USENIX Association

Proceedings of the
FREENIX Track:
2001 USENIX Annual
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Extensib le Constraint-Enab led Windo w Manager

Jefrey Nichols

Sdool of ComputerScienceHCI Institute
Carnggie Mellon University, 5000ForbesAvenue

Pittskburgh, PA 15213,USA
jeffreyn@s. cnu. edu

Alan Borning
Dept.of ComputerScienceand Engineering
University of Washington Box 352350
Seattle WA 98195-2350USA
bor ni ng@s. washi ngt on. edu

Scwm:
Greg J.Badros
InfoSpacelnc.
2801Alaskanway, Suite200
Seattle WA 98121,USA
gr eg. badr os@ nf ospace. com
ABSTRACT

We desireda platformfor researchingdwancedwvindow lay-
out paradigmsncludingthe useof constraints Typical win-
dow managemensystemsarewritten entirelyin C or C++,
complicatingextensibility andprogrammability Becausano
existing window managemwas well-suitedto our goal, we
developedthe ScwM window managerin Scwm, only the
corewindow-managemenprimitivesarewritten in C while
the restof the packagds implementedn its Guile/Scheme
extensionlanguage. This architecturefirst seenin Emacs,
enablesprogrammingsubstantialnew featuresin Scheme
andprovidesa solid infrastructurefor constraint-basedin-
dow layoutresearclandotheradvancedcapabilitiessuchas
voicerecognition.We have usedScwm to implementanin-
terfaceto the Casswvary constraintsolvingtoolkit to permit
endusersto declaratvely specify relationshipsamongwin-
dow positionsandsizes. Thewindow managedynamically
maintainsthoseconstraintsand lets usersview and modify
them. Scwm succeed# providing anexcellentimplemen-
tationframework for ourresearctandis practicalenougithat
werely onit everyday

KEYWORDS: constraints, Casswary toolkit, Scheme,
ScwM, X/11 Window Manager

INTRODUCTION

We desireda platformfor researchingdvancedwvindow lay-
out paradigmsncludingthe useof constraints Typical win-
dow managemerdpplicationdor the X windows systemare
written entirelyin alow-level systemdanguagesuchasC or
C++. Becausahe X windows librarieshave anative C inter-
face,usingC is justified. However, a low-level languages
far from idealwhenprototypingimplementation®f sophis-
ticatedwindow manageffunctionality. For our purposesa
higherlevel languageis much more appropriate powerful,
andsatisfying.

Using C to implementa highly-interactive applicationalso
complicatesxtensibility and customizability To adda nen
feature theuserlikely mustwrite C code,recompile relink,

and restartthe applicationbeforechangesare finally avail-
able for testingand use. This developmentcycle is espe-
cially problematicfor software suchasa window manager
that generallyis expectedto run for weeksat a time. Ad-
ditionally, maintainingall the featuresthat any userdesires
would resultin terrible codebloat.

An increasinglypopularsolutionto theseproblemss theuse
of a scriptinglanguageon top of a core systemthat defines
new domain-specifi@rimitives.A prime exampleof this ar

chitecturds RichardStallmans GNU Emacgext editor[40].

In thetwentyyearssincetheintroductionof Emacsnumer

ous extensible scripting languageshave evolved including
Tcl [34], Python[22], Perl[42], and Guile [12, 37]. Each
of thefirst threelanguagesvas designedrrom scratchwith

scriptingin mind. In contrast,Guile—theGNU Ubiquitous
IntelligentLanguagdor Extension—taksapre-&istinglan-

guage,Scheme,and adaptsit for useas an extensionlan-

guage.

We areexploring constraint-basedindow layoutparadigms
and their userinterfaces. Becausewe are mostinterested
in practicaluse of constraintswe decidedto target the X
windows systemandbuild a completewindow managerfor
X/11. We choseto useGuile/Schemeasthe extensionlan-
guagefor our project that we namedScwmMm—the Scheme
ConstraintaWindow Manager The mostnotablefeatureof
ScwM is constraint-basethyout. Whereagypical window
managemensystemsuse only direct manipulation[38] of
windows, ScwM alsosupportsa userinterfacefor specify-
ing constraintsamongwindows that it thenmaintainsusing
our Cassavary Constraintsolving toolkit [1]. Much of the
advancedunctionalityof Scwwm is implementedn Scheme,
thus exploiting the embedded-gension-langage architec-
ture.

BACKGROUND

ScwM leveragesnumerousexisting technologiego provide
its infrastructureandsupportits advancecdcapabilities.

X Windows and f vwn?2

A fundamentaldesign decision for the X windows sys-
tem [33] was to permit an arbitrary userlevel program
to managethe various applicationwindows. This open
architecturepermits great flexibility in the way windows
look andbehave.

X window managersare complex applications. They are
responsiblefor decoratingtop-level application windows
(e.g., drawing labelled titlebars), permitting resizing and
moving of windows, iconifying, tiling, cascadingvindows,
and much more. Many Xlib library functions wrapping
the X protocol are specificto the specialneedsof window
managers. Becauseour goal is to do interestingresearch
beyond that of modern window managers,we used an
existing popularwindow managerf vwn2, as our starting
point [13]. In 1997 whenthe first authorbeganthe Scwm
projectwith Maciej Stachaeviak, f vwn2 was arguably the
mostusedwindow manageiin the X windows community
It supportsflexible configurationcapabilitiesvia a peruser
. fvwn2r c file that is loadedonce when f vim2 starts.
To tweak parametersend-usersdit their . f vwn2r c files
usingan ordinarytext editor, save the changesthenrestart
the window managetto activate the changes.The f vwn?2
configurationlanguagesupportsa very restrictedform of
functionalabstractionput lacksloopsandconditionals.

