
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

User-Level Extensibility in the Mona File System�

Paul W. Schermerhorn Robert J. Minerick
Peter W. Rijks Vincent W. Freeh

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556
fpscherm1,rmineric,prijks,ving@cse.nd.edu

Abstract

An extensible file system raises the level of file abstrac-
tion which provides benefits to both the end-user and
programmer. The Modify-on-Access file system pro-
vides safe and simple user-defined extensibility through
transformations, which are modular operations on in-
put and output streams. A user inserts transformations
into input and output streams, which modify the data ac-
cessed. Untrusted transformations execute in user space
for safety. Performance of user-level transformations, al-
though much slower than that of in-kernel transforma-
tions, is comparable to other user-level approaches, such
as pipes.

This paper presents several interesting user-level
transformations. For example, the command transfor-
mation executes a shell script whose input and output
are routed from/to the file system. A file guarded by
the ftp transformation is a “mount” point to an FTP
server. The php transformation creates dynamic docu-
ments from PHP source when read. A file written to a
sound device that is guarded by the mp3 transformation
is decoded on the fly, in the file system, before reaching
the sound device.

Mona is a novel approach to file system extensibil-
ity that provides heretofore unseen flexibility. Mona is
fine-grained: a user defines actions on a per-file basis.
It is modular: transformations can be stacked upon one
another. Mona supports two classes of transformations:
kernel-resident and user-level.

1 Introduction

Unix-like operating systems have commonly used the file
system to provide hardware abstractions for applications
programmers. For example, Linux provides the devices

�This research was supported by NSF CAREER grant CCR-
9876073, the JPL HTMT Project, the Arthur J. Schmitt Fellowship,
and the ND Faculty Research Program.

/dev/audio and /dev/dsp (among others) to pro-
vide easy access to sound devices. Placing these abstrac-
tions in the file system allows programmers to simply
write to a file rather than have to go through the diffi-
cult process of passing data to a kernel module. This
is one of the tasks of an operating system—to facilitate
commonly-performed operations. However, the seman-
tic function of the file system has changed little over the
years. File systems can do more than provide generic ac-
cess to hardware devices. Raising the semantic level of
the file system provides benefits to both the end-user and
the programmer.

Performing common tasks at the file system level al-
lows applications to be written at a higher level. For ex-
ample, a file system that can decode an MP3 audio file
is able to provide a decoder file to which an application
writes a raw MP3 file, rather than decoding and writing it
to a device file. This relieves application programmers of
the responsibility to implement widely shared function-
ality. Furthermore, portability will be enhanced if the
programmer does not have to rewrite these common op-
erations for every target platform. End-users benefit by
having more stable software (because upgrades to com-
mon operations can be achieved more easily at a single
common point) and greater functionality (because appli-
cations will leverage common operations more readily).
The Modify-on-Access (Mona) file system provides safe
and simple extensibility, allowing file system extensions
to provide much of the functionality common to many
applications.

Mona is an extensible file system based on Linux’s
ext2 file system [9]. Mona has recently been ported to
the 2.4 series of the kernel from the 2.2 series. Mona
allows users to associate actions, called transformations,
with the input and output streams of files. These transfor-
mations operate on the data before it is passed on to the
user process accessing the file. This technique of push-
ing operations out of the application and into the file sys-
tem extends the capabilities of traditional file systems.
Furthermore, transformations may be stacked upon one

another to create complex functionality out of simpler
components.

The Mona file system supports both kernel and user-
level extensions. Many existing schemes to extend file
system functionality focus solely on kernel extensions.
While there are many cases in which kernel extensions
are the most appropriate mechanism, for many opera-
tions user-level extensibility is the better choice. We enu-
merate several reasons below.

� First, programming in user-space is much easier
than in the kernel. Commonly available libraries
(e.g., libc) can be used just as they can in applica-
tion programs, whereas few functions are available
to the kernel programmer.

� Second, debugging is much easier in user space than
in the kernel.

� Third, time-consuming extensions are scheduled
automatically by the system when implemented in
user-space. On the other hand, because the Linux
kernel is not preemptive, a long running extension
implemented in the kernel must explicitly schedule
itself.

� Finally, while it is obvious that no system can be
completely safe from malicious users and faulty
code, executing in user-space is much safer than ex-
ecuting in the kernel.

This paper describes user-level extensibility in the
Mona file system [9, 10]. Untrusted user-defined trans-
formations execute safely outside the kernel, modifying
data as it is read and written. Users associate zero or
more transformations the with input and output streams
of a file, which specialize the file system for a partic-
ular application or use. Although executing transfor-
mations in user-space is less efficient than executing in
the kernel, user-level transformations are efficient. Read
and write operations are approximately five times slower
when guarded by user-level transformations than when
guarded by kernel transformations. This overhead is not
noticeable for interactive operations, and is comparable
to the performance of Unix pipes.

