pectations. Because our naming and signing mechanism
provides an end to end integrity check on the content of all
objects, it is extremely difficult for data to be corrupted by
the store or the network transport layer without detection.

We knew abstractly that cryptographic hashes provided a
simple way to validate that an object is correctly retrieved.
Only in actual use have we come to appreciate how use-
ful this is. It is possible in OpenCM to garble the wire
protocol, damage (by hand) objects in the store, or acci-
dentally upgrade or modify objects whose content was not
supposed to be modified. The validation ability inherent
in the use of cryptographic hashes has caught all of these
errors early in development. The principle sources of bad
repository state in OpenCM have been a buggy serializa-
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tion package (an escaping error in string encoding) and
errors in the merge algorithm that caused objects to be in-
correctly created (but stored with high integrity). In spite
of crashes both deliberate and otherwise, we are not aware
of any instance in which an OpenCM server or transport
has undetectably corrupted the state of an object.

Our research group has been using OpenCM since before
the day of its release. While there were a few early strug-
gles as bugs emerged in the first few alphas, the tool has
proven remarkably stable overall. Generally we are aware
of flaws before they are reported by outside users. It is
somewhat encouraging that a large percentage of the re-
quests we receive are feature enhancement requests rather
than bug reports. In many cases the desired function ex-
ists already, but is provided in a form that is not apparent
to the requestor.

Perhaps the best indicator of success has been the reac-
tions from other members of the open source community.
We have been contacted informally by developers associ-
ated with nearly every major open source operating sys-
tem to ask whether OpenCM could be incorporated into
their release. For reasons that we are about to describe,
our answer has uniformally been “yes, but doing so now
would be premature.” The OpenCM alpha has intention-
ally been a long process so that we could determine what
problems the design would encounter. Once the tool is
widely dispersed, repairs to the kinds of problems we de-
scribe here will become quite difficult. Our goal in the
long alpha cycle was to minimize the later pain to others
that might be caused by early mistakes such as the ones
reported here.

4 Issues with Cryptographic Names
OpenCM uses cryptographic names because they provide
a universally non-colliding namespace that can be com-
puted without global agreement or connectivity. The goal
is to have an object naming system for frozen objects that
can be replicated without collision even though the indi-
vidual systems may have been disconnected at the time
objects were created. By using a content-derived name,
the replication engine process is able to efficiently deter-
mine by comparing object names which objects must be
replicated.

While cryptographic hashing and signing provide excep-
tionally strong integrity, they also create some challenges.

4.1 Space Issues

Given the total number of objects that a given reposi-
tory can be expected to store, a 64 bit (8 byte) object
identifier would be more than large enough to name all
of the objects in the repository. By comparison, a 27

byte cryptographic name (after base64 encoding) carries
a large size penalty, and does not compress at all. Ex-
amination of the OpenCM application schema will reveal
that the majority of bytes in the objects comprise these
cryptographic names. As there is no hope of compressing
these monikers, any space recovery must come from other
mechanisms.

To achieve better space utilization, OpenCM uses delta-
based storage. Each object is stored as a delta relative
to some existing object, and is reconstructed on demand
(Section 6). In order for delta-based space recovery to be
effective, fields that are unlikely to change from one ob-
ject version to the next should be stored adjacent to each
other. This creates a maximal length identical byte se-
quence for the delta generation system to exploit for com-
paction. To date, we have approximated this by hand-
ordering the fields in the object and preserving that order
in the (de)serializer routines. In a larger scale applica-
tion, the order of fields in the object is best determined by
what makes sense to the programmer. In consequence, we
suggest that an object definition language of some form
should be applied and annotations should be used to indi-
cate the preferred order of serialization rather than main-
taining them by hand.

In abstract, it would be possible to maintain two preferred
serializations simultaneously: the canonical serialization
used for purposes of computing object hashes and the
one used to maximize exploitable repetition across object
versions. This proves to be counterproductive. In order
for the server to perform integrity validation on objects it
must either (a) know how to serialize them or (b) be able
to recompute their hash without knowing anything about
the object type. The latter is preferred, as the former de-
stroys the separation between the application schema and
the repository schema. The consequences are discussed in
Section 7.3.