Despitetheseshortcomingsf vwn2 providesagoodamount
of controloverthelook of windows. It alsohasevolvedover
theyearsto meetcomplex specificationge.g.,thenterclient
CommunicationCorventionsManual[36]) andto dealwith
innumerablequirks of applications. By our basingScwm
onf vwn2, we leveragedhosecapabilitiesandensuredhat
Scwm wasat leastaswell-behaed asf vwrR2. Our funda-
mentalchangeto f vwrR2 wasto replaceits ad-hocconfigu-
rationlanguagewith Guile/Schem¢12].

Scheme for Extensibility

Guile[12] istheGNU projects R4RS-complianSchemd9]
systemdesignedspecificallyfor useasan embeddednter-
preter Schemds a very simple,elegantdialectof the long-
popularLisp programminganguage.lt is easyto learnand
provides exceptionally powerful abstractioncapabilitiesin-
cludinghigherorderfunctions Jexically-scopedtlosuresand
ahygienicmacrosystem Guile extendshestandardscheme
languagewith a modulesystemandnumerouswrappersfor
systemlibraries(e.g.,POSI X file operations).

Embed ded Constraint Solver

Casswvary is a constraintsolving toolkit thatincludessup-
portfor arbitrarylinearequalitiesandinequalities[1]. Con-

straintsmay have varying strengths,and constrainthierar

chy theory [6] defineswhat constitutesa correctsolution.
We implementedthe Casswvary toolkit in C++, Java, and
Smalltalk,andcreateda wrapperof the C++implementation
for Guile/SchemeThus, it is straightforwardto usethe con-

straintsolver in a broadrangeof targetapplications.

In addition, the Casswary toolkit permitsnumeroushooks
for extension. Eachconstraintvariablehhasan optional at-

tachedobject, andthe constraintsolver canbe instructedto

invoke a callbackuponchangingthe value assignedo ary

variableandalsouponcompletionof there-sohe phasg(i.e.,

after all variable assignmentsare completed). Scwm ex-

ploits thesefacilities to isolatethe impact of the constraint
solver on existing code.

CONSTRAINTS FOR LAYOUT

Ordinarywindow managergermitonly direct-manipulation
asameansof laying out their windows. Althoughthis tech-

nigueis useful,a constraint-basedpproactprovidesa more

dynamicandexpressie system.In Scwm, we usethe Cas-

sowary constraintsolving toolkit. On top of the primitive

equation-solvingcapabilitiesof Casswary, ScwmMm addsa

graphicaluserinterfacethat employs an object-orientedie-

sign. We specify numerousconstraintclassegepresenting
kinds of constraintrelationshipsandinstance®f eachclass
areaddedo the systemfor maintainingrelationshipsamong
actualwindows. The interfaceallows usersto createcon-

straintobjects,to manageconstraintinstancesandto create
new constraintclassedrom existing classesy demonstra-
tion.

Applying Constraints

Applying constraintsto windows is done using a toolbar
Eachconstraintclassin the systemis representedy a but-
ton on the toolbar (figure 1). The userappliesa constraint
by clicking a button, thenselectingthe windows to be con-
strained. Alternatively, the usercanfirst highlight the win-
dows to be constrainedandthen click the appropriatebut-
ton. lconsandtooltips with descriptve text assistthe user
in understandingvhat eachconstraintdoes. We consulted
with agraphicartiston thedesignof ouriconsin aneffort to
make themintuitive andattractive. Preliminaryuserstudies
have demonstratedhat userscandeterminethe represented
relationshipreasonablyvell from theiconsevenwithoutthe
supportingtooltip text.

We provide the following constraintclassesn our system.
Many interestingrelationshipsare either presentor can be
createdby combiningclassesn thelist.

Constant Height/Width Sum Keepthe total of the height/
width of two windows constant.

Horizontal/Vertical Separation Keeponewindow always
to theleft of or above another

Strict Relative Position Maintain the relative positions of
two windows.

Vertical/Horizontal Maximum Size Keep height/width of
awindow belov athreshold.

Vertical/Horizontal Minimum Size Keep height/width of
awindow above athreshold.

Figure 1: Our constraint toolbar. The text describes the constraint classes in the same order as they are laid out in the
toolbar (from left to right).

Vertical/Horizontal Relative Size Keep the change in
heights/widthsof two windows constant(i.e., resizethem
by the sameamounttogether).

Vertical/Horizontal Alignment Align the edgeor centerof
onewindow alonga vertical/horizontaline with the edge
or centerof anothemwindow.

Anchor Keepawindow in place.

Someof theseconstraintypescanconstrainvindowsin sev-
eral differentways. For example,the “Vertical Alignment”
constraintcan align the left edgeof one window with the
right edgeof anotheror the right edgeof onewindow with
themiddle of another Usersspecifytheparametersf there-
lationshipby usingwindow “nonants), theninefoldanalogue
of quadrantgfigure2). Thenonanthattheuserclicksin dic-
tatesthe part of the window to which the constraintapplies.
Forexample,if theuserselectghe"VerticalAlignment” con-
straintandchooseghefirst window by clicking in any of the
eastnonantsandthe secondwindow by clicking on its left
edge theresultingconstraintwill align theright edgeof the
first window with theleft edgeof the second.Thistechnique
makessomeconstraintlassessuchasalignmentmoregen-
erally useful. It alsodecreasethe numberof buttonson the
toolbar, which could otherwisebecomeunwieldywith mary
narrovly-applicableconstraintclasses.

NwW N NE
0 1 3
w

3 4

Sw S SE
6 7 8

Figure 2: The nine nonants of a window.

Managing Constraints

Oncea constraintis applied,the userstill needsto be able
to managedt. Usersmaywish to disablethe constraintem-
porarily or remove it entirely. They may encounteran odd
behaior while they are moving or resizinga window and
wantto discover which constraint(sausedhe unexpected
result,they may simply be curiousto know whatconstraints
areappliedto a givenwindow andhow thatwindow will in-

teractwith otherwindows. Our constraintinvestigationin-

terfaceallows for all of thesekinds of interactions.