Additionally, this paper describes several interesting
user-level file transformations, illustrating the possible
uses of a higher-level file system. For example, the ftp
transformation provides transparent access to files on a
remote FTP server. On a file access, the ftp transfor-
mation issues an FTP request to the designated remote
site, waits, and fills local buffers with the returned data.
The php transformation reads a raw PHP file from disk.
It parses the contents of the file and creates data for the
file buffers dynamically. Further, the mp3 transforma-
tion decodes MP3 files on the fly. Thus, an application

can simply write a raw MP3 file to a special file. The
file system takes care of decoding. Lastly, the command
transformation executes a program—often a simple shell
script. The command transformation redirects the I/O of
the program from/to the file system. As a result, extend-
ing the Mona file system is as simple as writing a shell
script.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the Mona file sys-
tem. Section 3 describes several transformations. Sec-
tion 4 discusses the export transformation that safely
executes user-level transformations in user space. Sec-
tion 5 presents measurements of the Mona file system
and the export transformation. Section 6 discusses re-
lated work. The last section presents our conclusions.

2 Mona File System Overview

Mona provides file system extensions as transforma-
tions, which modify streaming data [9]. A typical trans-
formation acts as a filter, reading input, then pushing
modified data downstream. Mona supports two types of
transformations: kernel and user-level. Common kernel
transformation code is downloaded into the kernel at the
time the Mona kernel module is inserted. Less frequently
used kernel transformations may also be added (and re-
moved) dynamically. User-level transformations are exe-
cuted in a user-level process that communicates with the
file system via the export kernel transformation, as de-
scribed in Section 4.

The Mona file system creates virtual files, whose con-
tents exist only in the file system while the virtual file
is open. There are two mechanisms for creating virtual
files: persistent and transient. A persistent transforma-
tion link, which is similar to a symbolic link, creates an
access point in the file system. Any program can access
a transformation link exactly as it would access an ordi-
nary file. A persistent transformation link exists until it
is explicitly removed.

The lnx utility creates persistent transformation
links—it is similar to ln. In the example below, the
lnx utility is used to create a persistent link to the file
/dev/audio with the fail transformation on the in-
put (read) and the mp3 transformation on the output
(write).

lnx /dev/audio mp3 -r fail_xform \
-w mp3_xform

When a program writes to the virtual file, mp3, the MP3
data that the program writes is decoded and written di-
rectly to the audio device /dev/audio. In this case,
there is no reason to read the virtual file, and so the fail
transformation guards the input stream. In this persistent

case, the virtual file exists for all programs to use until
the user explicitly deletes it.

Conversely, a transient transformation exists only as
long as the virtual file is open. A user creates a transient
data view by manipulating transformations at runtime. A
user pushes and pops transformations on the data streams
of an open file using the ioctl system call. The exam-
ple below pushes the fail transformation on the input
stream and the mp3 transformation on the output stream.

ioctl(fd, PUSH_INPUT,
"fail_xform /dev/audio");

ioctl(fd, PUSH_OUTPUT,
"mp3_xform /dev/audio");

This creates a virtual file identical to the persistent trans-
formation example above. However, the virtual file is
only accessible through the file descriptor, and is de-
stroyed when the file is closed.

Mona adds new functionality to the file system without
sacrificing backwards compatibility. Because Mona is
compatible with ext2, either file system may be used to
read and write media based on the other (of course, ext2
does not support the added functionality of Mona). The
Mona file system is a Linux kernel module, which can be
loaded and unloaded as needed.

In addition to maintaining compatibility with the ext2
file system, we have also demonstrated that the overhead
of using the Mona file system is negligible. When using
Mona as a traditional file system, i.e. without utilizing
its enhanced capabilities, an overhead of less than 1%
is incurred on read, write, and open system calls.
Additionally, tests have shown that Mona performs sim-
ilarly to ext2 for the PostMark suite of benchmarks, the
Andrew benchmark, and for kernel compilation. When
utilizing user-level transformations we have found that
little performance is sacrificed relative to what we be-
lieve is a large gain in functionality. In cases where a
network of transformations is used, we have found that
Mona can perform better than current models. Prelimi-
nary experiments have shown this to be true for emulat-
ing the functionality of Unix pipes, where we have shown
a clear performance advantage [8].

3 User-level Transformations

This section first presents a number of user-level trans-
formations that we have implemented to address real-
world problems. These transformations allow existing
mechanisms to be applied more broadly via the file sys-
tem, allowing users to solve new problems or to solve ex-
isting problems more easily. After demonstrating some
uses of user-level transformations, a brief tutorial on con-
structing user-level transformations is presented. Fi-

nally, the section concludes with a short discussion of
the benefits of user-level file system extensions.

3.1 Applications of User Transformations

An active file system raises the level of the file system
abstraction. The higher level of abstraction provides sig-
nificant benefit to both developers and end-users.

� Application code development is simpler. First,
there is less for the application to implement. Sec-
ond, code re-use is more likely because program-
mers can use the well understood file system inter-
face instead of having to learn a new API. Moreover,
there is a central location for code, which simplifies
upgrading systems.

� All applications can use the expanded capability–
even those that are not modified. For example, en-
cryption in the file system provides security to any
application that reads or writes data from a file.