4.2 Name Resolution Issues

A previous paper [SV02a] on OpenCM identified the
need for a secure name resolution mechanism to sup-
port server authentication. The resolution mechanism
must provide a robust mapping from the server’s name
H(S(

� � � � � 	 � � � � � 	 � � � � � � �
)) to its currrent IP address

and signature verifcation key. This mapping is needed be-
cause the verification key and/or location of a repository
may change over its lifespan. We have considered a num-
ber of designs for this secure name resolver, and remain
partial to the one described in [SV02a].

To date, we have not found that the absence of this reg-
istry is a significant issue. In practice, users connect to
repositories that are known to them a priori. The client
records the server name and signature verification key of



FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 237

that server on first connect. One of the delays in the im-
plementation of distributed OpenCM is that this mecha-
nism will break down completely when distribution oc-
curs. Once server

�
is permitted to store a reference to

an object on server � , it will become possible (indeed
commonplace) for users to transparently dereference ob-
ject names whose servers they have never contacted be-
fore.

A concern here that we did not adequately credit in our
initial design is that the necessary scale of the name re-
solver is potentially comparable to that of DNS. Whoever
runs the target name resolver is likely to be quickly over-
whelmed. While client-side result caching is likely to be
more effective in OpenCM than in DNS – each user con-
tacts only a small number of servers and remembers them
once contacted – we are reluctant to undertake the main-
tenance of such a large, availability critical data set. A
question that arises is: how can we distribute the data set
in such a way that the the server containing the reference
to the object is usually able to supply an up to date name
resolution for the server that is actually hosting the ob-
ject. That is, we would like on reflection to establish a
two tier hierarchy in which OpenCM servers act as prox-
ies for their clients in the name resolution process.

The scenario that really concerns us is as follows. Imag-
ine that a new release of EROS is announced on Slash-
dot. Millions of people want to obtain the release (if we
weren’t optimists, we wouldn’t have built a new config-
uration management system either). Most of these users
have never seen EROS before, so their first step is to at-
tempt secure name resolution. The problem is to prevent
the name resolver from being overwhelmed – should this
occur, then the run on EROS downloads would effectively
preclude access to other repositories as well. DNS can
be used for the IP-resolution portion of the problem, but
does not provide a standardized means of distributing per-
service keys. This problem awaits satisfactory resolution
(sic).

4.3 Versioning Issues

For reasons discussed below (Section 5.2), certain types
of schema changes cannot be made in a backwards-
compatible way. Incompatible schema changes are rare,
but they do not arise capriciously. Each has been intro-
duced to solve a compelling problem with the OpenCM
application. This has two unintended consequences:

1. OpenCM will tend to resist “forks” in the develop-
ment process. As the body of useful repositories
grows, there is considerable pressure to avoid com-
peting rewrites of the object schema, and therefore
to stick with a centrally coordinated OpenCM ap-
plication.

2. Incompatible upgrades will tend to be “all at once.”
If repository

�
replicates content from repository

� , a schema upgrade on
�

will tend to force clients
of � to upgrade their copies of the OpenCM soft-
ware to understand the new schema.

The replication itself can proceed without upgrading the
� repository server, and lines of development originating
on � can still be accessed with older OpenCM clients.
The current repository garbage collection strategy would
need to be replaced with a conservative approach in order
for “blind” replication (i.e. replication where the repli-
cating server doesn’t know the application schema asso-
ciated with the content) to be practical. This is one of the
reasons that we chose a relatively self-describing format
for our encoding of hashes and mutable names.

5 Mistakes in the Schema
While cryptographic hashes guarantee integrity, they also
prevent intentional changes to objects. If a field is added
to an object, existing objects cannot be rewritten to incor-
porate the new field. Instead, object types must be ver-
sioned and the application must know how to forward-
convert older objects into the current format. As long as
new fields have a reasonable default value, this is straight-
forward, but object refactorings will generally require a
rewrite of the repository to implement an incompatible
schema change. In the history of OpenCM to date we
have encountered both issues.

