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Cyclone: A safe dialect of C

Trevor Jim∗ Greg Morrisett† Dan Grossman† Michael Hicks†

James Cheney† Yanling Wang†

Abstract

Cyclone is a safe dialect of C. It has been designed
from the ground up to prevent the buffer overflows,
format string attacks, and memory management er-
rors that are common in C programs, while retain-
ing C’s syntax and semantics. This paper examines
safety violations enabled by C’s design, and shows
how Cyclone avoids them, without giving up C’s
hallmark control over low-level details such as data
representation and memory management.

1 Introduction

It is a commonly held belief in the security commu-
nity that safety violations such as buffer overflows
are unprofessional and even downright sloppy. This
recent quote [33] is typical:

Common errors that cause vulnerabilities
— buffer overflows, poor handling of unex-
pected types and amounts of data — are
well understood. Unfortunately, features
still seem to be valued more highly among
manufacturers than reliability.

The implication is that safety violations can be pre-
vented just by changing priorities.

It’s true that highly trained and motivated program-
mers can produce extremely robust systems when
security is a top priority (witness OpenBSD). It’s
also true that most programmers can and should do
more to ensure the safety and security of the pro-
grams that they write. However, we believe that the
reasons that safety violations show up so often in C
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programs reach deeper than just poor training and
effort: they have their roots in the design of C itself.

Take buffer overflows, for example. Every introduc-
tory C programming course warns against them and
teaches techniques to avoid them, yet they continue
to be announced in security bulletins every week.
There are reasons for this that are more fundamen-
tal than poor training:

• One cause of buffer overflows in C is bad pointer
arithmetic, and arithmetic is tricky. To put it
plainly, an off-by-one error can cause a buffer
overflow, and we will never be able to train pro-
grammers to the point where off-by-one errors
are completely eliminated.

• C uses NUL-terminated strings. This is crucial
for efficiency (a buffer can be allocated once and
used to hold many different strings of different
lengths before deallocation), but there is always
a danger of overwriting the NUL terminator,
usually leading to a buffer overflow in a library
function. Some library functions (strcat) have
alternate versions (strncat) that help, by let-
ting the programmer give a bound on the length
of a string argument, but there are many dozens
of functions in POSIX with no such alternative.

• Out-of-bounds pointers are commonplace in C.
The standard way to iterate over the elements
of an array is to start with a pointer to the first
element and increment it until it is just past
the end of the array. This is blessed by the
C standard, which states that the address just
past the end of any array must be valid. When
out-of-bounds pointers are common, you have
to expect that occasionally one will be derefer-
enced or assigned, causing a buffer overflow.

In short, the design of the C programming language
encourages programming at the edge of safety. This
makes programs efficient but also vulnerable, and
leads us to conclude that safety violations are likely



to remain common in C programs. A number of
studies bear this out [23, 11, 28, 18].

If C programs are unsafe, it is tempting to suggest
that all programs be written in a safe language like
Java (or ML, or Modula-3, or even 40-year-old Lisp).
However, this is not a realistic solution for everyone.
For one thing, it abandons legacy code. For another,
all of the safe languages look very different from C:
they are high-level and abstract, they do not have
explicit memory management, and they do not give
programmers control over low-level data representa-
tions. These features make C unique, efficient, and
indispensable to systems programmers.

We are developing an alternative for those who want
safety but do not want to switch to a high-level lan-
guage: Cyclone, a dialect of C that has been de-
signed to prevent safety violations. Our goal is to
design Cyclone so that it has the safety guarantee
of Java (no valid program can commit a safety vio-
lation) while keeping C’s syntax, types, semantics,
and idioms intact. In Cyclone, as in C, programmers
can “feel the bits.” We think that C programmers
will have little trouble adapting to our dialect and
will find Cyclone to be an appropriate language for
many of the problems that ask for a C solution.

Cyclone has been in development for two years. In
total, we have written about 110,000 lines of Cy-
clone code, with about 35,000 lines for the compiler
itself, and 15,000 lines for supporting libraries and
tools, like a port of the Bison parser generator. We
have also ported about 50,000 lines of benchmark
applications, and are developing a streaming media
overlay network in Cyclone [27]. Cyclone is freely
available and comes with extensive documentation.
The compiler and most of the accompanying tools
are licensed under the GNU General Public License,
and most of the libraries are licensed under the GNU
LGPL.

This paper is a high-level overview of Cyclone.
It presents the design philosophy behind Cyclone,
gives an overview of the techniques we’ve used to
make a safe version of C, and reviews the history
of the project, the mistakes we’ve made, and the
course corrections that they inspired.

The remainder of the paper is organized as fol-
lows. Section 2 points out some of the features of C
that can lead to safety violations, and describes the
changes we made to prevent this in Cyclone. Sec-
tion 3 gives some details about our implementation

and its performance. Section 4 discusses the evolu-
tion of Cyclone’s design, pointing out key decisions
that we made and mistakes that we later reversed.
We discuss future work in Section 5. In section 6, we
discuss existing approaches to making C safer, and
explain how Cyclone’s approach is different. We
conclude in Section 7.