The constraintinvestigationwindow allows the userto en-
ableor disableconstraintausingcheckboxs,andto remove
constraintaisingadeletebutton. Thewindow is dynamically
updatedasconstraintareappliedandremoved,andchanges
madein theinvestigatorareimmediatelyreflectedn thelay-
out of windows.

Whenthe usermoveshermousepointerover a constraintn
theinvestigatortherepresentationf thatconstrainis dravn
directly on the windows relatedby the constraint(figure 3).
This hint makesit easyfor theuserto make thecorrectasso-
ciationsbetweenwindows and constraints.Eachconstraint
classdefinesits own visual representationwhich in most
case<loselymatchegheiconin thetoolbat

Enablingor disablingconstraintscanresultin global rear
rangement®f windows and large changesn position. To
make thesediscontinuitiedessconfusing,we animatewin-
dows fluidly from their old positionsandsizesto their new
configuration.The animationshorrow featuresfrom the Self
programmingervironmentthat mimic cartoon-styleanima-
tion [7].

Constraint abstractions

A problemwith theinterfaceasdescribeahusfaris thatthe
basic constraintclassessuchas “Vertical Alignment” and
“Horizontal Separatiori, arenot alwayssufficient to corvey
a usersintentionfully. Our own useshowvedthatoftenone
needdo combineseveralconstraintgo obtainthedesiredbe-
havior. A goodexampleof this situationis tiling (figure 4),
wheretwo or morewindows are alignednext to eachother
suchthatthey appeato becomeawindow unit of their own.
A tiling configurationfor two windows cantake from three
to five constraintso implement.Adding theconstraintss te-
diouswhentiling mary windows, or whenrepeatedltiling

anduntiling two windows. Certainlya “tiled windows” con-
straintclasscouldbehard-codednto thesystemput thatjust
postponeshe problem—someneansf abstractingelation-
shipsshouldbe providedto theenduser

Our solution to this problem is to support constraint
“compositions. A compositionis createdusing a simple
programming-by-demnstrationtechnique. We recordthe
userapplyinga constraintarrangemento somewindows in

the workspace. The constraintsusedand the relationships
createdamongthe windows are savedinto a new constraint
classobject,which thenappearsn the toolbarlik e all other
constraintclasses. Clicking the button in the toolbar will

prompt the userto selecta numberof windows equalto

that usedin the recording. The constraintswill then be

=g XTerm A

clavicle:"/scem/srct [|
bck-i-searchi _

4 XTenm C

E) xTerm B | =&

sbindsh L Ankinstalldirs Ausedinclude
14

riclet*/scumssrc

#} | Constraint investigator

|

‘ertical separation: Z windows
Harizontal separation: 2 windows
Minimum wicth

Anchat:

Delete
Delete
Delete

= = = e |

Delete|

Dizable All |

EnableAIIl L Eﬂfl|E |E|:EIEIEE A, gi =1 i % 'Dﬁ D%I:l % o=

Br clavicle’s xemacs: =
File Edit Apps Options Buffers Tools Help
B
MEIEEES Bl==8
Open Dired Save Frint Cut Cop! Faste Undo Spell
0
e
=k (Text) ——--L1--A11-————————————— |
Auto-saving. . . done

Figure 3: Visual representation of constraints. XTerm A is constrained to be to the left of XTerm B, and above XTerm C.
Additionally, XTerm C is required to have a minimum width, and the XEmacs window’s southeast corner is anchored at its
current location. The constraint investigator that allows users to manage the constraints instances appears in the bottom
left of the screen shot.

w X
winprop,c
winprop.h
i

x
XProperty.c
Xproperty.h

inage..

inage.h

upintheair:*/scum/srez [|

upintheair's xemacs:
File Edit Apps Options Buffers Tools Help

FHEIE-EL L]

LTS e B) | e

Figure 4: Four wi

7 man scwm

cum(1)
sewn{1)
N

scun, scunexec, scwnrepl - Scheme Con-
straints Wirdow Hanager.

ndows tiled together. Unlike tiled-

only window managers, SCWM permits users to tile a
subset of their windows; other windows could overlap

arbitrarily.

appliedin the sameorder as before. Compositionsallow
usersto accumulatea collection of often-usedconstraint
configurationghatcanthenbeeasilyapplied.

Inferring Constraints

Ourtoolbarbasediserinterfaceallowsflexible relationships
to be specified,but mary commonuserdesiresreflectvery

simple constraints.For example,usersmay placea window

directly adjacentto anotherwindow andwantthemto stay
together Somewindowing systemsprovide a basic“snap-

ping” behaviour thatrecognizesvhena userputsa window

nearly exactly adjacento anotherwindow andthenadjusts
thewindow coordinatesslightly to have themsnaptogether
precisely

In ScwmMm, we supporta usefulextensionto basicsnapping
called“augmentedsnapping’15]. Usingthistechniquethe
userhastheoptionof transforminga snapped-teelationship
to apersistentonstrainthatis thenmaintainedduring sub-
sequenmanipulationsWhenasnapis performedjnsteadof
simply moving thewindow, theappropriateconstrainbbject
is createcandaddedo the system.Suchinferredconstraints
canbe manipulatedria the constraintinvestigatordescribed
earlier They alsocanberemaovedby simply “ripping-apart”
thewindows by holding down the Met a modifier key while
usingdirectmanipulationto move themapart.

USABILITY STUDY

We appliedadiscountusabilityapproachj32] to improve our
constraininterfaceto managingvindows.

Methodology

Six advancedcomputerusersthoughtaloud while perform-
ing threetasks. Eachtask consistsof two parts: discovery
andre-creation.First, usersmanipulatewindows with con-
straintsalreadyactive to discover and describethoserela-
tionships(without useof the constraintinvestigator). After
giving a correctdescription,they thenusethe interfaceon
a seconddisplayto constraina freshsetof windows identi-
cally. Usersweregivenonly a very minimal descriptionof
theinterface.