� Novel file system semantics and structures can be
created. For example, locking or data consistency
can be provided by the file that is concurrently
shared—rather than by the applications (which may
not even be aware the file is shared). Other exam-
ples are remote access (FTP, HTTP), logging, jour-
naling, dynamic file creation (PHP), and file conver-
sion.

The above are the potential advantages of an active file
system. It is also a sampling of the potential uses of user-
level transformations. Mona’s flexibility and ease of pro-
gramming allow for many other uses.

Mona user-level transformations give programmers a
novel interface for code reuse. One example of this is
the mp3 transformation, which decodes MP3 audio files
on the fly. Suppose a virtual file guards the audio de-
vice with the mp3 transformation. Any program can now
write an MP3 encoded file to the virtual file. The mp3
transformation decodes the data in the file system, which
is given to the device. Not only do programmers avoid
the need to implement their own MP3 decoders, but hav-
ing the code at a centralized point makes updates easier.
Moreover, the code is associated with the device, not the
applications.

Some user-level transformations provide new ways of
using existing resources. The ftp transformation cre-
ates a common interface to local and remote files, al-
lowing users to navigate a remote FTP site as if it were
part of the local file system. A user executes ordinary
Unix executables (e.g., cd, ls, cp, etc.) to manipulate
remote files, eliminating the need for explicit file trans-
fer requests. A virtual file named foo.remote can be
a link to a file foo on a remote FTP site. When the user

reads the virtual file, the ftp transformation automati-
cally negotiates with the remote host and transfers foo
to the user’s local machine. Except for the latency of the
file transfer, the user may never know that the base file
exists only on a remote server. For public FTP access,
a user can use the generic ftp transformation. If a user
wants to access private data via FTP, she can recompile
the transformation to contain her username and password
and place the new shared library in her personal transfor-
mation directory.

A variety of archive transformations allow access to
the content of various archival formats, including tar,
rpm, deb, zoo, and zip files without unpacking the
archive. These transformations allow users read and
write access to the various archives without the need to
manually extract and re-archive those files. The similar
gzip and bzip2 transformations allow the same type
of manipulation on files in compressed form. The ftp,
archive, and compression user-level transformations all
demonstrate Mona’s flexibility and usefulness in provid-
ing new views and interfaces to existing resources.

User-level transformations can make use of existing
tools. The php transformation is an example of this.
PHP is a server-side, cross-platform, HTML embedded
scripting language. It allows developers to create scripts
that dynamically generate web pages. PHP is the most
popular module for the Apache web server, and is em-
ployed in creating dynamic content for a large number
of commercial web sites. The Mona php transformation
combines the power of PHP with the flexibility of the
Mona programming model. By moving PHP into a Mona
user-level transformation, we allow the creation and de-
livery of dynamic content via any transport method (e.g.
FTP, text editor, web browser, etc.).

Many web sites use PHP to parse a database file and
generate the day’s or week’s events on the fly. Using the
Mona PHP transformation, one can create a similar util-
ity that does not depend on server processing. Consider
guarding a user’s .plan file with the php transforma-
tion. The raw data in the .plan is a PHP script that
parses a database file. When any user reads this .plan,
the php transformation dynamically generates a user’s
plan from a database file that is specific to the current
date. This is an example of Mona’s ability to extend the
usefulness of an existing tool: e.g., serverless PHP.

The command transformation makes programming
file system extensions even easier. Comparable in some
ways to a traditional Unix command-line pipeline, this
transformation allows the user to execute arbitrary ex-
ecutables or shell scripts on input and output streams.
Text processing tools such as grep, sed, and gawk can
be placed on streams to automatically filter out unwanted
data. For example, if a user wants to print out only the
first field of each line, a transformation link bar.first

can be created pointing to a file bar.raw with the be-
low transformation on the input stream.

command /usr/bin/gawk ’{print \$1}’

The file bar.first appears as a normal file containing
just the first field of the records in the file bar.raw.

There are many other potential uses of the command
transformation. For example, a simple script could guard
an HTML file, which forces a reload of a browser when-
ever the base HTML changes. In this way, users edit
HTML files with their favorite editor, but can view up-to-
date renderings of the files in web browsers. In another
example, version control could be automated using the
rcs utility. Finally, if a user wishes to be notified when
a file is read or modified, the command transformation
can send mail automatically. In short, any program can
be associated with a data stream using the Mona file sys-
tem. This illustrates the flexibility that the Mona system
affords the user. Just as the export transformation is a
kernel-resident transformation built to allow transforma-
tions to be executed in user space, the command trans-
formation is a standard user-level transformation built to
allow executables to be associated with data streams.

3.2 Implementing a User Transformation

This section describes the construction of simple user-
level transformations. The implementation is primarily a
matter of creating a filter that conforms to a well-defined
function-call interface. A transformation has the follow-
ing calling interface:

int decompress_xform(
XformInfoPtr xf_ptr,
int input_bytes,
char *buffer,
int *state);

The transformation info pointer, xf ptr, uniquely iden-
tifies each instance of a transformation. In particular,
it contains information about data in the transformation
network and a pointer to memory that may be utilized by
the user to store data private to the current instance of
the transformation. The parameter input bytes pro-
vides the size of the data passed to the transformation via
the character pointer buffer. The last of the arguments
passed to a transformation is state, an integer pointer
to the “global” transformation state variable. Each trans-
formation returns the total number of bytes placed in the
buffer to be sent downstream to the next transformation
in the network, if one exists. Additionally, it sets state,
indicating whether all input has been consumed.

