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Abstract

Applications that use the Solaris threads application programming interface (API), e.g. thr_create(), mutex_lock(),
cond_signal(), etc. [1], are generally non-portable. Thus to port an application that uses Solaris threads to another
platform will require some degree of work.

Solaris now supports the POSIX threads API as well as the Solaris threads API. Therefore to make a Solaris
threaded application portable, the ideal is to re-code the threaded part of the application to use POSIX threads. How-
ever, the Solaris threads API has some unique functionality over the POSIX threads API. This can make the task of
converting a Solaris threaded application to use POSIX threads be very time-consuming and hence expensive, some-
times prohibitively so.

This paper outlines an alternative approach to porting applications that use the Solaris threads API, which is to use
an open-source Solaris-compatible threads library that layers upon a POSIX threads library. The objective is to allow
an otherwise-portable Solaris threaded application to be ported by simply rebuilding on the target platform using the
Solaris-compatible threads library and header-files. This reduces the cost of porting the application.

1 Introduction

1.1 Porting applications from Solaris

Many independent software vendors (ISVs) develop
applications on Sun’s Solaris platform. These applica-
tions may have used the Solaris threads1 API: this is
most likely for mature applications that pre-date the
POSIX threads2 API.

To port an application that uses the Solaris threads API
to another UNIX platform typically requires re-working
the application to use the POSIX threads API. Depend-

1 The Solaris threads API is a subset of the UNIX Inter-
national (UI) threads API, which is also supported by
SCO’s UnixWare 2.
2 POSIX threads refers to the thread-specific part of the
formal standard ISO/IEC 9945-1:1996 [POS96] that is
commonly known as POSIX 1003.1-1996. This stan-
dard integrates the original POSIX 1003.1-1990
[POS90] standard (base operating system API) with the
amendments 1003.1b-1993 (real-time extensions) and
1003.1c-1995 (threads). See Threaded Programming
Standards [2] and the comp.programming.threads FAQ
[3] for further information.

ing upon the application, the amount of re-working
needed may vary from simply being a matter of a few
editor substitutions, to re-engineering the application.

An alternative to requiring every Solaris threads appli-
cation to be re-worked for portability is to provide a
portable Solaris-compatible threads library. Once the
Solaris-compatible threads library has been ported to a
target platform, threaded Solaris applications may be
ported by just re-compiling.3 This paper describes a
Solaris-compatible threads library, for which the acro-
nym STL is used. An ISV porting a threaded Solaris
application may choose not to use STL, but may find
the details of the STL implementation useful to re-work
their application for portability.

1.2 Objective

The objective of STL is to provide a high degree of
Solaris threads compatibility on the target platform for
the minimum amount of effort. To reduce effort and
maximize portability, STL is layered upon the POSIX
threads library. This limits what STL is capable of, but
this was considered an acceptable compromise rather

3 But see also the section Non-objectives for a descrip-
tion of other potential porting issues.



than trying to implement a fully compatible Solaris
threads library from scratch.

1.3 Non-objectives

The scope of STL is limited to providing the Solaris
threads API. STL does not attempt to solve generic
porting issues such as:

• Differences in system and library calls.

• Architectural differences. E.g. 32 to 64 bits;
endianism, etc.

• Compiler and other build-tool differences.

Platform-specific porting guides such as the Sun Solaris
to Compaq Tru64 UNIX Porting Guide [4] cover these
sorts of issues.

1.4 Solaris Compatibility Libraries for
Tru64 UNIX

STL was originally developed as part of the Solaris
Compatibility Libraries (SCL) [5] for Compaq’s Tru64
UNIX operating system. SCL was developed to ease the
porting of Solaris applications to Tru64 UNIX.

SCL v1.1 was released in April 2000, and is available
for free download. SCL v1.1 provides:

• Solaris Threads: An implementation of Solaris
thread functions layered upon POSIX threads.

• Remote Procedure Calls: A port of Sun's freely
redistributable ONC RPC v2.3 software.

• Miscellaneous: Various library functions including
asynchronous I/O, large file support, wide character
and signal name functions.