2 From C to Cyclone

Most of Cyclone’s language design comes directly
from C. Cyclone uses the C preprocessor, and, with
few exceptions, follows C’s lexical conventions and
grammar. Cyclone has pointers, arrays, structures,
unions, enumerations, and all of the usual floating
point and integer types; and they have the same
data representation in Cyclone as in C. Cyclone’s
standard library supports a large (and growing) sub-
set of POSIX. The intention is to make it easy for
C programmers to learn Cyclone, to port C code to
Cyclone, and to interface C code with Cyclone code.

The major differences between Cyclone and C are all
related to safety. The Cyclone compiler performs a
static analysis on source code, and inserts run-time
checks into the compiled output at places where the
analysis cannot determine that an operation is safe.
The compiler may also refuse to compile a program.
This may be because the program is truly unsafe,
or may be because the static analysis is not able to
guarantee that the program is safe, even by inserting
run-time checks. We reject some programs that a C
compiler would happily compile: this includes all
of the unsafe C programs as well as some perfectly
safe programs. We must reject some safe programs,
because it is impossible to implement an analysis
that perfectly separates the safe programs from the
unsafe programs.

When Cyclone rejects a safe C program, the pro-
grammer may choose to rewrite the program so that
our analysis can verify its safety. To make this eas-
ier, we have identified common C idioms that our
static analysis cannot handle, and have added fea-
tures to the language so that these idioms can be
programmed in Cyclone with only a few modifica-
tions. These modifications typically include adding
annotations that supply hints to the static analy-
sis, or that cause the program to maintain extra in-
formation needed for run-time checks (e.g., bounds
checks).



Table 1: Restrictions imposed by Cyclone to pre-
serve safety

• NULL checks are inserted to prevent segmenta-
tion faults

• Pointer arithmetic is restricted

• Pointers must be initialized before use

• Dangling pointers are prevented through region
analysis and limitations on free

• Only “safe” casts and unions are allowed

• goto into scopes is disallowed

• switch labels in different scopes are disallowed

• Pointer-returning functions must execute
return

• setjmp and longjmp are not supported

Cyclone can thus be understood by starting from C,
imposing some restrictions to preserve safety, and
adding features to regain common programming id-
ioms in a safe way. Cyclone’s restrictions are sum-
marized in Table 1, and its extensions are summa-
rized in Table 2.

Some of the techniques we use to make Cyclone
safe have been applied to C before, and there has
been a great deal of research on additional tech-
niques that we do not use in Cyclone. However,
previous projects have typically used only one or
two techniques, resulting in incomplete coverage.
For example, McGary’s bounded pointers protect
against some, but not all, array access violations
[26], and StackGuard protects against some, but not
all, buffer overflows [9]. Our goal with Cyclone is
to prevent all safety violations. Moreover, previous
projects have been presented as optional add-ons to
C, so in practice they are seldom used in production
code; Cyclone makes safety the default.

In the rest of this section, we illustrate Cyclone’s
features by giving examples of safety violations in
C code, explaining how Cyclone’s restrictions de-
tect and prevent them, and introducing the lan-
guage extensions that can be used to safely pro-
gram around the restrictions. Some of the safety vi-
olations we describe, like buffer overflows, can lead
to root exploits. All of them can lead to crashes,
which can be exploited to mount denial of service

Table 2: Extensions provided by Cyclone to safely
regain C programming idioms

• Never-NULL pointers do not require NULL checks

• “Fat” pointers support pointer arithmetic with
run-time bounds checking

• Growable regions support a form of safe manual
memory management

• Tagged unions support type-varying arguments

• Injections help automate the use of tagged
unions for programmers

• Polymorphism replaces some uses of void *

• Varargs are implemented with fat pointers

• Exceptions replace some uses of setjmp and
longjmp

attacks [6, 7, 12, 15, 25, 16].

NULL Consider the getc function:

int getc(FILE *);

If you call getc(NULL), what happens? The C stan-
dard gives no definitive answer. If getc is written
with safety in mind, it will perform a NULL check on
its argument. That would be inefficient in the com-
mon case, though, so the check is probably omitted,
leading to a segmentation fault.

Cyclone provides two solutions. The first is to auto-
matically insert run-time NULL checks when pointers
are used. For example, Cyclone will insert code into
the body of getc to do a NULL check when its argu-
ment is dereferenced.

This requires little effort from the programmer, but
the NULL checks slow down getc. To repair this, we
have extended Cyclone with a new kind of pointer,
called a “never-NULL” pointer, and indicated with
‘@’ instead of ‘*’. For example, in Cyclone you can
declare

int getc(FILE @);



indicating that getc expects a non-NULL FILE
pointer as its argument. This one-character change
tells Cyclone that it does not need to insert NULL
checks into the body of getc. If getc is called with
a possibly-NULL pointer, Cyclone will insert a NULL
check at the call :

extern FILE *f;
getc(f); // NULL check here

Cyclone prints a warning when it inserts the NULL
check. This can be suppressed with an explicit cast:

getc((FILE @)f); // Check w/o warning

A programmer can force the NULL check to occur
only once by declaring a new @-pointer variable, and
using the new variable at each call:

FILE @g = (FILE @)f; // NULL check here
getc(g); // No NULL check

Finally, constants like stdin are declared as @-
pointers in the first place, and functions can be de-
clared to return @-pointers. The effect is that NULL
checks can be pushed back from their uses all the
way to their sources. This is just as in C, except
that in Cyclone, the compiler can ensure that NULL
dereferences do not occur.