5.1 Backward Version Compatibility

The original Entity schema was missing a modification
time field; we believed initially that storing the creation
time of the entity (i.e. the checkin time) was sufficient. In
practice this proved mistaken, because some commonly
used build procedures rely on correct restoration of mod-
ification times on checkout. For example, it is common
practice for tools using autoconf to include makefile
dependencies designed to regenerate configuration files
on demand. To eliminate autoconf version dependencies,
these same projects ship the output of the autoconf script
in their distributions. If modification times are preserved,
autoconf will not be reinvoked.

Unfortunately, if modification times are not preserved, au-
toconf is invoked and versioning conflicts between the
configure.in file and the locally installed copy of
autoconf can arise. The issue is particularly acute with
the autoconf package itself, which uses autoconf to
perform its own configuration and includes an automatic
regeneration target in its makefile.

We were able to compatibly add modification times to the
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existing Entity schema by choosing the creation time
of older Entities as the default modification time in the
absence of better information. This resolved the problem
with autoconf, but it left us with an unintended conse-
quence: upward compatibility is insufficient; at least par-
tial downward compatibility is also required.

The issue arises because OpenCM stores copies of the
Entity objects in the client-side workspace file for later
reference when performing merges. To avoid identity
mismatches, the Entity written to the workspace must
be byte-identical to the one originally obtained from the
repository. If forward conversion occurs by inserting de-
fault values in new fields, these fields must not be rewrit-
ten when the object is reserialized. The original object
serialization format included both an object type and a
version number of that type, but our original in-memory
object structure did not preserve the version number. For-
tunately, we were able to modify the in-memory form to
preserve the version number without altering the serial-
ized form of our objects.

5.2 Refactoring Change

Before the work described in this paper, the Change ob-
ject contained a vector of Entity objects:

Change: Entity entities[*]
H(predecessor Change) preds[2]
H(CommitInfo) commitInfo

The earliest schema contained a vector of Entity hashes,
but a very common operation in OpenCM is to request a
Change object and immediately request all of its mem-
ber Entity objects. Each frozen object request requires
a round trip on the wire, which made this sequence pro-
hibitively expensive. Having initially failed to adequately
consider the role of asynchronous messaging requests in
our protocol design, We inlined the Entity objects be-
fore the first alpha release of OpenCM in order to reduce
the total number of round trips. This proves to have been
a mistake for three reasons:

1. We later realized that by recording additional data
in the Entity object we could frequently elim-
inate the Change object traversals altogether by
walking the Entity predecessor chain. Inlining
the Entity objects deprived us of the ability to
exploit this.

2. The resulting Change objects are difficult to delta-
encode. Where the hashes of the Entity ob-
jects can be sorted before writing to maximize ex-
ploitable repetition, the objects themselves have
just enough differences to defeat delta compaction.

3. As the project grows, the Change objects become

measured in megabytes. As both merge and update
algorithms need to traverse the history of Change
objects, this results in a serious performance prob-
lem – even at broadband connection speeds.

We have therefore revised the Change objects to place
even the vector of names in a separate object, modifying
the OpenCM client to fetch individual Entity objects
only as they are needed.

Unfortunately, this change requires a grand rewrite of the
repository, because it is not a problem that can be straight-
forwardly handled by version-sensitive serialization logic.
The deserializer could clearly replace the Entity vector
by a vector of corresponding hashes, but subsequent at-
tempts to fetch those objects would fail because they were
never stored as individual objects in the repository.

If we had to do so, we could “repair” this problem by read-
ing the existing Change objects, extracting their En-
tity members and rewriting those separately, but given
that we need to do a rewrite of the repository anyway, we
have decided to do an in-place conversion. This is better
than carrying legacy support for the wrong schema in the
post-alpha OpenCM client, and allows us to test the server
rewriting process while the experience is still survivable.

The original decision to inline seemed plausible for sev-
eral reasons:

� In the absence of a subsequent enhancement to the
Entity schema, the application reference pattern
suggested that this inlining decision was a good
call.

