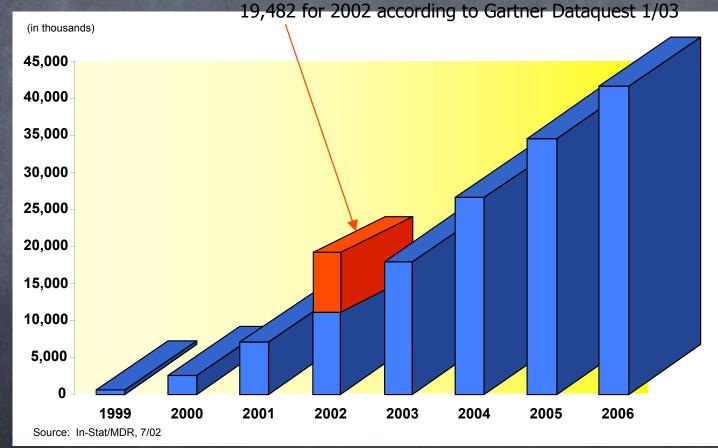
The Convergence of Ubiquity: The Future of Wireless Security

William A. Arbaugh Department of Computer Science and UMIACS University of Maryland College Park, MD waa@cs.umd.edu http://www.cs.umd.edu/~waa

Talk Overview (with apologies to Dickens)

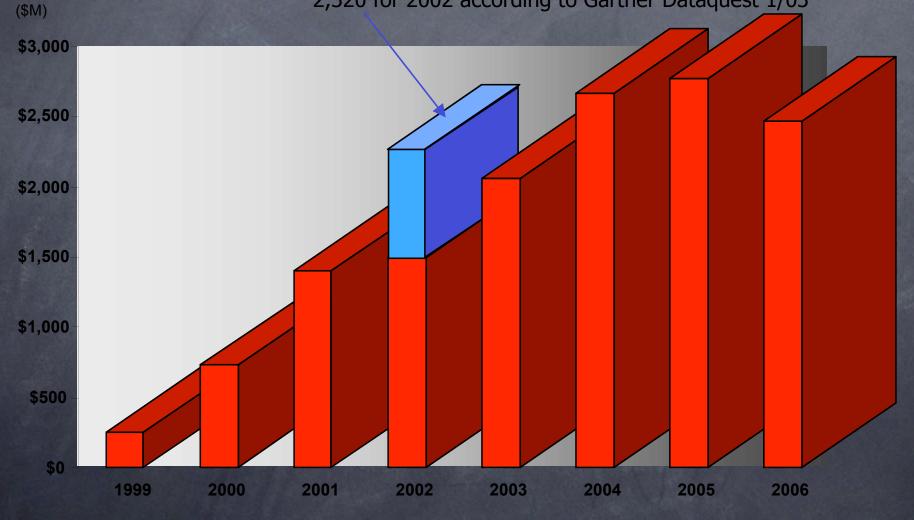
Wireless Networking Overview

- Why Wireless Security is Different
- Hop by Hop vs. End to End


The Ghosts of Wireless Security Past

- The Ghosts of Wireless Security Present
 - Wi-Fi Protected Access
 - Denial of Service

- The Ghosts of Wireless Security Future
 - Trends
 - Interworking
 - Device security


Wireless Networking is Experiencing Exponential Growth

WLAN Shipments

WLAN Sales

2,320 for 2002 according to Gartner Dataquest 1/03

Source: In-Stat/MDR, 7/02

Wireless Networking

The next Internet, or

or the next Bubble?

The Future of WLAN's?

4*G*? Hot spot coverage only ala Boingo et. al? Or some sort of overlay blend? Regardless- the rapid growth will continue.

WLAN Urban Legend

- 802.11b is "secure" because it uses frequency hopping or spread spectrum!
- Using IPsec or SSH is all that's needed to provide complete security!
- I haven't heard of anyone's WLAN being exploitedso I'm OK!
- All of the known attacks require a sniffer which is difficult to find and expensive. Thus, you're safe!
- Attacking WLANs requires expensive and specialized tools!

The Threat

In general, there are four threat classes¹:

Journeymen (Class 0)

- Experts (Class 1)
- Insiders (Class 2)
- Well funded professionals (Class 3)

1. Modifications to the model originally proposed by [Abraham et. al.].

Why Wireless Security is Different

 An attacker has access to the transport medium of your network!

Essentially elevates the experts to an insider (higher threat)

The Wireless Threat

Used with permission from KARS: http://www.ittc.ku.edu/wlan/

Hop by Hop vs. End to End

- End to end security is necessary, but only sufficient <u>if and only if</u> strong mutual authentication occurs.
 - PEAP attack [Asokan, et.al.]
 - Human factors, e.g. "Social Engineering"
 - Requires global non-forgeable identity

• End to End <u>can not</u> guarantee availability!