Figure 1 lists the source code of a simple decompres-
sion transformation. It takes an input buffer and passes it
to a decompression routine. The decompression routine

int decompress(char *, char *, int);
typedef struct decomp_data { int size; int sent; char* data; } d_data;
int dec_xform(XformInfoPtr xf_ptr, int input_bytes, char *buffer, int *state) {

d_data *data_ptr = (d_data *)xf_ptr->private_data;
int output_bytes;

if(decomp_data == NULL) {
decomp_data = (d_data *)malloc(sizeof(d_data)):
decomp_data->size = decompress(buffer, data_ptr->data, input_bytes);
decomp_data->sent = 0;

}
if((output_bytes = decomp_data->size - decomp_data->sent) > BLOCK_SIZE) {
memcpy(buffer, decomp_data->data, BLOCK_SIZE);
decomp_data->sent += BLOCK_SIZE;
*state = XF_CURRENT_HAS_DATA;

} else {
memcpy(buffer, decomp_data->data, output_bytes);
free(decomp_data->data);
free(decomp_data);
xf_ptr->private_data = NULL;
*state = XF_READY;

}
(output_bytes > BLOCK_SIZE) ? return(BLOCK_SIZE) : return(output_bytes);

}

Figure 1: Source code for the decompress transformation.

is responsible for managing the space required for the
new data, using the pointer passed by the transformation
to allocate memory. If the private data element of
the structure xf ptr is NULL, then a new block of data
has been sent. In that case, some initialization tasks are
performed, along with the decompression itself. If there
is more data than can fit in one block, one block is sent
along, and state is set to XF CURRENT HAS DATA.
This ensures that the current transformation will be
called again before more data from the source file is
passed in the buffer, allowing decompress xform to
continue sending the decompressed data until it has been
consumed. Once the remaining decompressed data is
smaller than the block size, it can be sent, cleanup can
be performed, and state can be set to XF READY, in-
dicating that the transformation is ready for new data.

To make use of this transformation, the user must com-
pile it as a shared library and put the shared library where
Mona can find it:

gcc decompress_xform.c -shared \
-o decompress.so

mv decompress.so ˜/.mona

Mona user-level transformations are implemented as
functions. When size is conserved, the programmer does
not have to be concerned about setting flags or comput-
ing return values. More complex transformations require
the programmer to maintain buffers, set state variables,

and compute return values. These additional program-
ming tasks are minor in comparison to the added work
of creating more complex transformations. When com-
plete, the function is compiled into a shared library and
is ready to use.

3.3 Advantages of User Transformations

The Mona API makes transformation development easy
for the programmer. While kernel transformations in
Mona share the same interface as user-level transforma-
tions, there are important advantages to programming
user-level transformations. User-level transformations
offer the programmer access to the libraries of code that
have become a part of every programmer’s tool box.
Common debugging tools can also be used on user-
level transformations. Additionally, since kernel trans-
formations run in kernel mode, they are not preempted.
This means that kernel transformations must be explicitly
scheduled by the programmer. Because user-level trans-
formations are scheduled like any other user-level pro-
cess, they do not suffer from these complications. These
three advantages of user-level transformations together
with Mona’s interface make user-level transformations
an easy target for any developer.

In addition to the advantages discussed above, user-
level transformations are also much safer than kernel
transformations. Since user-level transformations run in

Kernel

User Space

Transformation
Transformation A Transformation

Transformation α

B
Export

Figure 2: Illustration of export transformation.

user space, they cannot access internal kernel data struc-
tures and therefore cannot compromise the integrity of
the kernel. This means that any user can write and test
a user-level transformation without the intervention of a
system administrator.

Mona user-level transformations provide users with a
virtually unlimited number of ways to extend the file
system. The ability to use existing code (and even ex-
isting applications) greatly reduces implementation time
even for complex extensions. Mona’s fine-grained per-
file approach makes it more useful than many previous
approaches to file system extension.

4 Export Transformation

In order to realize the advantages of executing in user
space Mona needs a mechanism for exporting transfor-
mations. The export kernel transformation safely ex-
ecutes untrusted or computationally expensive transfor-
mations outside the kernel in user space. For example,
consider executing three consecutive transformations,A,
�, and B, where A and B are kernel-resident transfor-
mations and � is a user transformation. Mona inserts
the export transformation betweenA andB, as shown
in Figure 2. The export transformation passes its input
data across the kernel/user space boundary to a user-level
transformation �. When transformation � completes, it
returns output data to the export transformation which
then passes it on to B.

4.1 Export Execution Model

The export transformation executes user transforma-
tions in user-level processes for two reasons. First, pro-
cesses allow the Mona implementation to easily support
transformation concurrency. Second, the setuid system
call provides control over the access permissions of a
process (and any transformations within it).