SCL is supplied as-is, with no formal support. The SCL
source-code is freely available, and is included in the
download kit.

2 Implementation strategy

STL is written in the C programming language, and is
compiled to produce a shared object library, which is
supplied with two header files.

2.1 Comparing the Solaris threads API to
the POSIX threads API

Most threads APIs provide similar functionality of be-
ing able to create and manage a thread, and to create
and manage synchronization objects. The Solaris
threads API supports mutexes, condition variables,
read/write locks and semaphores as thread synchroniza-
tion objects. POSIX threads supports most of these syn-
chronization objects4, but does not include read/write
locks, which are an extension from the Single UNIX
Specification Version 2 (SUSv2) [UX98] for the UNIX
98 brand5. Therefore many UNIX systems that support
POSIX threads also support read/write locks.

In many cases the Solaris threads API and POSIX
threads API are almost identical. For example, consider
the kill function that sends a signal to another thread:

Solaris threads API:

int thr_kill(
thread_t target_thread_id,
int sig );

POSIX threads API:

int pthread_kill(
pthread_t target_thread_id,
int sig );

Both functions take the same parameters of a thread
identifier and signal number, although the thread identi-
fier type is different. Both functions return an integer
value, which if 0 indicates success.

In essence, to implement thr_kill(), STL first defines the
Solaris type thread_t to match the POSIX threads type
pthread_t, and then thr_kill() just becomes a jacket
routine to pthread_kill().

Mapping the Solaris threads types directly onto their
POSIX threads equivalents potentially allows an appli-
cation to mix Solaris thread API calls with POSIX
thread API calls. However, STL does not currently sup-
port this. To support mixing would require STL to in-
tercept application calls to some of the POSIX threads
functions for thread management, such as:

4 Actually, semaphores were defined by POSIX
1003.1b-1993 (real-time extensions) rather than POSIX
1003.1c-1995 (threads).
5 Specifically from the X/Open CAE Specification, Sys-
tem Interfaces and Headers, Issue 5 (also known as
XSH5) part of SUSv2.



• pthread_create()

• pthread_join()

• pthread_detach()

so that STL’s internal data structures are properly main-
tained. But mixing calls from the different APIs for
synchronization objects should not be an issue.

For most Solaris threads functions, the STL jacket rou-
tines have to perform extra work to ensure compatibil-
ity. Two examples are given later in this section.

There are a number of areas where Solaris threads pro-
vides functionality that is not available within POSIX
threads. The main areas are:

• Daemon threads.

• Joining any thread.

• Suspending and continuing a thread.

Each of these areas is described in a separate section.
There is also a section on getting and setting informa-
tion of another thread, which became necessary to im-
plement several pieces of Solaris threads functionality.

For details of STL’s functionality and restrictions, see
the SCL Users Guide [6]. Specifically, see section 3.2:
STL Functionality; Appendix A: Mapping of Solaris
thread types to POSIX thread types by STL, and Ap-
pendix B: Solaris thread functions implemented by STL.

2.2 STL design issues

The following decisions were made when designing and
implementing STL:

• Always try to be compatible with Solaris
threads, even if this may impact performance.

• Be compatible with both the documented be-
haviour and the undocumented, observed be-
haviour of Solaris threads.

Two examples are now described.

2.2.1 Function return values

STL implements many Solaris thread functions by call-
ing the equivalent POSIX threads routine. But often the
function return values documented for the two APIs
differ. STL handles this using the following rules:

• If the STL implementation of a Solaris routine
receives an error value from calling a POSIX
threads function, and that value matches one of
the error values documented for the Solaris
routine, then it just returns that value.

• If the STL implementation of a Solaris routine
receives an error value from calling a POSIX
threads function that does not match one of the
error values documented for the Solaris rou-
tine, then it maps the value to a valid Solaris
error value for that function, logs a message6,
and returns the mapped value.

Thus a Solaris application does not need changing to
handle the potentially different error value returns from
POSIX threads functions, because STL handles this.
But be aware that the reasons for a particular error value
may be quite different when using STL.