Never-NULL pointers are a perfect example of Cy-
clone’s design philosophy: safety is guaranteed, au-
tomatically if possible, and the programmer has
control over where any needed checks are performed.

Buffer overflows To prevent buffer overflows, we
restrict pointer arithmetic: Cyclone does not per-
mit pointer arithmetic on *-pointers or @-pointers.
Instead, we provide another kind of pointer, indi-
cated by ‘?’, which permits pointer arithmetic. A
?-pointer is represented by an address plus bounds
information; since the representation of a ?-pointer
takes up more space than a *-pointer or @-pointer,
we call it a “fat” pointer. The extra information in
a fat pointer allows Cyclone to determine the size
of the array pointed to, and to insert bounds checks
at pointer accesses to ensure safety.

Here’s an example of fat pointers in use — the string
length function written in Cyclone:

int strlen(const char ?s) {
int i, n;
if (!s) return 0;
n = s.size;
for (i = 0; i < n; i++,s++)
if (!*s) return i;

return n;
}

This looks like a C version of strlen, with two ex-
ceptions. First, we declare the argument s to be a
fat pointer to char, rather than a *-pointer. Sec-
ond, in the body of the function we are able to get
the size of the array pointed to by s, using the nota-
tion s.size. This lets us check that s is in-bounds
in the for loop. That means we are guaranteed that
we will never dereference s outside the bounds of
the string, even if the NUL terminator is missing.
In contrast, the C strlen will scan past the end of
a string that lacks a NUL terminator.

Fat pointers add overhead to programs, because
they take up more space than other pointers, and
because of inserted bounds checks. However, they
ensure safety, they give the programmer new capa-
bilities (finding the size of the base array), and the
programmer has explicit control over where they
are used. It’s easy to use ?-pointers in Cyclone.
A programmer who wants to use a ?-pointer only
needs to change a single character (‘*’ to ‘?’) in
a declaration. Arrays and strings are converted to
?-pointers as necessary (automatically by the com-
piler). A programmer can explicitly cast a ?-pointer
to a *-pointer (this inserts a bounds check) or to a
@-pointer (this inserts a NULL check and a bounds
check). A *-pointer or @-pointer can be cast to a ?-
pointer, without any checks; the resulting ?-pointer
has size 1.

Uninitialized pointers The following snippet of
C crashed one author’s Palm Pilot:

Form *f;
switch (event->eType) {
case frmOpenEvent:
f = FrmGetActiveForm(); ...

case ctlSelectEvent:
i = FrmGetObjectIndex(f, field); ...

}

This is part of a function that processes events. The
problem is that while the pointer f is properly ini-



tialized in the first case of the switch, it is (by over-
sight) not initialized in the second case. So when
the function FrmGetObjectIndex dereferences f, it
isn’t accessing a valid pointer, but rather an unpre-
dictable address — whatever was on the stack when
the space for f was allocated.

To prevent this in Cyclone, we perform a static anal-
ysis on the source code. The analysis detects that
f might be uninitialized in the second case, and the
compiler signals an error. Usually, this catches a
real bug, but there are times when our analysis isn’t
smart enough to figure out that something is prop-
erly initialized. This may force the programmer to
initialize variables earlier than in C.

We don’t consider it an error if non-pointers are
uninitialized. For example, if you declare a local
array of non-pointers, you can use it without ini-
tializing the elements:

char buf[64]; // contains garbage ..
sprintf(buf,"a"); // .. but no err here
char c = buf[20]; // .. or even here

This is common in C code; since these array accesses
are in-bounds, we allow them.

Dangling pointers Here is a naive (unsafe!) ver-
sion of a C function that takes an int and returns
its string representation:

char *itoa(int i) {
char buf[20];
sprintf(buf,"%d",i);
return buf;

}

The function allocates a character buffer on the
stack, prints the int into the buffer, and returns a
pointer to the buffer. The problem is that the caller
now has a pointer into deallocated stack space; this
can easily lead to safety violations.

It is easy for a C compiler to warn against return-
ing the address of a local variable, and, indeed, gcc
prints just such a warning for the example above.
However, this technique will not catch even the fol-
lowing simple variation:

char *itoa(int i) {

char buf[20];
char *z;
sprintf(buf,"%d",i);
z = buf;
return z;

}

Here, the address of buf is stored in the variable
z, and then z is returned. This passes gcc -Wall
without complaint.

Cyclone prevents the dereference of dangling point-
ers by performing a region analysis on the code. A
region is a segment of memory that is deallocated
all at once. For example, Cyclone considers all of
the local variables of a block to be in the same re-
gion, which is deallocated on exit from the block.
Cyclone’s static region analysis keeps track of what
region each pointer points into, and what regions
are live at any point in the program. Any derefer-
ence of a pointer into a non-live region is reported
as a compile-time error.

In this last example, Cyclone’s region analysis
knows that the address of buf is a pointer into the
local stack of itoa. The assignment to z tells Cy-
clone that z is also a pointer into itoa’s stack area.
Since the local stack area will be deallocated when
z is returned from itoa, we report an error.