� In the absence of protocol asynchrony, adding a
round trip delay for each Entity fetch had been
a source of performance issues.

� We had brieflytried a vectorizing fetch operation,
but concluded (wrongly) that this imposed undesir-
able memory overheads and potential resource de-
nial of service issues on the server. We failed to
recognize early that asynchrony would enable re-
quest flow control, which would in turn resolve the
problem of resource denial.

� We wished to avoid introducing into the wire pro-
tocol a request of the form “send all Entity ob-
jects referenced by this Change object,” because
we wanted to avoid building application specific
knowledge (in this case, of the Change object) into
the wire protocol.

In actual fact, the real problem is none of the above. A
properly designed asynchronous request, possibly com-
bined with a length-limited vectorizing fetch operator,
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would have addressed both the round trip problem and the
server memory overhead problem. The underlying issue
is that the Entity object is only four or fi ve times as
large as its cryptographic name, so the number of bytes
needed to request the desired Entity objects is consid-
erable. If fetching all of the Entity objects in a Change
were indeed as common as it initially appeared, the wire
overhead of the additional fetch requests would not be not
justified.

Lesson: The lesson here is that object schema designs in
a cryptographically named object store must take into ac-
count both the delta encoding effects and the actual usage
patterns of the application. This was a case of premature
optimization. It would have been relatively easy to inline
the vector later. Inlining it early is going to cause us to
rewrite all existing repositories.

6 Issues in the Store

OpenCM repositories can be based on flat files or
an XDelta variant called SXD. Where XDelta uses
backward-encoded deltas, the SXD implementation chose
to use forward encoding. The idea behind forward deltas
was to allow new object encodings to include references
to fragments from all previous objects in the same delta
container. We were forced in any case to re-implement
the basic XDelta algorithm because the existing imple-
mentation had an I/O streams design incompatible with
the one we used elsewhere in OpenCM and also because
it was crafted in C++. More than 17 calendar years of
experience with C++ leads us to conclude that code writ-
ten in C++ is nearly impossible for ordinary programmers
to maintain and presents runtime compatibility issues on
some platforms.

Lesson: With the benefit of hindsight, this decision was
simply foolish, and the lesson is that we should have read
the literature. The analysis of alternatives performed by
MacDonald in the design of XDelta [Mac99], as well as
the measurements performed in connection with VDelta
[HVT96], clearly indicate that reverse deltas are more ef-
ficient than forward deltas in nearly all cases. Our own
rough experiments confirm that this decision alone added
40% to overall storage consumption. To add to our em-
barassment, it is plain in hindsight that the issue of self-
referencing copy operations in the delta encoding is com-
pletely orthogonal to the question of forward versus back-
ward deltas.

Fortunately, the output of the delta encoding strategy is
independent of the generation strategy. It has been pos-
sible for us to revise this decision incrementally without
externally visible impact outside the repository.

7 Issues in Communication
In the course of implementing the cryptographic hash
computation, the OpenCM runtime introduced the notion
of typed I/O streams. These encapsulate an interface to
the object I/O layer. Just above this sits the serialized data
representation (SDR) library, which can read/write data in
a number of encodings ranging from binary to a human-
readable text encoding. There are three types of output
streams: streams to files, streams to buffers, and streams
that append their content to a pending hash computation
but do not record the actual content.

Since OpenCM is a data motion intensive application, the
stream implementation is performance-critical. Our origi-
nal implementation was created in haste, and had approx-
imately a factor of 20 in unnecessary overhead.

Lesson: Code in haste, repent forever.

7.1 Compression

Because of the nature of the OpenCM request stream,
it is likely that there is re-referenceable content from
one request to the next. In implementing the OpenCM
wire protocol, we made the mistake of compressing on a
per-request basis rather than simply using a compressed
stream. In hindsight this was a mistake. The connec-
tion, rather than the messages, should be compressed as
a stream. We suspect that the loss of compression op-
portunities resulting from this decision is substantial, but
have no numbers to demonstrate this.