For example, consider the Solaris threads and Tru64
UNIX POSIX threads functions to perform a timed-wait
on a condition variable. The APIs are:

Solaris threads API:

int cond_timedwait(
cond_t *cvp,
mutex_t *mp,
timestruc_t *abstime );

Function return values documented on Solaris:

0: successful completion.

EFAULT: a parameter has an invalid address.

EINVAL: invalid abstime parameter: if ab-
stime is more than 100,000,000 seconds in the
future, or the nanoseconds field of abstime is
>= 1,000,000,000.

ETIME: the time specified by abstime has
passed.

The POSIX threads API:

int pthread_cond_timedwait(
pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime
);

6 See the Error Logging chapter of the SCL Users
Guide [6]. Requires setting the SCL_LOG_FILE envi-
ronment variable.



Function return values documented on Tru64 UNIX:

0: successful completion.

EINVAL: the value specified by cond, mutex
or abstime is invalid, or: the mutex was not
owned by the calling thread at the time of the
call, or: different mutexes are supplied for con-
current pthread_cond_timedwait() or
pthread_cond_wait() operations on the same
condition variable.

ETIMEDOUT: the time specified by abstime
has passed.

ENOMEM: the POSIX threads library cannot
acquire the memory needed to block using
statically initialised objects.

The Solaris cond_timedwait() function can return a
value of 0, EFAULT, EINVAL or ETIME. The
pthread_cond_timedwait() function on Tru64 UNIX
can return 0, EINVAL, ETIMEDOUT or ENOMEM.

If the STL implementation of cond_timedwait() re-
ceives an ENOMEM return value from calling
pthread_cond_timedwait(), then it maps this value to
EFAULT, which is one of those documented for the
Solaris function. This is because Solaris applications
might only check for specific error codes, rather than
just testing the status for success. Additionally, STL
logs a message to indicate when it is performing a map-
ping of error statuses (e.g. “ENOMEM from
pthread_cond_wait() mapped to EFAULT from
cond_timed_wait()”): these messages may be helpful to
understanding the real reason for a particular STL func-
tion return value.

Note that a message is only logged when the POSIX
threads function’s return value is mapped to a different
return value for the Solaris threads routine. For exam-
ple, with cond_timedwait():

• If STL’s cond_timedwait() is called with an
uninitialized mutex, then EINVAL is returned
from pthread_cond_timedwait() which is
passed back from cond_timedwait() with no
message logged because there is no mapping
of errors (even though the reason for the EIN-
VAL is different to what Solaris documents).

• If STL’s cond_timedwait() receives ETIME-
DOUT from pthread_cond_timedwait(), then it
maps this to ETIME and logs a message indi-
cating the mapping (even though the error
codes have the same meaning).

2.2.2 Documented and observed behav-
iour of synchronization objects

Solaris documents that synchronization objects that are
statically initialized to all zeros do not need to be ex-
plicitly initialized. It does not define the result when
attempting to use uninitialized objects as function pa-
rameters: the observed behaviour is that Solaris implic-
itly initialises the object. This is consistent with the So-
laris routines not having the error return EINVAL de-
fined for uninitialized objects.

POSIX threads documents and returns EINVAL when
uninitialized objects are used as parameters.

There is no portable way to validate that a POSIX
threads synchronization object has been initialized, so
STL does not support Solaris’ observed behaviour of
implicitly initializing uninitialized synchronization ob-
jects. Attempts to use an uninitialized object with STL
functions results in an error value being returned, and
typically an error-mapping message is logged. But there
is an exception for statically-initialized-to-zero objects:
STL tests for these, and will explicitly initialize them, to
conform to Solaris’ documented behaviour. These
checks will impact performance, but compatibility is the
main objective.

3 Daemon Threads

3.1 Introduction

Solaris threads provides the concept of daemon threads.
Solaris threads defines that a process terminates when
its last non-daemon thread terminates.7

POSIX threads does not support daemon threads. A
POSIX threads process terminates when its last thread
exits.

Daemon threads could be used by applications for
housekeeping tasks. For example, a daemon thread may
be created that periodically monitors disk space whilst
the application is running.