- Routing attacks
- Michael DoS (We'll see this later)

Wired Equivalent Privacy

- What exactly does that mean?
- My guess:
 - Prevent unauthorized use (access control, authentication, and integrity)
 - Prevent unauthorized disclosure (confidentiality)
 - Prevent unauthorized eavesdropping (Not likely to happen in consumer wireless)

Identity

- The current standard only uses the MAC address as a form of identity.
 - Unfortunately, the MAC address is malleable and further compounded by inadequate cryptographic binding [Walker, Borisov et. al., Arbaugh et. al.].
- The future standard uses two forms of identity: MAC address at the link layer, and a user ID at the network layer.
 - Requires cryptographic binding between the two ID's [Mishra et. al.].
- nb. History buffs will remember that the AMPS (Cellular) system made the same mistake with the equipment serial number (ESN).

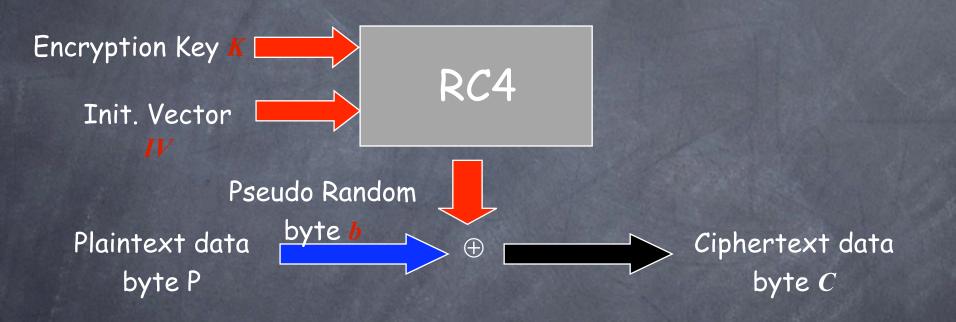
Access Control

MAC access control lists

MAC address is forgeable [Arbaugh et. al.]

Proprietary "closed network" used a shared secret as access token.

 Access tokens broadcast in the clear in management frames [Arbaugh et. al.]


nb. Here the reliance on the expense/difficulty in eavesdropping as a security mechanism is again a mistake the cellular community made.

Integrity

 The lack of any message authenticity mechanism, or the reliance on error detection (CRC) for integrity protection.

 A linear CRC combined with a linear combiner, XOR, allows "bit flipping" [Borisov et. al.].

WEP Block Diagram

Decryption works the same way: $P = C \oplus b$

Confidentiality

IV space is only 2²⁴

 \blacklozenge

- Creates Depth [Walker, Borisov et. al.]
 - $c_1 \oplus c_2 = (p_1 \oplus r) \oplus (p_2 \oplus r) = p_1 \oplus p_2$
- Lack of Replay protection combined with stream cipher
 - Asynchronous known plaintext attack [Walker, Borisov et. al.]
 - Synchronous known plaintext attack [Arbaugh]
- IV as first part of key
 - Induces several classes of weak IV's. The most damaging being when the IV is of the form <n,FF,x> [Fluhrer et. al.]

Mitigating FMS

- Most all vendors have implemented IV filtering to prevent FMS attacks.
- Reduces IV space from 2²⁴ to 2¹⁸ in some cases.
- Prevents FMS attack that required on average several hours, but
- Reduces the work-factor of a previous attack (Inductive Chosen Plaintext) from 18 hours to 80 minutes!!!

Authentication

 The use of a challenge response system covered by a Vernam cipher.

 Eavesdropping on a single successful authentication provides the attacker the ability to authenticate at will [Arbaugh et. al., Borisov et. al., Walker]

The Ghosts of Wireless Security Present

Wi-Fi Protected Access (WPA)

- Announced early of this year by WECA
- Available real soon now
- Essentially a subset of IEEE draft
- Designed to support legacy equipment via new firmware and drivers

WPA

- Confidentiality: Per-packet keying via TKIP
- Message Authenticity: Michael algorithm via TKIP
- Access Control: IEEE 802.1x
- Authentication: EAP/TLS

WPA Commentary

- WPA will provide a tremendous increase in security
- However, WPA is based on several new and domain specific protocols
- As such- it SHOULD only be considered as an interim solution until Robust Security Network, aka WPA2, equipment becomes available

RSN aka WPA2

- Due "Real Soon Now" actually product won't ship until Q3 or Q4 2004.
- Will require hardware upgrades to support AES in most cases (some of the newer cards/AP's may not).