7.2 Inefficiencies in Hashing

Given the existing SDR library, it became natural to spec-
ify the definiti ve method for computing the hash of an
OpenCM frozen object as follows:

1. Serialize the object to a Buffer stream using the
SDR layer.

2. Compute the cryptographic hash on the resulting
byte string.

Further, it is natural to perform inbound object I/O by
reading the object into a Buffer, because the buffer im-
plementation takes care to avoid unnecessary memory re-
allocations.

This specification for hash computation has a desirable
side effect: given a buffer containing the raw bytes of an
object, the naively computed cryptographic hash of the
buffer content is the cryptographic hash of the object.

Ironically, we failed to notice this for several months. In-
stead of specifying the GetEntity wire invocation to



FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association240

return a Buffer object, we specified it to return a pointer
to an object of the expected type. Because this object is
what the server needs to return, we actually reload the
byte representation of the object from its SXD container
into a Buffer, deserialize this Buffer back into an ob-
ject, and then reserialize the object to a hashing stream
to check its integrity. A new RPC call returning a buffer
delta has been introduced, and the old call will shortly be
retired.

A second (and arguably more significant) benefit to ma-
nipulating objects purely at the Buffer level is improved
ability to stream data motion through the server. There is
no reason for the server to verify the object hash before
returning the object to the client. Since the client must
check the hash in any case, a more efficient design would
simply pass the Buffer through without examination.
The current implementation does so. Note that this facil-
itates streaming of large objects. Since the server should
handle objects larger than the available address space (but
currently does not), the ability to stream objects in this
way is a potentially critical change in the design.

7.3 Client/Server Version Lockup

The mistake in the specification of the GetEntity wire
invocation has a second consequence: it forces the schema
version numbers of client and server to remain identi-
cal. Because OpenCM clients in practice talk to multiple
servers and servers talk to multiple clients, this effectively
demands that all installations of OpenCM upgrade when
a new version of OpenCM is released.

After some initial settling, the wire protocol itself has not
proven to be a source of versioning issues. All integers
traversing the wire as part of messages (distinct from ob-
ject content) use only strings, and unsigned integer values.
We encode unsigned values as length-independent strings,
avoiding possible compatibility issues resulting from in-
teger length. The OpenCM client and server negotiate a
wire protocol version at the start of each connection. This
has allowed us to extend existing wire operations compat-
ibly by doing version-sensitive encoding and decoding of
the operations.

The source of the problem lies in the present need to dese-
rialize and reserialize each object on its way through the
server. The current ServerRequest and ServerRe-
ply messages directly serialize the object instead of sim-
ply passing along the containing Buffer (the envelope)
as an opaque object. In order to perform the deserializa-
tion and reserialization, the server must know the type of
the object being transmitted, which exposes the server to
schema changes in the application.

In practice, the only frozen objects that the server needs
to know about are the Mutable, Revision, Buffer,

User, and Group objects. For reasons explained in Sec-
tion 2.2.3, the server currently knows know about Di-
rectory and Dirent objects as well, but use of these
objects is restricted to the “create user” function of the
repository. The server is responsible for creating and ini-
tially populating the new user’s home directory. After cre-
ation, the server performs no further interpretation of Di-
rectory or Dirent objects.

By changing the wire protocol specification to return
Buffers rather than the objects they contain, a hierar-
chical layering of schema dependencies emerges:

1. If the underlying wire schema is upgraded in a way
that cannot be made backwards compatible, then
everybody must upgrade. To date we have success-
fully avoided this in most cases.

2. If the server schema is upgraded, then all clients
connecting to that server must upgrade. We have
not made significant changes to the server schema
since it was originally deployed.

3. If the application schema is upgraded, older
servers remain able to act as “carriers” for newer
application-layer payload. There remain possi-
ble compatibility issues between two copies of the
OpenCM client; older clients may be unable to read
objects placed on the server by newer clients.

7.4 Failure of Asynchrony

In the original OpenCM design, we included infograms
in the wire protocol specification but did not use them.
One of the authors had built several heavily asynchronous
applications in the past, and we were very much aware of
the benefit of asynchrony.