The Mona implementation uses a daemon to super-
vise all transformations that execute outside of the ker-
nel. When the file system instantiates an export trans-
formation during an open system call, the daemon forks

ExportA B

User Space

Kernel

Daemon α
Child

On Read
and Write

Fork

On Open

Figure 3: Execution model of export transformation.

a child process to handle accesses to the file. Any sub-
sequent read or write to the file passes data up to the
child process, which transforms the data and returns it to
the export transformation, as shown in Figure 3. This
figure provides an in-depth look at the example first in-
troduced in Figure 2. Transformations A and B reside
within the kernel, but � is exported to user space. Any
data that streams through the network passes up through
the export transformation to user space, through�, the
transformation in the child process, and back to the ker-
nel.

4.2 Export Implementation

The export transformation requires three extensions to
the Mona file system. First, we extend the ioctl sys-
tem call to enable communication between the kernel and
user-space I/O streams. The MONA IOC K2U MASTER
option to the ioctl call allows the Mona daemon to
detect when the file system instantiates a new export
transformation. Two other ioctl options, MONA -
IOC K2U SLAVE and MONA IOC U2K, allow children
of the daemon to request and submit transformation data.
Both request ioctl options block their calling pro-
cesses until data is available. As a result, there is a clean,
well-defined interface between the export transforma-
tion and the Mona daemon.

Second, Mona implements an initialization queue,
which is a queue of transformations that are waiting to
be pushed into user space. The Mona options for the
ioctl system call give the Mona daemon access to
this queue. The daemon blocks on the MONA IOC -
K2U MASTER ioctl call until the file system places
a transformation in the initialization queue. When this
occurs the daemon awakens and performs the following

actions to initialize the transformation in the queue. The
daemon reads a key from the kernel that uniquely identi-
fies the transformation. Then it forks a child process and
sets the UID and GID (user and group ID) of the child to
that of the owner of the transformation, in order to pre-
serve file permissions. (Section 4.3 discusses the security
issues in detail.) The child process services subsequent
requests, as described below.

The final extension required is an execution queue of
initialized transformations that are awaiting execution.
The file system moves a transformation from the initial-
ization queue to the execution queue after the Mona dae-
mon forks a child process for the transformation. The
child process blocks in the queue until there is data on
which it can execute. Included with the transformation
data are the names of the shared library and the function
to be called. Each child then opens the shared library file
using the Linux dlopen call and loads the appropriate
function with the dlsym call. Transformation data on
the execution queue is uniquely identified by transforma-
tion identification keys. A child of the daemon uses its
identification key, which was provided by the Mona dae-
mon, as an argument to the ioctl MONA IOC K2U -
SLAVE system call in order to request data from the exe-
cution queue. After the child transforms its data, it sends
a reply back to the kernel through another ioctl call
using the MONA IOC U2K option. This process repeats
until the file access completes and the child terminates.

4.3 Export Security

For the exported transformation to be safe, it must exe-
cute with proper permissions and maintain the integrity
of the kernel. Before a child of the Mona daemon ex-
ecutes a transformation, it changes its UID and GID to
a safe permission level. There are three obvious choices
for a UID and GID in this situation, the owner of the base
file, the owner of the virtual file, or the user accessing the
virtual file. However, two of these are unsafe. If a trans-
formation ran under the permissions of the user access-
ing a file, the transformation creator would have access
to the user’s files. Setting a transformation’s permissions
to that of the owner of the base file is also unsafe. For
example, a user could point a transformation link to a
file owned by root and have the transformation gener-
ate a shell which has root permissions. Therefore, the
Mona daemon uses the setuid system call to change
the effective user id of the child process to that of the
user who created the virtual file and specified the code
to be executed [17]. Consequently, a transformation will
not perform actions that the owner of the virtual file is
not allowed to perform.

The export transformation does not compromise the
integrity of the kernel even though data originating in

user space flows into the kernel. First, the mechanism for
passing data across the kernel-user boundary truncates
the kernel buffer if the child process, which is execut-
ing a user transformation, attempts to exceed the space
allocated for the kernel buffer. Second, data that passes
through a transformation is never executed, it is only ap-
pended to an I/O stream on a read or write.

Furthermore, the Mona file system enforces proper
use of the ioctl extensions. The MONA IOC K2U -
MASTER option restricts accesses to processes owned
by root and exits with an error message for any other
user. The other new options, MONA IOC K2U SLAVE
and MONA IOC U2K, allow any user to request and sub-
mit transformation data. However, each call requires a
valid transformation identification key before the kernel
accepts the call. It is conceivable that a user could ran-
domly guess keys and attempt to insert or remove data
from another user’s I/O stream. However, with a large
enough key the probability of successfully guessing a
random key is essentially zero.