7 A threaded process will also terminate if any thread
calls exit(), either explicitly, or, for the main thread
only, implicitly if the main thread finishes without call-
ing pthread_exit() (POSIX threads) or thr_exit() (So-
laris threads).



3.2 Implementation

Conceptually, to implement support for daemon threads
is quite simple: a count of the number of non-daemon
threads must be maintained. This count may need ad-
justing when a thread is created, or when a thread ter-
minates. If the non-daemon thread count becomes zero,
then the process must be terminated.

The daemon-thread implementation sounds simple in
outline, but now we look at the implementation in more
detail. It requires:

• Keeping a global count of the number of non-
daemon threads.

Updates to the count need to be coordinated by
using a mutex.

• Knowing when a thread is created, and
whether it is a daemon or not.

A daemon thread is created when the
THR_DAEMON bit is set in the flags parame-
ter to thr_create().

• Knowing when a thread terminates, and
whether it is a daemon or not.

Adjust non-daemon thread count if appropri-
ate; if count is now zero, terminate the process.

The tricky bit here is the last bit: to know when a thread
terminates, and to determine if it is a daemon-thread or
not. The non-daemon thread count has to be decre-
mented if the terminating thread is not a daemon.
Thread-specific data, along with a destructor-routine, is
used to implement this. This works as follows.

When STL initializes, it creates a thread-specific data
key STL.tsd_key, and associates a destructor routine,
stl_tsd_key_destructor(), with that key. When a thread
that has data associated with STL.tsd_key terminates, it
runs the stl_tsd_key_destructor() routine.8

When a new thread is created by calling thr_create(),
the STL implementation of thr_create() dynamically
allocates some memory M for a stl_tsd_t data structure,
and fills in its fields. The stl_tsd_t structure has fields
for:

8 An important feature of the thread-specific data de-
structor routine is that this routine always gets called,
regardless of how the thread terminates.

• The flags parameter to thr_create().

• The start-routine parameter to thr_create().

• The arg parameter to thr_create().

STL’s thr_create() then calls pthread_create() but
specifies stl_thread_start_rtn() as the start-routine pa-
rameter, and M as the start-routine argument.

When the new thread starts, it first executes
stl_thread_start_rtn( M ). Within this routine the thread
makes the memory M into thread-specific data for this
thread by calling pthread_setspecific( STL.tsd_key, M ).
The new thread also determines from the thread’s at-
tribute flags in M if it is a daemon thread, and if not
then the count of non-daemon threads is incremented.

The new thread then calls the user-specified start-
routine with the user-specified argument, which are both
extracted from M.

When the new thread terminates, it automatically exe-
cutes the stl_tsd_key_destructor() routine. Ultimately,
this frees up the memory M, but first it extracts the
thread’s attribute-flags from M, and determines from the
flags whether this thread is a daemon thread or not. If
the thread is not a daemon, then the count of non-
daemon threads is decremented; and if this count is now
zero, then process is terminated by calling exit().

3.3 Daemon thread considerations

On Solaris, when a Solaris-threaded process forks, the
child process has a copy of all the threads, whereas with
POSIX threads the child only has one thread. Hence the
STL count of non-daemon threads needs resetting. This
is implemented by calling pthread_atfork() to declare a
routine which is invoked by the child process after a
fork, that resets the thread count.

For STL to support the mixing of Solaris threads and
POSIX threads calls, which Solaris allows, it would
need to intercept calls to pthread_create() to increment
the non-daemon thread count.

4 Getting and setting information of an-
other thread

Normally a thread only needs to access its own thread-
specific data, which it can readily find by calling
pthread_getspecific(). However, there are a few in-



stances when it is necessary for one thread to access
another thread’s STL thread-specific data. For example:

• when thr_getprio() or thr_setprio() are called,
to get/set another thread’s priority.9

• when pthread_detach() is called, to make the
target thread detached.

So a mechanism is needed whereby one thread can find
and access another thread’s STL thread-specific data.

4.1 List of Current Threads

STL maintains a list of all the current threads in the
process. One thread can search the list of current
threads to find and subsequently access another thread’s
STL thread-specific data.