We were also aware of the fact that useful asynchrony
is limited by the application semantics. If the nature of
the algorithms in the application create significant data-
driven control dependencies, blocking is dictated by the
application-level semantics and cannot be eliminated at
the wire level. In OpenCM, it has proven that the majority
of requests made by the client are dependent on the re-
sults of the immediately preceding request. So far, there
are only two exceptions:

� When building a merge plan, the client retrieves the
top two objects to be merged (these can be either
Change objects or Entity objects, depending on
the merge phase) and performs a breadth-first an-
cestor walk in order to find the nearest common an-
cestor of the two entities. The search expansion step
could be performed using asynchronous requests.
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� When performing a checkout or update, the client
retrieves the current Change object and immedi-
ately retrieves all of the associated Entity objects
in that Change. This can be vectorized, as can the
later fetch of the Buffer object containing the file
content for those files that are needed.

The combined impact of these two changes is potentially
significant, but it is not immediately clear how they will
interact with client-side caching. In merge operations this
optimization is essential, but in other operations the domi-
nant cost in using OpenCM is the SSL cryptography setup
cost.

8 Measurements
The changes described here have impacted both the repos-
itory size and the operational speed of OpenCM. The size
improvements come primarily from the introduction of
the SXD2 repository format. The speed improvements
come primarily from the stream logic changes and the
Change schema modifications.

All of the numbers that follow are shown for the local
(direct file access) repositories. Given the reduction in
Change size, the new schema should show network per-
formance improvements as well, but the major improve-
ment in network performance will not be measurable un-
til we introduce the wire delta transmission and asyn-
chronous requests described in Section 7.

Space OpenCM now supports three storage formats: flat
files, gzipped files, and SXD2 archive files. The flatfile
format is used primarily for testing purposes. A typi-
cal store has a bimodal distribution of object sizes. Ta-
ble 3 shows object size distributions for a test repository
holding the complete checkin history of OpenCM itself
and for the our main repository (which contains EROS,
OpenCM, and various internal projects). The only objects
in the store larger than 1 block are the file content and the
TnVec objects of Figure 2 (the EXT3 file system uses 1
kilobyte blocks). The TnVec objects are not compress-
able at all, and the majority of objects are already one
block or smaller, so the achieved compression of 37.5% is
actually quite good.

The schema change alone reduced the size of our main
repository significantly . While surprising, this number is
correct. The EROS project has more files in each con-
figuration than the OpenCM project. In OpenCM, the
reduction in stored metadata was offset by the changes
to content. In the EROS project, the reduction in stored
metadata dominates the total repository size. The EROS
project dominates the main repository.

The SXD2 format combines multiple frozen objects into

objects objects disk use�
1 block � 1 block 1k blocks

Test flat 5,121 2,968 (18,944) 94,932
Test gz 5,230 2,859 (6,992) 59,332
Main flat 115,802 55,265 (22,907) 1,889,560
Main gz 132,007 39,060 (13,980) 1,207,416

Table 3: Object size distributions and total disk use under
the new schema. Parenthesized numbers show
average object size among objects larger than 1
kilobyte.

delta-based archive files, thereby reducing internal frag-
mentation within the file system. Disk utilization for
SXD2 is shown in Table 4. The SXD2 storage format
remains highly compressable. Initial estimates collected
while gathering these numbers suggest that another 42%
reduction in overall storage is possible.

Schema: old new new new
Store: gz gz SXD2 mut+rev
Test 48,076 59,332 24,736 2,104
Main 1,745,632 1,207,416 874,832 32,572

Table 4: Repository storage in disk blocks under various
schemas and storage schemes. The “mut+rev”
column shows the subset of disk blocks occupied
by mutables and revisions, which are stored as
gzipped files in all formats shown.