In summary, the export transformation overcomes
the three difficulties of kernel-resident transformations.
First, the Mona daemon allows an unprivileged user to
extend file system capabilities in a secure manner. Sec-
ond, transformation code that executes for extended pe-
riods of time runs in user space, where it is time shared
along with all other processes to maintain fair scheduling
of resources. However, when performance is paramount,
one can implement a kernel-resident transformation. Fi-
nally, user-level transformations are much easier to im-
plement than kernel-resident transformations due to the
availability of user-space tools such as libraries and de-
buggers.

5 Results and Evaluation

Mona provides greater functionality through file system
extensions. As such, the focus of the project has not been
quantitative (i.e., user-level transformations do not focus
on increasing system performance). Using Mona trans-
formations will provide performance wins in some cases,
but the purpose of Mona is to provide ways to make sys-
tems more useful to users. However, if the cost of a user-
level transformation is large, its benefits could be out-
weighed. For this reason, we performed several tests to
measure the overhead that Mona adds to a system.

To determine the baseline overhead associated with
using Mona instead of ext2, we compare system call ex-
ecution times for files in ext2 and unguarded (i.e., no
transformations) files in Mona. The results indicate that
the overhead added to these system calls is less than
1%. This overhead applies only to the open, read, and
write system calls. To find out the effect using Mona

0.001

0.01

0.1

1

10

100

1 4 16 64 256 1024 4096 16384

T
im

e
(s

ec
on

ds
)

File Size

Mona
Pipes

Figure 4: Unix pipes vs. Mona user-level transforma-
tions (Linux 2.2 kernel)

.

has on aggregate system performance, we also performed
tests using several file system benchmark suites. Our
tests have shown that the PostMark suite had the largest
overhead at 2%, whereas the Andrew and kernel com-
pile tests were both below 1%. This amount of overhead
on unguarded files is small, and the added functionality
provided by the Mona file system outweighs the perfor-
mance penalty [8].

Mona’s ability to allow unprivileged users to extend
the file system is one of its key novel aspects. The
overhead of using a Mona user transformation under the
Linux 2.2 kernel is approximately 150 �s. This cost is
quickly amortized as file size increases, and is negligible
for large files. The same principle applies for transforma-
tions of increasing complexity. For a transformation that
is computationally non-trivial, the latency contributed by
this overhead will be considered acceptable by the user.

In many cases the added functionality is similar to that
of standard Unix pipes. To compare our performance
to that of pipes, we ran several tests implementing the
same computation as both processes communicating via
pipes and as Mona transformations. This test sends input
data through two transformations using a Unix pipe and
the Mona file system. Figure 4 shows that Mona trans-
formations compare favorably with Unix pipes. Due to
the overhead of instantiating the new process, user trans-
formation performance is worse than that of pipes until
the file size approaches 128K, although only by a lit-
tle over a tenth of a second in the worst case. For file
sizes over 128K, Mona user-level transformations per-
form better than their pipe counterparts by as much as
65%. The two Mona user-level transformations operate
in the same user process. Consequently there is no over-
head from switching processes. Mona incurs no over-

head from buffer copying because it passes a pointer to
a buffer between transformations. Mona’s performance
advantage increases when several operations are stacked
upon one another.

6 Related Work

An adaptive I/O subsystem was implemented in
Streams [16, 2, 13] and is a component of several Sys-
tem V variants. A stream is a connection between a
device driver and a user process. The ioctl system
call pushes stream modules (similar to Mona transfor-
mations) into the stream. When data flows through the
stream and reaches a module, code from the module ex-
ecutes on the data before passing modified data down-
stream. Like Mona, the Streams system enables dynamic
extensibility. However, there are some differences be-
tween the systems. First, all Stream modules execute
with full permissions in the kernel. Consequently, only
privileged and expert users can create new extensions. In
addition, a Stream module is inherently duplex and adds
a stage in both the input and output pipeline. This works
well for operations that have natural inverses, such as
compression/decompression. However, if an operation
does not have or require an inverse operation (such as
PHP) for data traveling the opposite direction, the tech-
nique wastes resources and adds an extra pipeline stage.

The watchdog system provides extended file seman-
tics by guarding file accesses with special processes [3].
Each watchdog process is a user-level program associ-
ated with either a file or directory. When a guarded file
opens, the kernel negotiates with the watchdog guard-
ing the file to determine how to handle accesses. Like
user-space transformations, watchdog processes provide
a simple mechanism to add user-defined extensibility to
a file system. However, creating a new process for each
open guarded file is expensive in system resources and
interprocess communication. Managing an entire pro-
cess is excessive overhead for simple transformations,
such as lock. The watchdog system cannot push com-
mon operations into the kernel where they can execute
quickly. The flexibility of the Mona system allows the
user to decide the best execution environment for any
particular operation.

BSD Portals extend the file system by exporting cer-
tain open system calls to a user-space daemon [12]. A
portal daemon is mounted as a standard file system.
When the kernel resolves a pathname that leads through
the portal daemon mount, the remainder of the path is
sent to the daemon. Depending on the type of dae-
mon that is mounted, some type of open occurs, and
a file descriptor is returned. This allows for arbitrary
code to be executed on opens, but this functionality is
specific to the open system call. Translators provided

by GNU/Hurd [14] are very similar to Mona user-level
transformations. A translator is a program inserted be-
tween the content of a file and the user process. Transla-
tors are user programs, and as such can be installed and
modified by regular users. Translators provide the file
system interface for Hurd programs.