The list of current threads is currently implemented as
an unsorted linked list. The STL thread-specific data-
structure stl_tsd_t is extended to make it be an element
of the linked-list by adding pointers to the next and pre-

9 Solaris provides functions to set and get a thread's
priority. Since the POSIX threads API has no direct
equivalent to explicitly get or set a thread’s priority,
STL only stores a thread's priority so that thr_getprio()
returns the value set by thr_setprio().

vious entries in the list. These two pointers make it
quicker for a thread to unlink itself from the list. The
stl_tsd_t structure is also extended to include the thread
identifier tid of that thread, and a mutex for that thread.
If one thread wants to get or set another thread’s attrib-
utes, then it must lock the target thread’s mutex.

A global pointer, STL.lists.current_threads_list_head,
points to the head of the list of current threads. New
thread-list entries are added to the head of the list. The
list will never be empty, except when the last thread of a
process is terminating.

Access to the list is coordinated by a read/write lock,
STL.lists.current_threads_list_lock. The read/write lock
gives better concurrency than a mutex, because write-
access to the list is only required when a thread is being
created (added to the list) or terminating (removed from
the list).

Figure 1 illustrates the current-threads list.

Only the thread itself can add itself to the list of current
threads, or remove itself from the list of current threads.
This has implications for the locking assumptions. A
new thread adds itself to the current-threads list by exe-
cuting code within the stl_thread_start_rtn() routine. A
thread removes itself from the list when it terminates by
executing code within the stl_tsd_key_destructor() rou-
tine.

Figure 1. List of current threads.
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read/write lock
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The STL implementation currently uses a linear search
to locate a specified thread’s stl_tsd_t entry. This may
have poor-performance implications when the number
of current-threads is large, but this is considered accept-
able based on the premise that it is not that often that
one thread modifies another thread’s stl_tsd_t entry.
Usually a thread will modify its own stl_tsd_t entry,
which it finds quickly by calling pthread_getspecific().
Thus to implement a function like thr_setprio(tid,pri)
the sequence of events is:

• Lock the current-threads-list for reading.
• Search the current-threads-list, starting from

the list-head:
o If list-entry’s thread-ID matches the

one we’re looking for, then:
! Lock that thread’s mutex
! Access that thread’s data
! Unlock target thread’s mutex
! Set return_status to indicate

success
! Break out of search

o Else:
! Move on to the next thread’s

entry in list
! If this is the end of the list

• Set return_status to
indicate thread not
found (ESRCH)

• Unlock the current-threads-list
• Return return_status

5 Joining any thread

5.1 Introduction

When a non-detached Solaris or POSIX thread termi-
nates, it should be joined to obtain its return-status, and
to enable the threads library to release any resources
that were not released when the thread terminated. Fail-
ure to join a non-detached thread results in a zombie10-
like thread, which can cause memory leaks.

Compare the Solaris threads and POSIX threads APIs
for joining a thread:

10 In UNIX, a zombie process is a process that has ter-
minated but has not been reaped by the parent process
calling one of the wait() system calls.

Solaris threads API:

int thr_join(
thread_t tid,
thread_t *ret_tid,
void **ret_val );

POSIX threads API:

int pthread_join(
pthread_t tid,
void **ret_val );

Both the Solaris threads and POSIX threads APIs let
you join with a specific thread identified by tid. In addi-
tion, if you specify a thread identifier tid of 0 on Solaris,
thr_join() will join with any terminated non-detached
thread that has not yet been joined, and will return the
identifier of the joined thread in ret_tid. If there are no
non-detached terminated threads waiting to be joined,
then thr_join() with a tid of 0 will wait for the first such
thread to terminate, and will join with it. This unique
Solaris functionality is called join-any-thread.

Note that when a joinable thread terminates, there may
be zero, one or many threads waiting to join that spe-
cific thread, as well as other threads waiting to join any
thread. Solaris does not define the behaviour for this
situation, but STL gives preference to the thread(s)
waiting to join the specific thread over the threads wait-
ing to join an unspecified thread.