A key factor in reducing total SXD2 storage size is to store
indexing structures using a DBM (or similar) file-based
format to gain efficient space utilization. If (e.g.) sym-
bolic links are used, total SXD2 storage is higher than
storage using gzip, because each symbolic link requires
a full disk block. Unfortunately, the GDBM library per-
forms updates in place on the existing file, and this in-
troduces risk of index corruption if operations are inter-
rupted. Fortunately, the SXD2 archiver never performs
in-place modifications, and the DBM index can be recon-
structed from the archive files. We are considering storing
revision records and mutables in a similar fashion (using
SXD2 and DBM). While we expect no delta compression,
the improvement in file system utilization from reduced
internal fragmentation is probably worthwhile.

Performance To measure performance, we checked out
revisions of OpenCM that were 100 revisions old, and
then timed three versions of OpenCM performing the up-
date. The first version of OpenCM uses the old schema.
The second incorporates only the serialization library im-
provements. The third includes serialization improve-
ments and uses the new schema. The principle cost of
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the update is walking the Change hierarchy to locate the
“nearest common ancestor” in order to compute the nec-
essary update. The results are shown in Table 5.

Version User Supervisor
Old 5.11s 0.39s
New Serializer 1.12s 0.33s
New Schema 0.97s 0.41s

Table 5: Update performance

The “new schema” improvements come from two sources:
the size reduction of Change objects and an optimization
in the merge code that eliminates unchanged Entity ob-
jects from further consideration without fetching them.
This optimization significantly reduces the number of ob-
jects that must be fetched in the update process, and con-
sequently will reduce the total number of network round
trips.

9 Related Work
There is a great deal of related prior work on configu-
ration management in general. We focus here only on
architecturally related systems or systems that are being
used by open source projects. Interested readers may wish
to examine the more detailed treatment in the original
OpenCM paper [SV02b] or various other surveys on this
subject.

9.1 CM Systems

RCS and SCCS provide file versioning and branching
for individual files [Tic85, Roc75]. Both provide locking
mechanisms and a limited form of access control on locks
(compromisable by modifying the file). Neither provides
either configuration management or substantive archival
access control features. Further, each ties the client name
of the object to its content, making them an unsuitable
substrate for configuration management.

CVS is a concurrent versioning system built on top of
RCS. It is the current workhorse of the open source com-
munity, but provides neither configurations nor integrity
checks. A curious aspect of CVS is that it has been
adapted for use as a software distribution vehicle via CV-
Sup [Pol96]. This directly motivated our attention to repli-
cation in OpenCM.

Subversion is a successor to CVS currently under de-
velopment by Tigris.org [CS02]. Unlike CVS, Subver-
sion provides first-class support for configurations. Like
CVS, Subversion does not directly support replication.
Subversion’s access control model is based on usernames,

and is therefore unlikely to scale gracefully across multi-
organizational projects without centralized administra-
tion.

NUCM uses an information architecture that is super-
ficially similar to that of OpenCM [dHHW96]. NUCM
“atoms” correspond roughly to OpenCM frozen objects,
but atoms cannot reference other objects within the
NUCM store. NUCM collections play a similar role
to OpenCM mutables, but the analogy is not exact: all
NUCM collections are mutable objects. The NUCM in-
formation architecture includes a notion of “attributes”
that can be associated with atoms or collections. These
attributes can be modified independent of their associated
object, which effectively renders every object in the repos-
itory mutable. NUCM does not provide significant sup-
port for archival access controls or replication.

WebDAV The “Web Documents and Versioning”
[WG99] initiative is intended to provide integrated doc-
ument versioning to the web. It is one of the interfaces
used by Subversion, which allows strong web integra-
tion. WebDAV provides branching, versioning, and in-
tegration of multiple versions of a single file. When the
OpenCM project started, WebDAV provided no mecha-
nism for managing configurations, though several propos-
als were being evaluated. Given the current function of
OpenCM, OpenCM could be used as an implementation
vehicle for WebDAV.

BitKeeper incorporates a fairly elegant design for
repository replication and delta compression. To our
knowledge, it does not incorporate adequate (i.e. cryp-
tographic) provenance controls for high-assurance devel-
opment. Further, it does not address the trusted path prob-
lem introduced by the presence of untrusted intermedi-
aries in the software distribution chain. In contrast to cur-
rent implementations of all of the previously mentioned
technologies, BitKeeper’s license does not facilitate com-
munity involvement in improving the tool, and has been a
source of controversy in the open source community.