Cyclone’s region analysis is intraprocedural — it is
not a whole-program analysis. We rely on program-
mer annotations to track regions across function
calls. For example, the strcat function is declared
as follows in Cyclone:

char ?‘r strcat(char ?‘r dest,
const char ? src);

Here ‘r is a region variable. The declaration says
that for any region ‘r, strcat takes a pointer dest
into region ‘r, and a pointer src, and returns a
pointer into region ‘r. (In fact, the C standard
specifies that strcat returns dest.) This informa-
tion enables Cyclone to correctly reject the following
program:

char ?itoa(int i) {
char buf[20];
sprintf(buf,"%d",i);
return strcat(buf, "");

}



The region analysis deduces that the result of the
call to strcat on buf points into the local stack
region of itoa, so it cannot be returned from the
function.

Cyclone’s region analysis is described in greater de-
tail in a separate paper [21].

Free C’s free function can create dangling point-
ers, and, depending on how it is implemented, can
cause segmentation faults or even root compromises
if used incorrectly (e.g., if it is called with a pointer
not returned by malloc [16], or if it is used to re-
claim the same block of memory twice [7]). It is
difficult to design an analysis that can guarantee
the correct use of pointers and free, so our current
solution is drastic: we make free a no-op.

Obviously, programmers still need a way to reclaim
heap-allocated data. We provide two ways. First,
the programmer can use an optional garbage collec-
tor. This is very helpful in getting existing C pro-
grams to port to Cyclone without many changes.
However, in many cases it constitutes an unaccept-
able loss of control.

We recognize that C programmers need explicit con-
trol over allocation and deallocation. Therefore,
Cyclone provides a feature called growable regions.
The following code declares a growable region, does
some allocation into the region, and deallocates the
region:

region h {
int *x = rmalloc(h,sizeof(int));
int ?y = rnew(h) { 1, 2, 3 };
char ?z = rprintf(h,"hello");

}

The code uses a region block to start a new, grow-
able region that lives on the heap. The region is
deallocated on exit from the block (without an ex-
plicit free). The variable h is a handle for the re-
gion and it is used to allocate into the region, in one
of several ways.

First, there is an rmalloc construct that behaves
like malloc except that it requires a region handle
as an argument; it allocates into the region of the
handle. In the example above, x is initialized with a
pointer to an int-sized chunk of memory allocated
in h’s region.

Second, the rnew construct is used when the pro-
grammer wants to allocate and initialize in a single
step. For example, y is initialized above as a fat
pointer to an array with elements 1, 2, and 3, allo-
cated in h’s region.

Finally, region handles may be passed to functions
like the library function rprintf. rprintf is like
sprintf, except that it does not print to a fixed-
sized buffer; instead it allocates a buffer in a region,
places the formatted output in the buffer, and re-
turns a pointer to the buffer. In the example above,
z is initialized with a pointer to the string “hello”
that is allocated in h’s region. Unlike sprintf, there
is no risk of a buffer overflow, and unlike snprintf,
there is no risk of passing a buffer that is too small.
Moreover, the allocated buffer will be freed when the
region goes out of scope, just as a stack-allocated
buffer would be.

Our region analysis knows that x, y, and z all point
into h’s region, and that the region is deallocated
on exit from the block. It uses this knowledge to
prevent dangling pointers into the region — for ex-
ample, it prohibits storing x into a global variable,
which could be used to (wrongly) access the region
after it is deallocated.

Growable regions are a safe version of arena-style
memory management, which is widely used (e.g.,
in Apache). C programmers use many other styles
of memory management, and we plan in the future
to extend Cyclone to accommodate more of them
safely. In the meantime, Cyclone is one of the very
few safe languages that supports safe, explicit mem-
ory management, without relying on a garbage col-
lector.

Type-varying arguments In C it is possible to
write a function that takes an argument whose type
varies from call to call. The printf function is a
familiar example:

printf("%d", 3); printf("%s", "hello");

In the first call to printf, the second argument is
an int, and in the next call, the second argument
is a char *. This is perfectly safe in this case, and
the compiler can even catch errors by examining
the format string to see what types the remaining
arguments should have. Unfortunately, the compiler
can’t catch all errors. Consider:



extern char *y; printf(y);

This is a lazy way to print the string y. The problem
is that, in general, y can contain % format directives,
causing printf to look for non-existent arguments
on the stack. The compiler can’t check this because
y is not a string literal. A core dump is not unlikely.

The danger is greater if the user of the program
gets to choose the string y. The %n format directive
causes printf to write the number of characters
printed so far into a location specified by a pointer
argument; it can be used to write an arbitrary value
to a location chosen by the attacker, leading to a
complete compromise. This is known as a format
string attack, and it is an increasingly common ex-
ploit [34].

We solve this in Cyclone in two steps. First, we add
tagged unions to the language:

tunion t {
Int(int);
Str(char ?);

};

This declares a new tagged union type, tunion t.
A tagged union has several cases, like an ordinary
union, but adds tags that distinguish the cases.
Here, tunion t has an int case with tag Int, and
a char ? case with tag Str. A function that takes
a tagged union as argument can look at the tags
to find out what case the argument is in, using an
extension of the switch statement:

void pr(tunion t x) {
switch (x) {
case &Int(i): printf("%d",i); break;
case &Str(s): printf("%s",s); break;
}

}

The first case of the switch will be executed if x
has tag Int; the variable i gets bound to the un-
derlying int, so it can be used in the body of the
case. Similarly, the second case is taken if x has tag
Str with underlying string s.