The three constraint configurations tested were: 1) a
NetscapeFind dialog keptin the upperright cornerof the
main browserwindow; 2) threewindows keptright-aligned
alongthe edgeof the screensuchthat noneof the windows
overlap nor leavesthe top or bottom of the screen;and 3)
two windowstiled horizontally

Results

All userswereableto completetheir tasks.Discoveringthe
constraintsvasstraightforvard—manipulatinghe windows
andobservingthe behaiour wassufficient to deducethe re-
lationshipsalreadypresent. Re-creatingthe configurations
was more troublesomebut usersstill succeeded.They of-
tenusedtheinvestigatorto removeincorrectconstraintsbut
thencontinuedonwardwith analternatehypothesis.

Problems disco vered

Our study uncoverednumeroususability issues. The most
substantiaprobleminvolved selectingwindow partsfor the
alignmentconstraints. When performing a vertical align-
ment, all that mattersis whetherthe userclicks on the left,
center or right third of thewindow—it is irrelevantwhether
the click is in the top, middle, or bottom of the window.
Our interface, however, still highlightedindividual corners
or edgesasit doesfor anchorconstraintavhereary of the
nine positionsis significant. Userswere confusedy the Ul
distinguishingalong the irrelevant vertical dimension. We
revised ScwM to highlight whole edgesof windows when
applyinganalignmentconstraint.

Whenusersheganaddinga constraintandwantedto cancel,
they were unsureof how to aborttheir action. Someusers
clickedonthetoolbarthinkingthatis a speciawindow. Oth-
ersdiscoveredthat clicking on the backgroundesultsin an
error that terminateshe operation. No userrealizedthat a
right-click abortsandwe now alsosupportpressinghe Es-
cape key to cancelawindow selection.

Other obser vations

The userswho performedbeststudiedthe tooltip help for
each of the toolbar buttons before attemptingtheir first
re-creationsub-task. We were surprisedat the variety
of constraintsusedin re-creatingour configurations: no
user matchedthe expectedsolution on all threetasks. In
particular the “strict relative position” constraintwas used
especiallyadvantageoushby userswho choseto configure
windows manually before applying constraintsto keepthe

SCWM PROC(X property_get,
" X-property-get",
2, 1, 0,
(SCM wi n, SCM name, SCM consume_p))
[** Get X property NAME of wi ndow WN. */
#defi ne FUNC_NAME s_X property_get

{

SCM answer ;

VALI DARG W N_ROCTSYM OR_NUM COPY(1, wi n, w);
VALI DARG_STRI NG_COPY(2, nane, aprop) ;

VALI DARG_BOOL_COPY_USE_F(3, consune_p, del);

XGet W ndowPr operty(...);
answer = ...;
return answer;

}
#undef FUNC_NANE

Figure 5: An example SCWM primitive.

(define*-public (w ndowcl ass
#&optional (win (get-w ndow)))
"Return the class of w ndow WN."
(X-property-get win "WV CLASS"))

Figure 6: The “wi ndow- cl ass” procedure.

windows asthey were.

Not all usersdiscoveredthe constraint-visualizatiofeature
of the investigator We now draw the visualizationswhen-
evertheuserpointsatary partof thedescriptionnotjustthe
enablecheckbox. Also, one userwantedto modify the pa-
rameterf a constraintin theinvestigatowindow directly.

THE SYSTEM

ScwM is a comple softwaresystemthatemphasizesxten-
sibility andcustomizabilityto enablesophisticatedapabili-
tiesto be developedandtestedquickly andeasily

The current implementationof Scwm contains roughly
32,500 non-comment, non-blank lines of C code, 800
lines of C++ code,and 25,000lines of Schemecode. The
Guile/Schemesystem is about 44,000 lines of C code
and 11,500lines of Schemecode. Finally, the Casswary
constraintsolving toolkit is about9,500lines of C++ code
in its core, plus about 1,400 lines of C++ code in the
Guile wrapper The following subsectionslescribevarious
technicalaspect®of the implementatiorof Scwm in greater
detail.

Basic philosoph y

Ourfirst versionof ScwM wasa simplederivative of its pre-
decessqrf vwnR2, with the ad-hocconfigurationlanguage
replacedby Guile/Scheme. Like f vwnR2, ScwM readsa
startupfile containingall of the commanddo initialize the
settingsof variousoptions. Most f vwmr2 commandshave

reasonablystraightforward translationgo ScwmMm sentential
expressionsFor example thesef vwn®2 configurationlines:

Style "*" ForeCol or bl ack
Style "*" BackCol or grey76
Hi | i ght Col or white navybl ue
AddToFunc Rai se-and- Sti ck

+ "1" Raise

+ "1" Stick

Key s WI' CSM Function Rai se-and- Stick
arerewritten for Scwm in Guile/Schemeas?

(w ndowstyle "*" #:fg "bl ack"
#:bg "grey76")

(set-hi ghlight-foreground!
(set - hi ghlight-background!

"white")
"navybl ue")

(define* (raise-and-stick
#&optional (win (get-w ndow)))
(rai se-wi ndow w n)
(stick win))
(bind-key '(windowtitle) "CS-Ms"
rai se-and- stick)

The simplerand more regular syntaxis corvenientfor the

enduser An evengreatermdvantageof usingarealprogram-
ming languageinsteadof a static configurationlanguage
stemsfrom the ability to extend the setof commandd(ei-

therby writing C or Schemecode)andto combinethosenewn

proceduresrbitrarily.

Adding a new Scwm primitive is easily doneby writing a
new C functionthatregistersitself with the Guile interpreter
For example afterusingC to addthe“X- pr operty- get”
primitive (figure5), we canwrite anew procedurdo reporta
window’sclasswhichis justthevalueof its WM.CLASS prop-
erty (figure 6). Thenwe canusethatprocedurdnteractively
by writing:

(bi nd-key ’all
(I ambda ()
(let* ((win (w ndowwth-focus))

(class (w ndowclass win)))
(if (string=? class "Enmacs")

(resize-wi ndow 500 700 wi n)

(resize-wi ndow 400 300 win)))))

"CS-Mf"

The above expressions,when evaluatedin Scwm'’s in-
terpreter will make the users “Control + Shift +
1Becausehe f vwn®2 configurationlanguageis so limited, it is possi-

ble to mechanicallyconvertto Scwm commandsye provide areasonably-
completeautomatedranslatorfor this purpose.