5.2 Implementation

Three new lists are used by STL to implement join-any-
thread:

1. List of threads waiting to join a specific thread
(join-specific list).

2. List of threads waiting to join any thread (join-
any list).

3. List of joinable threads that have terminated
and are awaiting joining (terminated list).

The format of these lists is illustrated in Figure 2. Code
is added to thr_join() and to the STL thread-specific
data destructor routine to maintain these lists. The
pseudo-code is shown below.



5.2.1 To join with a specific thread:

• If (specific thread exists in list of current
threads) and (specific thread is joinable [not
detached])

o Add an entry for this thread to the
join-specific list

• pthread_join( specific_thread, ret_val )

5.2.2 To join with any thread:

• If (terminated-list is not empty)
o Remove entry from head of termi-

nated-list; extract terminated thread
ID

• Else
o Add a new entry with tid=0 to the

join-any list
o Block until the join-any list entry con-

tains a suitable terminated thread ID
to join with

o Remove our entry from the join-any
list

• pthread_join( terminated thread ID, ret_val )

5.2.3 When a thread terminates:

• If (terminating thread is detached)
o Return /* thread is not joinable */

• If (join-specific list has any entries that match
this thread’s ID)

o Remove all matching entries from the
list

• Else if (join-any list is not empty)
o Put terminating thread’s ID into the

entry at head of list, and unblock the
waiting thread

• Else
o Add this thread’s ID to the terminated

list
• /* thread now finally terminates */

6 Suspending and Continuing a thread

6.1 Introduction

The Solaris threads API allows one thread to stop and
re-start another thread by calling the functions:

int thr_suspend( thread_t tid );

Figure 2. Lists to implement join-any-tread.

Three lists, all follow the same format (immediately below), but contain different data (see
table below).

Contents of list entry:

Join-specific list Join-any list Terminated list
• ID of specific
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to 0. Used by waiter as a predicate for
a pthread_cond_wait() loop

• Mutex
• Condition Variable

• ID of terminated
thread
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.next

..
…
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..
…

List head

List mutex



int thr_continue( thread_t tid );

Threads can also be created in a suspended state by
setting the flags parameter to thr_create().

POSIX threads does not support the suspend and con-
tinue operations on a thread.

6.2 Implementation

To implement thr_suspend() and thr_continue(), two
approaches were considered:

1. Tell the thread scheduler that the specified
thread is to be suspended and hence not sched-
uled to run until further notice.

2. Asynchronously interrupt the to-be-suspended
thread.

The first approach is ruled out because it would require
changes to the underlying POSIX threads implementa-
tion or operating system. Thus an asynchronous mecha-
nism to interrupt another thread is required. The only
suitable mechanism available is signals.

It is worth noting that in threaded programs, a signal
handler is process wide (i.e. the same for all threads),
and the signal mask of blocked signals is thread-specific
(i.e. can vary per thread).

In the book Programming with POSIX Threads [7],
there is an example implementation of the thread-
suspend and thread-continue routines, which uses two
signals for suspend and continue respectively. This
forms the basis of the STL implementation of
thr_suspend() and thr_continue(), with a few modifica-
tions.

In essence, STL implements thr_suspend() by calling
pthread_kill() to send a suspend signal to the target
thread. The signal handler for the suspend signal then
calls sigwait() to block until it receives a continue sig-
nal. sigwait() is one of the few functions that can be
safely called from within a signal handler.11

A suspended thread is resumed by another thread call-
ing thr_continue(). This function is also implemented
by calling pthread_kill(), but sends a continue signal to
the target thread. The signal handler for the continue

11 POSIX 1003.1-1996 defines which functions are re-
entrant with respect to POSIX signals.

signal is a null routine. Upon receipt of the continue
signal the target thread returns from both the continue
and suspend signal handlers to resume whatever it was
doing.

By default on Tru64 UNIX, STL uses SIGUSR1 as the
suspend signal, and SIGUSR2 as the continue signal.
However, the signal numbers used by STL can be
changed by setting environment variables: see the SCL
Users Guide [6].