Tags enable the pr function above to correctly de-
tect the type of its argument. However, callers have
to explicitly add tags to the arguments. For exam-
ple, pr can be called as follows:

pr(new Int(4));
pr(new Str("hello"));

The first line calls pr with the int 4, adding the tag
Int with the notation new Int(4). The second call
does the same with string “hello” and tag Str.

Inserting the tags by hand is inconvenient, so we also
provide a second feature, automatic tag injection.
For example, in Cyclone, printf is declared

printf(char ?fmt, ... inject parg_t);

where parg_t is a tagged union containing all of the
possible types of arguments for printf. Cyclone’s
printf is called just as in C, without explicit tags:

printf("%s %i", "hello", 4);

The compiler inserts the correct tags automatically
(they are placed on the stack). The printf func-
tion itself accesses the tagged arguments through a
fat pointer (Cyclone’s varargs are bounds checked)
and uses switch to make sure the arguments have
the right type. This makes printf safe even if the
format string argument comes from user input —
Cyclone does not permit the printf programmer
to use the arguments in a type-inconsistent way.
Moreover, the tags let the programmer detect any
inconsistency at run time and take appropriate ac-
tion (e.g., return an error code or exit the program).

Type-varying arguments are used in many other
POSIX functions, including the scanf functions,
fcntl, ioctl, signal, and socket functions such
as bind and connect. Cyclone uses tagged unions
and injection to make sure that these functions are
called safely, while presenting the programmer with
the same interface as in C.

Goto C’s goto statements can lead to safety vi-
olations when they are used to jump into scopes.
Here is a simple example:

int z;
{ int x = 0xBAD; goto L; }
{ int *y = &z;
L: *y = 3; // Possible segfault

}



The program declares a variable z, then enters two
blocks in sequence. Many compilers stack allocate
the local variables of a block when it is entered, and
deallocate (pop) the storage when the block exits
(though this is not mandated by the C standard).
If the example is compiled in this way, then when
the program enters the first block, space for x is allo-
cated on the stack, and is initialized with the value
0xBAD. The goto jumps into the middle of the sec-
ond block, directly to the assignment to the contents
of the pointer y. Since y is the first (only) variable
declared in the second block, the assignment expects
y to be at the top of the stack. Unfortunately, that’s
exactly where x was allocated, so the program tries
to write to location 0xBAD, probably triggering a
segmentation fault.

Cyclone’s static analysis detects this situation and
signals an error. A goto that does not enter a scope
is safe, and is allowed in Cyclone. We apply the
same analysis to switch statements, which suffer
from a similar vulnerability in C.

Other vulnerabilities These are only a few of
the features of C that can be misused to cause safety
violations. Other examples are: bad casts; varargs
(as implemented in C); missing return statements;
violations of const qualifiers; and improper use of
unions. Cyclone’s analysis restricts these features
to prevent safety violations.

3 Implementation

The Cyclone compiler is implemented in approxi-
mately 35,000 lines of Cyclone. It consists of a
parser, a static analysis phase, and a simple transla-
tor to C. We use gcc as a back end and have also ex-
perimented with using Microsoft Visual C++. We
are able to use some existing tools (gdb, flex) and
we ported others completely to Cyclone (bison).
When a user compiles with garbage collection en-
abled, we use the Boehm-Demers-Weiser conserva-
tive garbage collector as an off-the-shelf component.
We have also built some useful utilities, including a
documentation generation tool and a memory pro-
filer.

In order to get a rough idea of the current and po-
tential performance of the language, we ported a
selection of benchmarks from C to Cyclone. The

Program LOC diffs

C Cyc # C % ? %

cacm 340 360 41 12% 0%
cfrac 4218 4215 134 3% 37%
finger 158 161 17 11% 12%
grobner 3260 3401 452 14% 24%
http get 529 530 44 8% 45%
http load 2072 2058 121 6% 24%
http ping 1072 1082 33 3% 33%
http post 607 609 51 8% 45%
matxmult 57 53 11 19% 9%
mini httpd 3005 3027 266 9% 46%
ncompress 1964 1986 134 7% 25%
tile 1345 1365 148 11% 32%

total 18627 18847 1452 8% 31%

regionized benchmarks

cfrac 4218 4192 503 12% 9%
mini httpd 3005 2986 531 18% 24%

total 7223 7178 1034 14% 16%

Table 3: Benchmark diffs

benchmarks were useful in testing Cyclone’s safety
guarantees as well as its performance: several of the
benchmarks had safety violations that were revealed
(and we subsequently fixed) when we ported them
to Cyclone. The process of porting also tested the
limitations of Cyclone’s interface to the C library
and forced us to provide more complete library sup-
port. For example, even small benchmarks such as
finger and http_get make use of parts of the C
library that the Cyclone compiler and other tools
do not, such as sockets and signals.

The benchmarks We tried to pick benchmarks
from a range of problem domains. For network-
ing, we used the mini_httpd web server; the web
utilities http_get, http_post, http_ping, and
http_load; and finger. The cfrac, grobner,
tile, and matxmult benchmarks are computation-
ally intensive C applications that make heavy use of
arrays and pointers. Finally, cacm and ncompress
are compression utilities. All of the benchmark pro-
grams, in both C and Cyclone, can be found on the
Cyclone homepage [10].