Meta + f” keystroke resizethe window to either 500 x
700 pixels if the currently-focusedwindow is an Enacs
applicationwindow, or 400 x 300pixelsotherwise.

ScwM’s extensiblearchitecturealsoallows Guile extensions
to be accessiblérom the window manager Via standard
Guile modules,Scwm canreadandparsewvebpagesdown-

loadfiles via ftp, do regular expressiommatching,andmuch
more. In fact, nearly all of the userinterface elementsin

Scwwm arebuilt usinggui | e- gt k, a Guile wrapperof the
GTk+ toolkit.

Binar y Modules

Becauseeachuseronly needsa subsetof the full function-
ality that Scwm provides,it is importantthatusersonly pay
for the featuresthey require(in termsof sizeof the process
image). Guile, unlike EmacsLisp, allows new primitivesto
be definedby dynamically-loadabldinary modules. With-
outthis feature all primitiveswould needto be containedn
the ScwmMm core, thus complicatingthe sourcecodeandin-
creasinghesizeof theresultingmonolithicsystem.

The voice recognitionmodule basedon IBM’s ViaVoice™
softwareillustratesthebenefitsof dynamically-loadedxten-
sions. Thoseuserswho do not to usethat feature—perhaps
becausehelibrary is not availableon their platform or per
hapsbecausehey have no audio input device—will never
have the modules codeloaded.

Implementingthe module was also straightforvard. Af-
ter getting a sampleprogramfrom IBM’ s ViaVoice™ voice
recognitionengineworking, it requiredlessthan six hours
of developmenteffort to wrap the core functionality of the
enginewith a Schemeinterface. A grammardescribeshe
variousutteranceghat Scwm understandsandthe C code
asynchronouslynvokesa Schemeprocedurevhena phrase
is recognized.Becauseghoseaction proceduresare written
in Schemethe response$o phrasesanbe easily modified
andextendedwithout evenrestartingScwwm.

Graphical configuration

Another example of the extensibility that Guile provides
Scwwm is the pref er ences systemfor graphical cus-

tomization. Novice ScwM users are unlikely to want

to write Schemecode to configure the basic settings of

their window manager such as the backgroundcolor of

the currently-actve window’s titlebar A graphical user
interface is necessaryto managethesesettings, but there
are potentially a huge numberof configurableparameters.
Undisciplined maintenanceof a user interface for those
optionswould betediousanderrorprone.

Fortunately Scwm can leverage its Scheme extension
languageto ease these difficulties. The def opti on
module provides a macro defi ne-scwm option
that permits declaratve specification of a configura-
tion option? To expose a graphical interface to the

2Recentversionsof Emacs[40] provide a similar featurein their “cus-

hi ghl i ght - backgr ound configurationvariable,the
ScwM developerneedsimply write:

(define-scwnm option
hi ghl i ght - backgr ound "navy"
"The bg color for focused w ndow. "
#:type ’'col or
#:group 'face
#:setter (lanbda (v)
(set-highlight-background! v))
#:getter (lanbda () (highlight-background)))

This codestatesthat* hi ghl i ght - backgr ound* is an
enduserconfigurablevariablethat will containa valuethat
is a color. It alsospecifieghatthe variablecanbe grouped
with othervariablesnto af ace category. Finally, setterand
getterproceduresre specifiedto teachScwm how to alter
andretrieve thevalue.

The pr ef er ences modulethenaccumulatesll of these
specificationsand dynamically generateghe userinterface
shawn in figure 7.2 This modular approachalso enforces
the separationof the visual appearancdrom the desired
functionality—a visually-distinct notebook-styleinterface
with the samefunctionalityis alsoavailable.

Connecting to Cassowary

The mostimportantmodulefor our researchon advanced
window layout paradigmss the wrapperof the Casswary

constraintsolving toolkit. To connectthe constraintsolver

with thewindow managerthe variablesknown to the solver

mustrelateto aspectof the window layout. Eachapplica-
tion window objectcontainsfour constrainableariables:x,

y—the offsetsof the window from the top-left cornerof the
virtual desktop);andwi dt h, hei ght —the dimensionsof

the window framein pixels. When Casswary finds a new

solutionto the setof constraintsjt invokesa hook for each
constraintvariablewhosevalueit changesandinvokesan-

otherhookafterall changefiare beenmade.For Scwwm, the

constraint-ariable-changetiook addsthe window thatem-

bedsthatconstraintvariableto its “dirty set; andthesecond
hook repositionsandresizesall of the windows in the dirty

set.

In eachwindow object,the constrainablevariablesthat cor-
respondto the window’s position and size mirror the ordi-
nary integer variablesthat the rest of the applicationuses.
Thehookscopy thenew valuesassignedo theconstrainable
variablesinto the ordinaryvariables. This techniqueavoids
modifying thevastmajority of the codethatmanipulatesand
managesvindows. (Bjorn Freeman-Bensodiscusseshese
issuedn greaterdetail[11].)

To make it easyfor developersto expressconstraintsamong

tomize” package.The layout of their userinterfacesis simpler though,as
no attemptis madeto createafully graphicalinterface.