9.2 Other

Various object repositories, most notably Objectivity and
ObjectStore, would be suitable as supporting systems for
the OpenCM repository design. This is especially true
in cases where an originating repository is to be run as
a distributed, single-image repository federation. Neither
directly provides an access control mechanism similar to
OpenCM.

Both Microsoft’s “Globally Unique Identifiers” and Lo-
tus Notes object identifiers are generated using strong ran-
dom number generators. Miller et al.’s capability-secure
scripting language E [MMF00] uses strong random num-
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bers as the basis for secure object capabilities.

The Xanadu project was probably the first system to make
a strong distinction between mutable and frozen objects
(they referred to them respectively as “works” and “edi-
tions”) and leverage this distinction as a basis for replica-
tion [SMTH91]. In hindsight, the information architecture
of OpenCM draws much more heavily from Xanadu ideas
than was initially apparent. The OpenCM access control
design is closely derived from the Xanadu Clubs architec-
ture [SMTH91], originally conceived by Mark Miller.

OpenCM’s use of cryptographic names was most directly
influenced by Waterken, Inc’s Droplets system [Clo98].
Related naming schemes are used in Lotus Notes and in
the GUID generation scheme of DCE.
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11 Conclusion
Delta-based storage, cryptographic naming, and asyn-
chronous wire protocols are not widely used in general
purpose applications. Though the importance of asyn-
chrony in latency hiding is well known, asynchronous
wire protocols do not interoperate easily with conven-
tional procedure call semantics, and are therefore difficult
to use in pratice. Practical experience with the combina-
tion of these techniques is limited. In this paper, we have

tried to report on our experiences building a highly robust
application combining these techniques.

OpenCM has suffered its share of design errors in the first
year. In several cases the decisions we made in the design
interacted with the use of cryptographic naming and delta
compression in unforseen ways, and these have taken time
to sort out. These interactions proved particularly tricky
in the layering of the OpenCM schema and in their per-
formance consequences. At this point, we have identified
most of the problems, and are in the process of deploying
their solutions.

On the whole, the underlying design approach of the
OpenCM repository seems sound. Cryptographic nam-
ing is a significant but manageable contributor to stor-
age, communications, and runtime overhead in schemas
involving small objects. In repositories storing larger ob-
jects such as documents, this issue would be significantly
less important and the robustness and modification con-
trols supplied by OpenCM would be significant.

OpenCM is built on a small set of simple ideas that are
pervasively applied. While there are many interdependen-
cies in the design, the only complex algorithm or tech-
nique is the merge algorithm. The key insights are that
successful distribution and configuration management can
be built on only two primitive concepts – naming and
identity – and that cryptographic hashes provide an ele-
gant means to unify these concepts.

Taken overall, OpenCM has met or exceeded nearly all
of our expectations. The pain of correcting the errors de-
scribed here has more to do with the sheer scale of the
application than with the complexity of the repairs. We
have lived with the tool extensively for a long time now,
and none of us would go back to other open source tools
given a choice.

The core OpenCM system, including command line cli-
ent, local flatfile repository, gzipped file repository, SXD2
repository, and remote SSL support, consists of 25,794
lines of code – a 27% growth over the last year. Much
of this growth has occurred to complete existing function
and clarify the merge algorithm. In contrast, the corre-
sponding CVS core is over 62,000 lines (both sets of num-
bers omit the diff/merge library). In spite of this simplic-
ity, OpenCM works reliably, efficiently , and effectively. It
also provides greater functionality and performance than
its predecessor. One of the significant surprises in this ef-
fort has been the degree to which a straightforward, naı̈ve
implementation has proven to be reasonably efficient.

OpenCM is available for download from the EROS
project web site (http://www.eros-os.org) or the
OpenCM site (http://www.opencm.org). A con-
version tool for existing CVS repositories is part of the
distribution.
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