- Confidentiality: Per-packet keying via TKIP or AES CCMP
- Message Authenticity: Michael algorithm via TKIP or AES CCMP
- Access Control: IEEE 802.1x
- Authentication: EAP/TLS

Both WPA and RSN

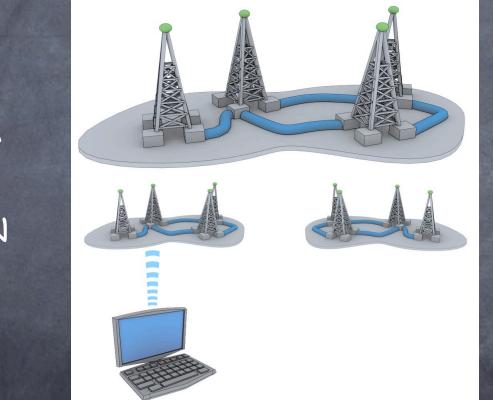
 will provide tremendous improvements in Confidentiality, Integrity, Authentication, and Access Control

- but
- Availability will remain an issue

Denial of Service

- ALL past, current, and future Wi-Fi standards are susceptible to Denial of Service attacks at multiple layers.
 - Layer 3 (EAP DoS)
 - Layer 2 (Michael DoS, unauthenticated management frames)
 - Layer 1 (CTS, Power Save)

The Ghosts of Wireless Security Future


Trends

- Computing devices shrinking and becoming more capable
- Networks becoming ubiquitous
- Users becoming more mobile
- Content becoming active
- Software defined radios appearing

What is Interworking

 Interworking permits the <u>user</u> to <u>transparently</u> roam between different networks- usually with different PHY and administrative domains.

Transparent Roaming / Interworking

CDMA

WLAN

Why is Interworking Important?

- Ubiquity : User's are demanding continuous connectivity.
 - Ease of use requirements demand transparency.
 - Sound business practice (and user privacy requirements) demand security.

Interworking Properties

- Security
 - Transparency
 - Simplicity

Availability User's :-) \$\$\$ Denial of Service Fraud User Complaints

Wireless Device Security and Firewalls

- In the future everything will radiate- your fridge, your picture frame, even down to small parts (RFID).
- Most of these devices will also have IP addresses- Imagine the headline:

Amazon DoS'd by Fridges, Toasters and phones - oh my!

Current Environment

- Small and large companies using Firewalls and anti-virus as the ONLY means of protection.
- Many home users connect via cable or DSL with no protection.
- Users are moderately mobile (Discrete Operation)
 - Laptops while traveling
 - VPN used to connect to office
- This simple operating model has created a significant management problem

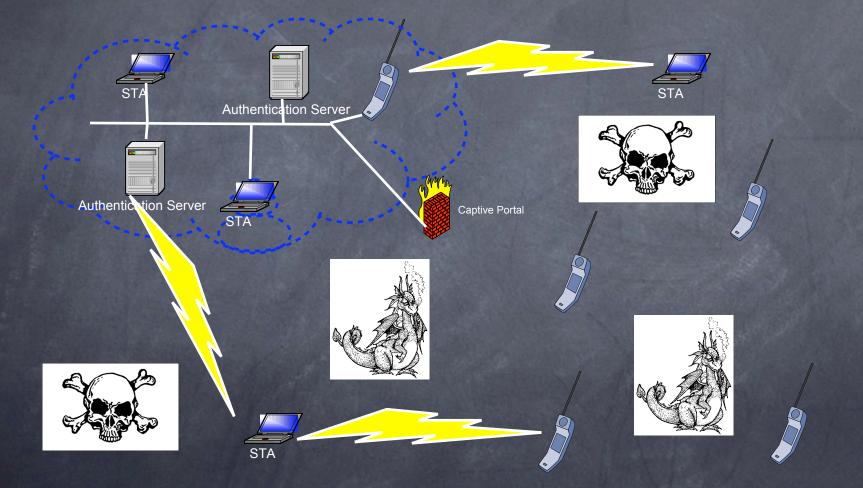
Today's Firewall

- Not as effective as a decade ago because of multiple "piercings"
 - User mobility creates potential vector for malice
 - Active content
 - User "creativity"
 - Crappy software
 - Peer to Peer programs

Future Environment

Dramatic increase in mobility (always on)

- Ubiquity of network access
- Ubiquity of more powerful computing devices
- IPv6, i.e. every device has a routable IP address
- Active content increasing
- Peer to Peer increasing


Future Environment

- Devices may require multiple management sources
 - A handset may need to receive updates from the manufacturer,
 - The developers of installed applications, and
 - Receive user and/or organizational data

Future Environment

- Management will become <u>significantly</u> more difficult
 - Separation of management instructions is a MUST,
 - Many organizations will want to be "in the loop" on all management instructions,
 - Devices are "always on"

The Future

Conclusions

 Things are bad, but they are getting better. However, numerous challenges exist before we can have complete and secure ubiquitous computing.