Solaris documents that thr_suspend() does not return
until the target thread is suspended. In other words, the
thread executing thr_suspend() needs to know that the
target thread has received the suspend signal. (A thread
may have temporarily blocked a set of signals, in which
case the suspend signal is pending until the thread un-
blocks that signal). Thus within the suspend signal han-
dler routine, the thread being suspended needs to indi-
cate to the caller of thr_suspend() that it is now sus-
pended. A global semaphore is used for this purpose.
The suspended thread calls sem_post(), which the
thread executing thr_suspend() waits upon by calling
sem_wait(). sem_post() is another function that can
safely be called from within a signal-handler.

6.3 Further complications

The actual implementation has other factors to consider:

• The use of a global semaphore to acknowledge
that a thread is suspended means that STL
must serialize access to thr_suspend().

Actually, serializing access to thr_suspend()
has the advantage that it makes it easier to im-
plement, albeit at the expense of concurrency.

• STL needs to handle a thread suspending or
continuing itself, and handle threads that are
created in a suspended state.

• STL cannot allow the last non-suspended
thread to suspend itself: STL must return
EDEADLK in this situation, as documented by
Solaris.

• If one thread calls thr_suspend(X), and a frac-
tion later another thread calls thr_continue(X),



STL needs to ensure that the result is that
thread X is running, not suspended.12

This is achieved by serialising access to
thr_suspend() and thr_continue() by using the
same mutex for both functions.

• STL prevents a thread from being suspended
whilst it holds one of the internal STL locks
(such as a mutex for a join-any thread list) by
calling pthread_sigmask() to temporarily
blocking signals, to prevent the application
from hanging within STL.

7 STL Status

As previously stated, STL has been released as part of
the Solaris Compatibility Libraries for Tru64 UNIX.
STL is also being ported to Linux.

7.1 Linux port

A provisional STL library has been built on Linux, and
some test programs run. Problems with thread suspend
and continue have been encountered, and are as yet un-
resolved.13

It is hoped that the Linux version of STL will be com-
plete and available by the time of the USENIX Annual
Technical Conference in June 2001.

7.1.1 Experiences from the Linux port

The main requirements for porting STL to another plat-
form are that the target platform has an ANSI-C com-
piler ([ANSI89], ratified by [ISO90]), and a POSIX
threads library with the read/write locks extensions.

The GNU C compiler is being used on Linux, with the
-ansi and -Wall switches. This has flagged several
warnings, which is to be expected given that STL had
never been ported before. The code has been changed
and is now more portable.

12 When a thread processes its pending signals, there is
no guarantee that they are processed in the same order
that they were received.
13 Thread suspend and continue were most troublesome
in the original STL implementation on Tru64 UNIX.

When considering the Linux port of STL there was con-
cern about LinuxThreads [8], the POSIX threads library
on Linux. LinuxThreads implements POSIX threads by
creating separate processes with the clone() system call.
But the concern seems unfounded: the only real prob-
lem encountered so far with LinuxThreads is that
threads within the same (logical) process actually have
different process identifiers.

Initially it was thought that LinuxThreads did not have
POSIX threads’ read/write locks. The reasons for think-
ing this were:

• Most POSIX thread functions on Linux
have man-pages or info-pages, but the
read/write lock functions are not docu-
mented.

• A test program built on Linux got unre-
solved symbols for read/write locks.

The answer, found via the threads programming news-
group [9], was that when compiling you had to define:

_XOPEN_SOURCE=500

before including the <pthread.h> header-file, in addi-
tion to defining:

_POSIX_C_SOURCE=199506L

These explicit definitions are not necessary on Tru64
UNIX.

Two other problems have been encountered during the
Linux port. The first problem was trying to get the
shared object library to run an initialization routine.
This is achieved by specifying the

__attribute__ (( __constructor__ ))

directive, but you must use cc as the link driver, rather
than ld, for this directive to be recognized. The other
problem was with message catalogs, and the gencat
utility in particular. On Linux gencat is white-space
sensitive, in accordance with SUSv2. Thus with non-
conformant input (that happened to work on Tru64
UNIX), gencat on Linux produced blank messages. The
solution was to edit the input to gencat to be confor-
mant.

7.2 Performance

It is worth restating that STL performance, whilst desir-
able, has never been a goal: compatibility is the objec-
tive. Using STL will always incur some overhead com-
pared to using native POSIX threads.