STheuserinterfaceis written in guile-gtk,a Guile wrapperof the GTk+
widgettoolkit [18] thatintegratesseamlesslyvith Scwm.

windows, the constraintvariablesembeddedh eachwindow
are available to Schemecode via the accessomprimitives
wi ndow cl v- {xI, xr, yt, yb, wi dt h, hei ght },
where,for example,- xI nameshe x coordinateof theleft
sideof thewindow and- yb abbreviatesthey coordinateof
the bottom of the window.* Thus, to keepthe tops of two
window objectsaligned,we canuse:

(cl -add-constraint sol ver
(make-cl - constrai nt
(w ndowclv-yt winl) =
(wi ndowcl v-yt win2)))

RELATED WORK

Thereis considerablearlywork onwindowing systemg16,
17, 26, 25, 27, 23]. Mary of theseprojectsaddressetbwer-
level concerngthat a contemporaryX/11 window manager
canignore. An issuethat doesremainis tiled vs. overlap-
ping windows. ScwwM, like nearlyall windowing interfaces
of the 1990s,choosesverlappingwindows for their gener
ality andflexibility . However, unlike othersystemsScwm’s
constraintsolver canpermitarbitrary setsof windows to be
maintainedn atiled formatof agivensize.

Althoughthereareliterally dozensof modernwindow man-
agersn commonuseontheX windowing platform,only two
(besided vwn?) areespeciallyrelatedto ScwM. GwM, the
GenericWindow Manager embedsa quirky dialectof Lisp
called“wooL” for Window ObjectOrientedLanguagg30].

It supportsprogrammabilityandsomeof its packagessuch
as directionalfocus changing,inspired similar modulesin

ScwM. Sawfish[19] is amorerecentwindow managervith

an architecturesimilar to Gwm and ScwmMm. Like Gww, it

embedsdts own uniquedialectof Lisp (called“rep”). Both
embracehe extensibility languagearchitectureand provide
low level primitives,thenimplementotherfeaturesin their
extensionlanguage. However, the embedded.isp dialects
usedby cwm and Sawfish both suffer from the lack of lex-

ical closuresthat Schemeprovides ScwM. Neither Gwm

nor Sanfish hasary constraincapabilitiesthoughthe hooks
they provide canpermit proceduralimplementationgo ap-
proximatesomeof the simpler constraint-basetiehaiours
thatScwM implements.

Variousotherscriptinglanguagexist. As mentionedprevi-
ously, GNU Emacsandits EmacsLisp is similar to Scwm
in philosophy The earliestpopulargeneral-purposscript-
ing languagess Tcl, thetool commandanguagd34]. John
Ousterhout,Tcl’'s author makes a compelling casefor the
adwantage®f scripting[35]. Tcl is anincredibly simplebut
underpoweredanguagehatonly in themostrecentversions
includesreal datastructures.Subsequensimilar languages
includePython[22] andPerl[42]; botharefar morefeature-
full languageghan Tcl, but all three are more commonly

4For eachwindow, explicit constraintsxr = x + wi dt h andyb =
y + hei ght areaddedautomaticallyby Scwm.

Scwm Options

Decorations

Focus highlight foregraund ‘whne

Fywmz Modules

Ghotme

kenu

Message window
Freferences

highlight background |nauy

System

Wirtual

Window Operations
netzcape

Ok

window font ‘— adobhe-helvetica-hold-r-"-"-12&-"- "= """

xxxxxxx

Figure 7: The automatically-generated options dialog.

usedfor scripting wherethe main control resideswith the
language ScwM andEmacshothexploit theirlanguage$or
embeddingandinvoke scripting codein responseo events
dispatchedy C code.

There are also several other Scheme-baseéxtensionlan-

guagesElk [10] is anearlySchementendedasanextension
languagebut is no longer well supported. siob (Scheme
In One Defun) [39] is an especiallycompactimplementa-
tion of Schemehatin returncompromisesompletenesand

standards-compliancet, is embeddedn the popularGiMpP

(GNU ImageManipulationProgram@application[14] to sup-

portuserprogrammabléransformation®nimages.

Numerousother applicationdomainshave usedconstraint
solvers.Earlywork includesthedrawing tool Sketchpad41]

and the simulation laboratory ThingLab [5]. Many other
drawing programshave embeddedonstrainsolversoverthe
yearsincluding Juno[31], Juno-2[21], Unidraw [20], and
Penguin[8]. Unidraw and Penguinboth leverageQOCA,

a constraintsolver that (like Casswary) is ableto maintain
arbitrarylinear arithmeticconstraint§24]. Scww includes
morethanjust constraintsin its supportfor intelligentwin-

dow layout; anothepaperdescribesomeof its otherlayout
capabilitied3].

Web browserlayout presentchallengessimilar to window
layout. Our “ConstraintCascadingStyle Sheets’work also
embedsCasswary and exposesa declaratve specification
languagdo webauthorsfor describingpagelayout[2]. Wid-
getlayoutin userinterfacesis yet anothertwo-dimensional
layoutproblem.Amulet[29] andtheearlierGarne{28] both
provided constraintsolvers basedon simple local propaga-
tion techniques. Thesesolvers suffer from an inability to
handleinequalitiesand simultaneousquationswhich un-
fortunatelyariseall too oftenin the naturaldeclaratve spec-
ification of layoutdesires.

CONCLUSIONS AND FUTURE WORK

Oneof the mostusefulaspectf this researcthasbeenthe
continuousfeedbackirom our endusersthroughoutthe de-
velopmentof ScwM. Sincel1997,we have madethe latest
versionof Scwwm (alongwith all of its sourcecode)available
on the Internet,and have actively solicited feedbackon our

supportmailing lists. Many of the high-level layoutfeatures
weredevelopedn responséo real-world frustrationsandan-

noyancesexperiencedeither by the authorsor by our user
community Although cultivating thatcommunityhastaken

time andeffort, we feel thatthe benefitsfrom userfeedback
outweighthecosts.

Perhapshemostsignificantimplementationssuefor Scwm
is its startuptime of nearly20 second®n a Pentiumlll 450
classmachine. Loading the nearly 20,000lines of Scheme
code at every restartis costly, and wasteful. To address
this, we shouldaddan Emacs-lile “unexecing” capabilityto
dump the stateof a ScwM processthat hasall of the ba-
sic modulesloaded. Although this would increasethe size
of the executablejt alsowould substantiallyreducestartup
delays.Fortunatelyafterstartup,Scwm’s performancésin-
distinguishabldérom otherwindow managershatarewritten
entirelyin C.