Ease of porting We have tried to design Cyclone
so that existing C code can be ported with few mod-
ifications. Table 3 quantifies the number of modifi-
cations we needed to port the benchmarks. For each
benchmark, the table shows the number of lines of



code in both the C and Cyclone versions. The diff #
column shows the number of lines changed in each
port, and the C % column shows the percentage of
lines changed relative to the original program size.
In porting the first grouping of benchmarks, we tried
to minimize changes. In particular, the benchmarks
involving non-trivial dynamic memory management
(cfrac, grobner, http_load, and tile), were com-
piled with the garbage collector in Cyclone; all other
benchmarks do not use the garbage collector. The
second grouping gives results for versions of bench-
marks that we modified to make use of Cyclone’s
growable regions wherever possible.

Usually fewer than 10% of the lines needed to
be changed to port the benchmarks to Cyclone.
One of the most common changes was changing C-
style * pointers to Cyclone ? pointers; for exam-
ple, changing char * to char ?. The ? % col-
umn of Table 3 shows the percentage of changes
that were of this form: generally, this simple change
accounted for 20–50% of changed lines. Most of
the other changes had to do with adapting to Cy-
clone’s stricter requirements for allocation, initial-
ization, const enforcement, and function proto-
typing. Typical changes of these forms included
changing malloc to new, adding explicit initializers,
adding explicit const type qualifiers to casts, and
ensuring that all functions have prototypes with ex-
plicit return values.

Performance Table 4 compares the performance
of the benchmarks in C, in Cyclone with bounds
checking enabled, and in Cyclone with bounds
checking disabled. Presently we do only very sim-
ple bounds-check elimination, because our effort to
date has focused on safety, rather than performance;
the gap between the second and third measurements
gives an upper bound for the improvement we can
expect from this in the future.

We ran each benchmark twenty-one times on a 750
MHz Pentium III with 256MB of RAM, running
Linux kernel 2.2.16-12, using gcc 2.96 as a back
end. We used the gcc flags -O3 and -march=i686
for compiling all the benchmarks. Because we
observed skewed distributions for the http bench-
marks, we report medians and semi-interquartile
ranges (SIQR).1 For the non-web benchmarks (and

1The semi-interquartile range is the difference between the
high quartile and the low quartile divided by 2. This is a
measure of variability, similar to standard deviation, recom-
mended for skewed distributions [22].

some of the web benchmarks as well) the median
and the mean were essentially identical, and the
standard deviation was at most 2% of the mean.

The table also shows the slowdown factor of Cyclone
relative to C. We achieve near-zero overhead for
I/O bound applications such as the web server and
the http programs, but there is a considerable over-
head for computationally-intensive benchmarks; the
worst is grobner, which is almost a factor of three
slower than the C version. We have seen slowdowns
of a factor of six in pathological scenarios involving
pointer arithmetic in other microbenchmarks not
listed here.

Two common sources of overhead in safe languages
are garbage collection and bounds checking. The
checked and unchecked columns of Table 4 show
that bounds checks are an important component of
our overhead, as expected. Garbage collection over-
head is not as easy to measure. Profiling the garbage
collected version of cfrac suggests that garbage col-
lection accounts for approximately half of its over-
head. Partially regionizing cfrac resulted in a 6%
improvement with bounds checks on; but regioniz-
ing can require significant changes to the program,
so the value of this comparison is not clear. We
expect that the overhead will vary widely for dif-
ferent programs depending on their memory usage
patterns; for example, http load and tile make
relatively little use of dynamic allocation, so they
have almost no garbage collection overhead.

Cyclone’s representation of fat pointers turned out
to be another important overhead. We represent
fat pointers with three words: the base address, the
bounds address, and the current pointer location
(essentially the same representation used by Mc-
Gary’s bounded pointers [26]). Compared to C’s
pointers, fat pointers have a larger space overhead,
larger cache footprint, increased parameter passing
overhead, and increased register pressure, especially
on the register-impoverished x86. Good code gen-
eration can make a big difference: we found that
using gcc’s -march=i686 flag increased the speed
of programs making heavy use of fat pointers (such
as cfrac and grobner) by as much as a factor of
two, because it causes gcc to use a more efficient
implementation of block copy.

Safety We found array bounds violations in three
benchmarks when we ported them from C to Cy-
clone: mini_httpd, grobner, and tile. This was a



Test C time(s) Cyclone time
checked(s) factor unchecked(s) factor

cacm 0.12 ± 0.00 0.15 ± 0.00 1.25× 0.14 ± 0.00 1.17×
cfrac† 2.30 ± 0.00 5.57 ± 0.01 2.42× 4.77 ± 0.01 2.07×
finger 0.54 ± 0.42 0.48 ± 0.15 0.89× 0.53 ± 0.16 0.98×
grobner† 0.03 ± 0.00 0.07 ± 0.00 2.85× 0.07 ± 0.00 2.49×
http get 0.32 ± 0.03 0.33 ± 0.02 1.03× 0.32 ± 0.06 1.00×
http load† 0.16 ± 0.00 0.16 ± 0.00 1.00× 0.16 ± 0.00 1.00×
http ping 0.06 ± 0.02 0.06 ± 0.02 1.00× 0.06 ± 0.01 1.00×
http post 0.04 ± 0.01 0.04 ± 0.00 1.00× 0.04 ± 0.01 1.00×
matxmult 1.37 ± 0.00 1.50 ± 0.00 1.09× 1.37 ± 0.00 1.00×
mini httpd-1.15c 2.05 ± 0.00 2.09 ± 0.00 1.02× 2.09 ± 0.00 1.02×
ncompress-4.2.4 0.14 ± 0.01 0.19 ± 0.00 1.36× 0.18 ± 0.00 1.29×
tile† 0.44 ± 0.00 0.74 ± 0.00 1.68× 0.67 ± 0.00 1.52×
†Compiled with the garbage collector

regionized benchmarks

cfrac 2.30 ± 0.00 5.22 ± 0.01 2.27× 4.55 ± 0.00 1.98×
mini httpd-1.15c 2.05 ± 0.00 2.09 ± 0.00 1.02× 2.08 ± 0.00 1.01×