Stackable file systems derive functionality from pre-
existing file systems [6, 11]. By stacking a file system on
top of another in a file system hierarchy, the operations
provided by the lower level are inherited by the higher.
A stackable file system is most effective when a hand-
ful of operations are required for a large set of files and
the operations change infrequently. However, because
a system administrator must implement all stacking, the
benefit to ordinary users will be somewhat limited. Fur-
thermore, the layering structure (and thus the functional-
ity) of stackable file systems cannot be modified dynami-
cally. Stackable file systems use mount points rather than
files as targets for extensibility, and as such are a much
more coarse-grained approach than Watchdogs or Mona,
where users define their own operations and implement
them on a per-file basis. Apollo’s DOMAIN file sys-
tem [15] is quite similar to stackable file systems. It al-
lows users to define new file types and associate associate
user defined procedures with these new types. However,
extensible code resides in user processes.

Stackable templates alleviate the usability difficulties
of stackable file systems by abstracting complex kernel
code into templates [20]. Consequently, Wrapfs, a stack-
able template file system, provides a much simpler (and
more usable) interface than previous stackable file sys-
tems by hiding details of the operating system internals.
Wrapfs extends the vnode interface to enable stacking,
as originally proposed by Rosenthal [18]. As a result,
Wrapfs supports unmodified native file systems while
providing users an extended vnode interface. This ap-
proach contrasts the Mona file system, which is imple-
mented as a peer to other native file systems within an
unmodified virtual file system interface, and maintains
full compatibility with the ext2 file system. Furthermore,
unlike Mona, Wrapfs does not allow streams to change
size at runtime.

A simulation of Active Disks uses transformation-like
disklets to operate on data streams entering and exiting
intelligent disk drives [1]. The Active Disk architecture
integrates processors and large amounts of memory onto
a disk drive. An analysis of several algorithms on this
architecture found that an Active Disk using application-
specific disklets outperforms conventional disk drives.
Additionally, Active Disks scale considerably better than
traditional disk architectures. Active Disks and Mona
demonstrate the potential of modular, stream-oriented
processing.

The userfs package implements customizable file sys-

tems as user processes [5]. Unlike the stackable sys-
tems discussed above, mounting a user file system does
not require privileged access. As a result, unprivileged
users can customize their environments without the as-
sistance of a system administrator. This system thus al-
lows simple file system extensibility, but is more coarse-
grained than Mona. Entire hierarchies are mounted with
the userfs, whereas the flexibility of the Mona file sys-
tem allows actions to be associated with individual files
or hierarchies.

There are many projects whose goal is to provide gen-
eral kernel extensibility, including file system extensibil-
ity [4, 7, 19]. These systems address the safety issues
associated with downloading untrusted code into the ker-
nel. The Mona file system provides only a subset of
the extensibility offered by general kernel extensibility
projects (i.e., the subset that relates to the file system).
Mona only allows trusted code in the kernel and concen-
trates on user-space extensibility for untrusted code.

Through the use of traditional Unix tools like filter
programs and pipes, we can achieve a series of stacked
operations on a data stream, but to use these, we need
to either explicitly create the pipes in a process, or use
the pipe functionalities of a shell. The former requires
significant modification to applications, while the latter
allows us to only operate on standard input or output,
not arbitrary files. Shell associations perform actions
(e.g., launching an application) based on the type of the
underlying file. This could be similar to Mona’s func-
tionality in some cases, but does not, for example, allow
dynamic insertion and deletion of functionality at run-
time. Another Unix mechanism that can be used is the
LD PRELOAD functionality of dynamic libraries. Li-
brary preloading can be used to intercept file system calls
and perform operations on the data between the user pro-
gram and the operating system. However, when using
library preloading, all calls that are intercepted will have
to go through the filter code. Mona allows filters to be
specified for files on an individual basis.

7 Conclusions

This paper describes how to raise the level of abstrac-
tion provided by a file system. It presents the Modify-
on-Access (Mona) file system, which supports safe and
simple user-defined extensions called transformations,
which are modular, stream-oriented operations that are
inserted into an I/O stream during a file access. This
paper presents several examples in which extending the
structure and semantics of a file simplifies applications
and benefits both the application programmer and the end
user.

The Mona file system provides a novel combination
of granularity, modularity, and usability. Mona supports

transformations on a fine-grained per-file basis. In ad-
dition, transformations are modular and can compose
larger operations. Finally, Mona can execute a transfor-
mation within the kernel or in a user-space process. As a
result, a user has the ability to choose appropriate levels
of performance, safety, and ease of use. The flexibility in
all three areas distinguishes Mona from previous exten-
sible file systems.

This paper presents several lessons. First, although
transformations are a limited form of computation, there
are many useful operations that fit the form. Moreover, it
shows that the model (and our implementation) are ide-
ally suited for extensions. The export transformation
is a kernel transformation that enables user-level trans-
formations. Similarly, the command transformation is a
user-level transformation that enables shell script trans-
formations.