Anotherrich areafor future work involvesour constraintin-

terface. Currently we only supportconstraintsamongwin-

dows. It seemausefulto permitthe additionof “guide-line”

and “guide-point” elementsand allow windows to be con-
strainedrelative to them. Thesecould,for example,be used
to ensurghatawindow staysin thecurrentviewport, or stays
in a specificregion of the display It would alsobe intrigu-

ing to investigatethe possibility of ghost-frameobjectsthat
arecontrolledexclusively by ScwMm. Thesewindow frames
couldthenhold real applicationwindows by draggingthem
into the frame. This featurewould permit hierarchicallyor-

ganizingwindows, while still allowing full accesso thecon-
straintsolver for non-hierarchicatelationships.

We arealsoconsideringextendingour voice-basednterface
to permit specifyingconstraints.In Scwm, a usercancen-
ter a window simply by sayingaloud “Center currentwin-
dow.” Thevoicerecognitioninterfaceto window layoutand
controlencouragethe userto expresshigherlevel intention:
it is far more awkward to say “move window to 379, 522"
thanit is to say“move window next to Emacs. In this way,
the voice interface usefully contrastswith direct manipula-
tion whereexact coordinatesiaturallyresultfrom the inter
actiontechnique Additionally, voice-basedhteractionsnay
prove especiallyaluablefor disabledusersfor whomdirect

manipulationis difficult.

Discerningauserstrueintentionis aninterestingcomplexity
of the declaratve specificatiorof our currentconstraintsn-
terface.Considera userwho is manipulatingthreewindows,
A, B, andC. Supposéhe userconstrainsA to beto theleft
of B, andB to theleft of C. Now supposeheapplicationdis-
playingin window B terminatesthusremoving thatwindow.
Shouldwindow A still be constrainedo beto theleft of win-
dow C? In otherwords, shouldthe transitive constrainthat
wasimplicit throughwindow B be presered? The answer
dependwon the users underlyingdesire. Providing higher
level abstractiongor commonly-desiregdituationsmayalle-
viate this ambiguity For example,if the userhadpressed
button to keepthreewindows horizontally non-overlapping
in arow, it is clearthatwindow B’s disappearancghouldnot
remove the constrainthatwindow A remainto theleft of C.

Finally, we are especiallyinterestedn combiningour work
on constraintsand the web [2] with this work on window
layout. Web, window, andwidget layout areall fundamen-
tally related ,andtheir similaritiesshouldideally be factored
outinto a unifying framewvork sothatadvancesmnadein ary
areabenefitall kinds of flexible, dynamictwo-dimensional
layout.

ACKNOWLEDGMENTS

We thank Maciej Stacheviak, Sam Steingold, Robert
Bihimeyer, and Todd Larasonfor their contributionsto the
ScwM project. Thanksto Craig Kaplan for his helpful
commentson a draft of this paper This researchhasbeen
funded in part by both a National Science Foundation
GraduateResearchrellowship andthe University of Wash-
ington ComputerScienceand EngineeringWilma Bradley
fellowship for Greg Badros, and in part by NSF Grant
No. [1S-9975990.

Availability
ScwM and Casswvary are both freely available on the In-
ternet[4, 1] andaredistributedunderthe termsof the GNU
GeneralPublicLicense.

REFERENCES

1. Greg J. BadrosandAlan Borning. The Casswary lin-
ear arithmetic constraintsolving algorithm: Interface
and implementation. TechnicalReport UW-CSE-98-
06-04,University of Washington Seattle Washington,
June 1998. http://ww. cs. washi ngt on.
edu/ resear ch/ constrai nts/ cassowary/
cassowary- tr. pdf.

2. Greg J. Badros Alan Borning,Kim Marriott, andPeter
Stucley. Constraintcascadingtyle sheetdor theweh
In Proceedingsf the 1999 ACM Confeenceon User
InterfaceSoftwae and Technolagy, November1999.

3. Greg J. Badros, Jefrey Nichols, and Alan Born-

10.

11.

12.

13.

14.

15.

ing. ScwM—anintelligentconstraint-enabledindow
manager In Proceedingsof the AAAI Spring Sympo-
siumon SmartGraphics March 2000.

. Greg J. Badrosand Maciej Stachaviak. Scwm—The

SchemeConstraintsWindow Manager Web page,
1999.htt p: // scwm sour cef orge. net/ .

. Alan Borning. ThingLab—AConstaint-OrientedSim-

ulation Laboratory. PhD thesis,StanfordUniversity;
March 1979. A revised versionis publishedas Xe-
rox Palo Alto ResearctCenterReportSSL-79-3(July
1979).

. Alan Borning, Bjorn Freeman-Bensonand Molly

Wilson. Constraint hierarchies. Lisp and Sym-
bolic Computation 5(3):223-270, September
1992. http://ww. cs. washi ngt on.

edu/ research/ constrai nts/theory/
hi erarchi es-92. htmi .

. Bay-Wei Changand David Ungar Animation: From

cartoonsto the userinterface. In Proceedingsof the
1993ACM Confeenceon User InterfaceSoftwae and
Technolagy, pagesA5-55,Atlanta, Geogia, November
1993.UserlInterfaceSoftwareandTechnology

. Sitt SennChokandKim Marriott. Automaticconstruc-

tion of intelligent diagrameditors. In Proceedingsof
UIST1998 SanFranciscoCalifornia,November1998.

. William ClingerandJonatharRees. Revised4 Report

ontheAlgorithmicLanguaye ShhemeNovemberl991.

Elk—the extensionlanguagekit. Web page, 1999.
http://ww«rn.informtik. uni - brenen.
de/ sof twar e/ el k.