Table 4: Benchmark performance

surprise, since at least one (grobner) dates back to
the mid 1980s. On the other hand, this is consistent
with research that shows that such bugs can linger
for years even in widely used software [28].

The mini_httpd web server consults a file,
.htpasswd, to decide whether to grant client access
to protected web pages. It tries to be careful not
to reveal the password file to clients. Ironically, the
code to protect the password file contains a safety
violation:

#define AUTH_FILE ".htpasswd"
... strcmp(&(file[strlen(file) -

sizeof(AUTH_FILE) + 1]),
AUTH_FILE) == 0 ...

The code is trying to see if the file requested by
the client is .htpasswd. Unfortunately, if file is a
string shorter than .htpasswd, then strcmp will be
passed an out-of-bounds pointer. This could result
in access to file being denied (if the region of mem-
ory just before the string constant ".htpasswd"
happens to contain that file name), or it could cause
the program to crash (if the region of memory is in-
accessible). Cyclone found the error with a run-time
bounds check.

The grobner benchmark had a more serious vio-
lation affecting both safety and correctness. The
program represents polynomials as arrays of coeffi-

cients, and has a multiply routine that handles poly-
nomials with a single coefficient as a special case.
Unfortunately, the code for the general case turns
out to be completely wrong: a loop is unrolled in-
correctly, and the multiplication ends up being ap-
plied to out-of-bounds pointers. As a result, the
answers returned are unpredictable. Four of the ten
test cases provided in the distribution follow this
code path (in our performance experiments above,
we consider only the six correct input cases). In
Cyclone, our bounds checks quickly illuminated the
source of the problem.

The tile program had array bounds violations due
to an off-by-one error and an order-of-evaluation
bug in this code:

if (snum > cur_sentsize)
mksentarrays(cur_sentsize,

cur_sentsize += GROWSENT);

The function mksentarrays reallocates several
global arrays. Reallocation is supposed to occur
when snum is greater than or equal to cur sentsize;
the if guard above has an off-by-one error. Cyclone
caught this with a bounds check in mksentarrays.
In addition, the first argument of mksentarrays
should be the old size of the array, and the second
argument should be the new size. Our platform uses
right-to-left evaluation, so the code above passes the
new size of the array to mksentarrays in both argu-



ments. Again, this was caught with a bounds check
in Cyclone. In C, the out-of-bounds access was not
caught, causing an incorrect initialization of the new
arrays.

4 Design history

Cyclone began as an offshoot of the Typed Assem-
bly Language (TAL) project [30, 20]. The TAL
project’s goal was to ensure program safety at the
machine code level, by adding machine-checkable
safety annotations to machine code. The machine
code annotations are not easy to produce by hand,
so we designed a simple, C-like language called Pop-
corn as a front end, and built a compiler that auto-
matically translates Popcorn to machine code plus
the necessary annotations.

Popcorn worked out well as a proof-of-concept for
TAL, but it had some disadvantages. It was C-like,
but different enough to make porting C code and in-
terfacing to C code difficult. It was also a language
that was used only by our own research group, and
was unlikely to be adopted by anyone else. Cyclone
is a reworking of Popcorn with two agendas: to fur-
ther our understanding of low-level safety, and to
gain outside adopters.

It turns out that taking C compatibility as a seri-
ous requirement was critical to advancing both of
these agendas. It was obvious from the start that
C compatibility would make Cyclone more appeal-
ing to others, but the idea that it would help us
to understand how to better design a safe low-level
language was a surprise.

C programmers don’t write the same kinds of pro-
grams as programmers in safe languages like Java —
they use many tricks that aren’t available in high-
level languages. While many C programs are not
100% safe, most are intended to be safe, and we
learned a great deal from porting systems code from
C to Cyclone. Often, we found that we had made
choices in the design of Cyclone that were holdovers
from ML [29], another language that we had worked
on. Some (most!) of these choices were right for ML,
but not for C, or for Cyclone, and we ended up fol-
lowing C more closely than we had expected at the
start.

All of this has played out gradually over the years of

Cyclone’s development. Here are some of the more
notable mistakes and course changes we’ve made:

• Originally, we supported arrays not with fat
pointers, but with a type array<t>, where t
is the element type of the array. An array<t>
could be passed to functions, and a value of
type array<t> supported subscripting, but not
pointer arithmetic. This matches up closely
with ML’s array types, and was a carryover
from when Popcorn was implemented in ML.
However, converting C code to use array<t>
was painful, requiring nontrivial editing of type
declarations, and converting pointer arithmetic
to array subscripting. We abandoned it for fat
pointers, which make it easy to port C code, re-
quiring only a few changes from ‘*’ to ‘?’, and
no changes to pointer arithmetic.