This paper examines the cost of user-level transforma-
tions. We show that the cost is comparable to pipes,
and in some cases better. The cost of user-level trans-
formations is negligible when a transformation involves
a latency-dependent operation, like the ftp transfor-
mation. Additionally, as the complexity of a transfor-
mation increases, the relative cost of a user-level trans-
formation decreases. Even in the worst case–a trivial
transformation–the absolute cost of invoking a user-lever
transformation is low enough (approximately 150�s) that
there is not a noticeable additional delay for interactive
environments.

Finally, this paper shows a simple but effective tech-
nique for maintaining security with user-level exten-
sions. Our technique sets the UID and GID of the child
helper processes such that code executes with permis-
sions that are allowable by the system. Consequently,
Mona ensures that the use of user-level transformations
will never compromise security.

Acknowledgements

We would like to thank our reviewers for their comments,
and especially Alan Nemeth for his help in shepherding
us through the review and submission process.

We would also like to thank Richard Kendall for his
foundational contributions to the Mona project.

Mona is available as open source in con-
formance with the Open Source Initiative’s
Open Source Definition. Mona is available at
http://www.cse.nd.edu/˜ssr/projects/mona.

References

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz.
Active disks: Programming model, algorithms and

evaluation. In Proc. Eighth Intl. Conf. on Archi-
tectural Support for Programming Languages and
Operating Systems, 1998.

[2] Maurice J. Bach. The Design of the UNIX Operat-
ing System. Prentice Hall, 1986.

[3] Brian N. Bershad and C. Brian Pinkerton. Watch-
dogs: Extending the UNIX file system. USENIX
Winter Conference, pages 267–275, Winter 1988.

[4] Brian N. Bershad, Stefan Savage, Przemyslaw
Pardyak, Emin Gün Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers.
Extensibility, safety and performance in the SPIN
operating system. In Proc. Fifteenth ACM Symp.
on Operating Systems Principles, pages 267–284,
Copper Mountain Resort, CO, December 1995.

[5] Jeremy Fitzhardinge. Userfs–file sys-
tems implemented as user processes.
http://sunsite.unc.edu/pub/micro/pc-stuff/Linux-
/ALPHA/userfs/!INDEX.html, 1997.

[6] John S. Heidemann and Gerald J. Popek. File-
system development with stackable layers. ACM
Transactions on Computer Systems, 12(1):58–89,
February 1994.

[7] M. Frans Kashoek, Dawson R. Engler, Gregory R.
Ganger, Héctor M. Briceño, Russel Hunt, David
Mazières, Thomas Pickney, Robert Grimm, John
Jannotti, and Kenneth Mackenzie. Application per-
formance and flexibility on exokernel systems. In
Proc. Sixteenth ACM Symp. on Operating Systems
Principles, pages 52–65, Saint Malo, France, Octo-
ber 1997.

[8] H. Richard Kendall, Vincent W. Freeh, Paul W.
Schermerhorn, and Peter W. Rijks. Streaming ex-
tensibility in the modify-on-access file system. To
appear in the Journal of Systems and Software.

[9] H. Richard Kendall. The modify-on-access file sys-
tem. Master’s thesis, University of Notre Dame,
Notre Dame, IN 46556, July 1998.

[10] H. Richard Kendall and Vincent W. Freeh. The
modify-on-access file system: An extensible Linux
file system. In Proc. of LinuxWorld Conference and
Expo, San Jose, CA, March 1999.

[11] Yousef A. Khalidi and Michael N. Nelson. Exten-
sible file systems in Spring. ACM SIGOPS, pages
1–14, December 1993.

[12] A. David McNab. BSD portals for Linux 2.0. Tech-
nical Report NAS-99-008, NASA Ames Research
Center, 1999.

[13] Steve D. Pate. UNIX Internals. Addison-Wesley,
1996.

[14] Gnu Hurd Project. Debian GNU/Hurd transla-
tors. http://www.debian.org/ports/hurd/hurd-doc-
translator.

[15] Jim Rees, Paul H. Levine, Nathaniel Mishkin, and
Paul J. Leach. An extensible I/O system. Proceed-
ings of 1986 Summer USENIX Conference, pages
114–125, June 1986.

[16] Dennis M. Ritchie. A stream input output sys-
tem. AT&T Bell Laboratories Technical Journal,
63(8):1897–1910, October 1984.

[17] Dennis M. Ritchie and Ken Thompson. The UNIX
time–sharing system. Communications of the ACM,
17(7):365–375, July 1974.

[18] David S. H. Rosenthal. Evolving the vnode inter-
face. USENIX Summer Conference, pages 107–
117, Summer 1990.

[19] Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham. Efficient software-
based fault isolation. In Proc. Fourteenth ACM
Symp. on Operating Systems Principles, pages
203–216, Ashville, NC, December 1993.

[20] Erez Zadok, Ion Badulescu, and Alex Shender. Ex-
tending file systems using stackable templates. In
Proc. 1999 USENIX Annual Technical Conf., June
1999.