Table 1 shows how STL affects the performance in a
couple of simple tests, where a test was coded in both
Solaris threads and POSIX threads. The tests were per-
formed using STL v1.1 on a Tru64 UNIX v5.1 system
(a Compaq Alphaserver ES40 with 4 CPUs, but with the
number of CPUs active varied from 1 through to 4).

The STL performance numbers look bad in isolation,
especially for thread create/join. But these should be
considered worst-case figures, and need to be viewed in
the context of how frequently each operation occurs in a
real application.

Table 1. Relative performance of POSIX threads
and STL threads for simple tests.

Test Ratio of POSIX:STL
performance

Loop of thread create
and thread join

varies from 7:1 to 3:1
(depends on # CPUs active)

Loop of mutex-lock and
mutex-unlock

1.1:1

For example, for the mutex-locking test loop, just a
single thread is executing, so that there is no contention
for the mutex. Consequently the fastest path is taken
through the POSIX mutex-locking code. In real applica-
tions there will probably be some contention for the
mutex, which may result in a locking-thread having to
do extra work to block on an already-locked mutex, and
the unlocking thread also having to do extra work to
wake up the blocked thread. This extra work will make
the overhead of STL be less apparent.

For the thread-create-and-join loop using STL, a con-
siderable amount of CPU time was observed being
spent in system-mode, compared to using native POSIX
threads. This indicates a high number of system calls,
the most probable cause being the calls to
pthread_sigmask() to block and restore signals when the
thread locks an STL resource.

The way an application uses threads is also a big factor
on STL performance. For example, consider how a
threaded program might be coded to find the first
10,000 prime numbers, using a 4-CPU system. One
approach might be to create a new worker-thread to test
if one specific number N is prime (for N = 1, 2, 3, 4,
etc.), and to have three of these worker threads concur-
rently active (the main thread makes four threads; i.e.
one per CPU). But a better approach would be to create
three “permanent” worker-threads that loop repeatedly,
testing successive numbers for prime. The latter ap-

proach requires more synchronization between the
threads to determine which number to test next,
(whereas in the former case the main thread can tell
each new thread which number to test via the user-
argument to the thread-create routine), but it avoids the
overhead of repeatedly creating threads. Both programs
require synchronization when a prime is found, to in-
crement a global counter and to store the new prime
number in a global array.

Table 2 shows the comparative performance of two
prime-number programs coded to each approach, using
both the native POSIX threads and STL. Values in the
table give the number of primes found per second, using
the 4-CPU ES40 again. Bear in mind that for half the
numbers tested for prime, the test will complete within a
very few instructions, because even numbers are not
prime.

Table 2. Performance of prime-number programs.
Results in primes-per-second: higher is better.

Program
POSIX
threads

STL
threads

Ratio
POSIX:STL

New thread for
every number

2.5K 0.6K 4.3:1

Three permanent
worker threads

63K 61K 1.03:1

The results show that for the case when a new thread is
created for every number being tested, the overhead of
STL’s thread-create and thread-join has considerable
impact: the STL program is over four times slower. But
by creating the worker-threads just once and using addi-
tional synchronization, the overall performance is much
higher in both cases, and the overhead of STL is mini-
mal.

The results confirm that the overhead of STL is substan-
tial for the areas of thread creation, thread termination,
and joining a thread. The results also show that the
overhead of STL for synchronization object manipula-
tion is low. It is envisaged that threaded applications
will use the synchronization routines much more fre-
quently than the thread routines, and hence the general
overhead of STL should be low.

7.3 Future plans

STL is open-source. The hope is that it will be en-
hanced and extended by anyone who finds it useful.



Completing the Linux port of STL should broaden its
potential use.

8 Summary

This paper describes STL, a Solaris-compatible threads
library, which layers upon a POSIX threads library.
STL enables applications that use the Solaris threads
API to be recompiled on another UNIX platform that
supports the POSIX threads API.

This paper describes the major functionality of STL,
and how it is implemented.

STL is freely available in open-source format as part of
SCL, and a binary library is available for Tru64 UNIX.
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