• We didn’t understand the importance of NUL-
terminated strings. NUL termination isn’t
guaranteed in C, so, for safety, we were com-
mitted to using explicit array bounds from the
beginning. The NUL seemed pointless, and
our first string library ignored it. As we pro-
grammed more in the language and ported C
code, we came to understand how important
NUL is to efficiency (memory reuse), and we
changed our string library to match up with
C’s.

• In C, a switch case by default falls through to
the next case, unless there is an explicit break.
This is exactly the opposite of what it should
be: most cases do not fall through, and, more-
over, when a case does fall through, it is prob-
ably a bug. Therefore, we added an explicit
fallthru statement, and used the rule that a
case would not fall through unless the fallthru
statement was used.

Our decision to “correct” C’s mistake was
wrong. It made porting error-prone because
we had to examine every switch statement to
look for intentional fall throughs, and add a
fallthru statement. We had also gotten rid of
any special meaning of break within switch,
since it was no longer needed — consequently,
a break in a switch within a loop would break
to the head of the loop (in early versions of Cy-
clone). Eventually, we realized that we were
going against a basic instinct of every C pro-
grammer, without gaining much of anything, so
we restored C’s semantics of switch and break.



• We originally implemented tagged unions as an
extension of enumerations, since an enumera-
tion constant is like a case of a tagged union
with no associated value. Since a tagged union
is more general, we decided to just have one of
the two.

This was a mistake because in C, an enumer-
ation is really treated as int, and C program-
mers rely on this. It’s not uncommon to see
things like

x = (x+1)%3;

where x is an enumeration variable. We aren’t
able to do this with tagged unions, so we even-
tually separated them from enum.

5 Future work

C programmers use a wide variety of memory man-
agement strategies, but at the moment, Cyclone
supports only garbage collection and arena mem-
ory management. A major goal of the project going
forward will be to research ways to accommodate
other memory management strategies, while retain-
ing safety.

Another limitation of our current release is that as-
signments to fat pointers are not atomic, and hence,
are not thread-safe. We plan to address this by re-
quiring the programmer to acquire a lock before ac-
cessing a thread-shared fat pointer; this will be en-
forced by an extension of the type system. Locks
will not be necessary for thread-local fat pointers.

We are experimenting with a number of new pointer
representations. For instance, a pointer to a zero-
terminated array can be safely represented as just an
address, as long as the pointer only moves forward
inside the array, and the zero terminator is never
overridden. The new representations should make
it easier to interface to legacy C code as well as
improve on the space overhead of fat pointers.

Finally, we plan to explore ways to automatically
translate C programs into Cyclone. We have the
beginnings of this in the compiler itself (which tries
to report informative errors at places where code
needs to be modified), and in a tool we built to
semi-automatically construct a Cyclone interface to
C libraries.

6 Related work

There is an enormous body of research on making
C safer. Most techniques can be grouped into one
of the following strategies:

1. Static analysis. Programs like Lint crawl over C
source code and flag possible safety violations,
which the programmer can then review. Some
other examples are LCLint [17, 24], Metal [13,
14], SLAM [3, 2], PREfix [5], and cqual [32].

2. Inserting run-time checks. C’s assert state-
ments, the Safe-C system [1], and “debugging”
versions of libraries, like Electric Fence, cause
programs to perform sanity checks as they run.
This technique has been used to combat buffer
overflows [9, 4, 19] and printf format string
attacks [8].

3. Combining static analysis and run-time checks.
Systems like CCured [31] perform static anal-
yses to check source code for safety, and auto-
matically insert run-time checks where safety
cannot be guaranteed statically.

These are good techniques — Cyclone itself uses the
third strategy. However, except for CCured, none of
the above projects applies them in a way that comes
close to ruling out all of the safety violations found
in C. It is not hard for a program to pass LINT
and still crash, and even the more advanced check-
ing systems, like LCLint, SLAM, and Metal, do not
find all safety violations. We can say something sim-
ilar about all of the other systems mentioned above.
Furthermore, most of these systems are simply not
used — assert is probably the most popular, but it
is usually turned off when code is shipped to avoid
performance degradation.

CCured and Cyclone both seek to rule out all
safety violations. The main disadvantage of CCured
is that it takes control away from programmers.
CCured needs to maintain some extra bookkeeping
information in order to perform necessary run-time
checks, and it does this by modifying data repre-
sentations. For example, an int * might be rep-
resented by just an address, but it might also be
represented by an address plus extra data that al-
lows bounds checking. This means that CCured
has control over data representations, not the pro-
grammer; and, moreover, basic operations (derefer-
encing, pointer arithmetic) will have different costs,



depending on the decisions made by CCured. Fur-
thermore, CCured relies on a garbage collector, so
programmers have less control over memory man-
agement. All of these decisions were made because
CCured is most concerned with porting legacy code
with little or no change; Cyclone is concerned with
preserving C’s hallmark control over low-level de-
tails such as data representation and memory man-
agement, both when porting old code and writing
new code.

7 Conclusion

Cyclone is a C dialect that prevents safety violations
in programs using a combination of static analyses
and inserted run-time checks. Cyclone’s goal is to
accommodate C’s style of low-level programming,
while providing the same level of safety guaranteed
by high-level safe languages like Java — a level of
safety that has not been achieved by previous ap-
proaches.
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