Bjorn Freeman-Benson.Corverting an existing user
interface to use constraints. In Proceedingsof the
ACM SIGGRAPHSymposiunon User Interface Soft-
ware and Technolagy, pages207-215,Atlanta, Geor
gia, Novemberl993.

FSE Guile—The GNU Ubiquitous Intelligent Lan-
guagefor ExtensionWebpage,1999.ht t p: / / ww.
gnu. org/ software/ guile/guile.htn .

fvwm—the f? virtual window manager Web page,
1999.htt p: / / www. f viwm or g.

Gimp—GNUimagemanipulatiorprogram.Webpage,
1999.htt p: / / www. gi np. org.

Michael Gleicher Integrating constraintsand direct
manipulation. In Proceedingl992 Symposiunon In-
teractive3D, pagesl71-1741992.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

JamegGosling. SunDev — a distributedandextensible
window system. In Methodola@y of Window Manage-
ment chapter5, pagesA7-57.SpringerVerlag,Heidel-
berg, Germary, 1986.

JamesGoslingand David Rosenthal.A window man-
agerfor bitmappedlisplaysandunix. In Methodolagy
of Window Management chapterl13, pages115-128.
SpringerVerlag,Heidelbeg, Germary, 1986.

GTk+—the GIMP toolkit. Web page,1999. ht t p:
[/ ww\. gt k. org.

JohnHarper Sawfish. Web page,1999-2000ht t p:
//sawm || .sourceforge. net/.

Richard Helm, Tien Huynh, Kim Marriott, and
JohnVlissides. An Object-OrientedArchitecture for
Constaint-BasedGraphical Editing, chapterl4, pages
217-238.Springer 1995.

Allan HeydonandGreg Nelson.TheJuno-2constraint-
baseddrawing editor. TechnicalReport131a,Digital

SystemsResearchCenter Palo Alto, California, De-
cemberl994.

Mark Lutz. ProgrammingPython O'Reilly & Asso-
ciates,Inc., SebastopolCalifornia, 1996.

Mark S. Manasseand Greg Nelson. TrestleRefeence
Manual Digital SystemsResearchiCenter December
1991. http://gatekeeper.dec. coni pub/
DEC/ SRC/ resear ch- report s/ abstracts/
src-rr-068. htm .

Kim Marriott, Sitt Sen Chok, and Alan Finlay. A
tableaubasedconstraintsolving toolkit for interactve
graphicalapplications.In InternationalConfeenceon
Principles and Practice of Constaint Programming
1998.

BradMyers. Issuesn window managemerdesignand
implementation.In Methodolay of Window Manage-
ment chapter6, pagess9-71.SpringerVerlag,Heidel-
bery, Germary, 1986.

Brad A. Myers. The user interface for Sapphire.
IEEE ComputerGraphicsand Applications 4(12):13—
23,Decembenl984.

BradA. Myers. A taxonomyof userinterfacesfor win-
dow managerslEEE ComputeiGraphicsandApplica-
tions, 8(5):65-84 Septembel 988.

Brad A. Myers, Dario Giuse, Roger B. Dannenbeg,

Brad VanderZanden,David S. Kosbie, Philippe Mar-

chal,Ed Pervin,Andrew Mickish, andJohnA. Koloje-

jchick. The Garnettoolkit referencemanuals:Support
for highly-interactve graphicaluserinterfacesin Lisp.

TechnicalReportCMU-CS-90-117 ComputerScience
Dept,Carngyie Mellon University, March 1990.

10

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

BradA. Myers,RichardG. McDaniel,RobertC. Miller,
Alan S.Ferreng, Andrew Faulring,BruceD. Kyle, An-
drew Mickish, Alex Klimovitski, and Patrick Doane.
The Amulet ervironment: New modelsfor effective
userinterface software development. IEEE Transac-
tions on Softwae Engineering 23(6):347-365,June
1997.

Colas Nahaboo. GWM—the genericwindow man-
ager Webpage,1995. http://ww. inria.fr/
koal a/ gwm

Greg Nelson. Juno,a constraint-basedraphicssys-
tem. In Proceedingsnf SIGGRAPH1985 SanFran-
cisco,July 1985.

Jalob Nielson. Usability Engineering MorganKauf-
mann,1994.

Adrian Nye. Xlib ProgrammingManual O’Reilly &
Associatesinc., SebastopolCalifornia, 1992.

JohnK. Ousterhout.Tcl andthe Tk Toolkit. Addison-
Weslegy, ReadingMassachusett4,994.

JohnK. Ousterhout.Scripting: Higher level program-
ming for the 21st century IEEE Computer March
1998.

David Rosenthal. Inter-client CommunicationsCon-
vention Manual, version 2.0 edition, 1994. htt p:
[Iww. talisman.org/icccm

PeterH. Salus,editor. FunctionalandLogic Program-
ming Languajes volume4 of Handbookof Program-
mingLanguayes chapter4. MacMillan TechnicalPub-
lishin, IndianapolisJndiana,1998.

Ben Schneiderman. Direct manipulation: A step
beyond programminglanguages. IEEE Computer
16(8):57—-69August1983.

SIOD—schemén onedefun.Webpage, 1999.ht t p:
/I peopl e. del phi.conf gjc/siod. htn .

RichardM. Stallman. EMACS: The extensible,cus-
tomizabledisplayeditor. TechnicalReport519a,Mas-
sachusettdnstitute of Technology Artificial Intelli-
gencelaboratoryMarch1981. htt p: / / www. gnu.
or g/ sof t war e/ enacs/ emmacs- paper. htm .

Ivan Sutherland.Sletchpad: A Man-Madine Graphi-
cal CommunicatiorsystemPhDthesis,Departmenbf
ElectricalEngineeringMIT, Januaryl963.

Larry Wall, Tom ChristiansenandRandalL. Schwartz.
ProgrammingPerl. O'Reilly & Associates|nc., Se-
bastopolCalifornia, 1996.

