
USENIX Association

Proceedings of the
FREENIX Track:

2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Scwm: An Extensib le Constraint-Enab led Windo w Manager

Greg J.Badros
InfoSpace, Inc.

2801AlaskanWay, Suite200
Seattle, WA 98121,USA

greg.badros@infospace.com

Jeffrey Nichols
Schoolof ComputerScience, HCI Institute

CarnegieMellonUniversity, 5000ForbesAvenue
Pittsburgh,PA 15213,USA
jeffreyn@cs.cmu.edu

Alan Borning
Dept.of ComputerScienceandEngineering

Universityof Washington,Box352350
Seattle, WA 98195-2350,USA

borning@cs.washington.edu

ABSTRACT
Wedesiredaplatformfor researchingadvancedwindow lay-
out paradigmsincludingtheuseof constraints.Typical win-
dow managementsystemsarewritten entirely in C or C++,
complicatingextensibilityandprogrammability. Becauseno
existing window managerwas well-suitedto our goal, we
developedthe SCWM window manager. In SCWM, only the
corewindow-managementprimitivesarewritten in C while
the restof the packageis implementedin its Guile/Scheme
extensionlanguage.This architecture,first seenin Emacs,
enablesprogrammingsubstantialnew featuresin Scheme
andprovidesa solid infrastructurefor constraint-basedwin-
dow layoutresearchandotheradvancedcapabilitiessuchas
voicerecognition.We haveusedSCWM to implementanin-
terfaceto theCassowary constraintsolvingtoolkit to permit
endusersto declaratively specifyrelationshipsamongwin-
dow positionsandsizes.Thewindow managerdynamically
maintainsthoseconstraintsandlets usersview andmodify
them. SCWM succeedsin providing anexcellentimplemen-
tationframework for ourresearchandispracticalenoughthat
we rely on it everyday.

KEYWORDS: constraints, Cassowary toolkit, Scheme,
SCWM, X/11 Window Manager

INTRODUCTION
Wedesiredaplatformfor researchingadvancedwindow lay-
out paradigmsincludingtheuseof constraints.Typical win-
dow managementapplicationsfor theX windowssystemare
writtenentirelyin a low-level systemslanguagesuchasC or
C++. BecausetheX windowslibrarieshaveanativeC inter-
face,usingC is justified. However, a low-level languageis
far from idealwhenprototypingimplementationsof sophis-
ticatedwindow managerfunctionality. For our purposes,a
higher-level languageis much more appropriate,powerful,
andsatisfying.

Using C to implementa highly-interactive applicationalso
complicatesextensibility andcustomizability. To adda new
feature,theuserlikely mustwrite C code,recompile,relink,

andrestartthe applicationbeforechangesarefinally avail-
able for testingand use. This developmentcycle is espe-
cially problematicfor softwaresuchasa window manager
that generallyis expectedto run for weeksat a time. Ad-
ditionally, maintainingall the featuresthat any userdesires
would resultin terriblecodebloat.

An increasinglypopularsolutionto theseproblemsis theuse
of a scriptinglanguageon top of a coresystemthat defines
new domain-specificprimitives.A primeexampleof this ar-
chitectureis RichardStallman’sGNU Emacstext editor[40].
In thetwentyyearssincetheintroductionof Emacs,numer-
ous extensiblescripting languageshave evolved including
Tcl [34], Python[22], Perl [42], andGuile [12, 37]. Each
of the first threelanguageswasdesignedfrom scratchwith
scriptingin mind. In contrast,Guile—theGNU Ubiquitous
IntelligentLanguagefor Extension—takesapre-existinglan-
guage,Scheme,and adaptsit for useas an extensionlan-
guage.

Weareexploringconstraint-basedwindow layoutparadigms
and their user interfaces. Becausewe are most interested
in practicaluseof constraints,we decidedto target the X
windows systemandbuild a completewindow managerfor
X/11. We choseto useGuile/Schemeasthe extensionlan-
guagefor our project that we namedSCWM—the Scheme
ConstraintsWindow Manager. The mostnotablefeatureof
SCWM is constraint-basedlayout. Whereastypical window
managementsystemsuseonly direct manipulation[38] of
windows, SCWM alsosupportsa user-interfacefor specify-
ing constraintsamongwindows that it thenmaintainsusing
our Cassowary Constraintsolving toolkit [1]. Much of the
advancedfunctionalityof SCWM is implementedin Scheme,
thus exploiting the embedded-extension-language architec-
ture.

BACKGROUND

SCWM leveragesnumerousexisting technologiesto provide
its infrastructureandsupportits advancedcapabilities.

X Windo ws and fvwm2

A fundamentaldesign decision for the X windows sys-
tem [33] was to permit an arbitrary user-level program
to managethe various application windows. This open
architecturepermits great flexibility in the way windows
look andbehave.

X window managersare complex applications. They are
responsiblefor decoratingtop-level application windows
(e.g., drawing labelled titlebars), permitting resizing and
moving of windows, iconifying, tiling, cascadingwindows,
and much more. Many Xlib library functions wrapping
the X protocolarespecificto the specialneedsof window
managers. Becauseour goal is to do interestingresearch
beyond that of modern window managers,we used an
existing popularwindow manager, fvwm2, as our starting
point [13]. In 1997whenthe first authorbeganthe SCWM

project with Maciej Stachowiak, fvwm2 was arguably the
mostusedwindow managerin the X windows community.
It supportsflexible configurationcapabilitiesvia a per-user
.fvwm2rc file that is loaded once when fvwm2 starts.
To tweakparameters,end-usersedit their .fvwm2rc files
usingan ordinarytext editor, save the changes,thenrestart
the window managerto activate the changes.The fvwm2
configurationlanguagesupportsa very restrictedform of
functionalabstraction,but lacksloopsandconditionals.

Despitetheseshortcomings,fvwm2 providesagoodamount
of controlover thelook of windows. It alsohasevolvedover
theyearsto meetcomplex specifications(e.g.,theInterclient
CommunicationConventionsManual[36]) andto dealwith
innumerablequirks of applications. By our basingSCWM

onfvwm2, we leveragedthosecapabilitiesandensuredthat
SCWM wasat leastaswell-behavedasfvwm2. Our funda-
mentalchangeto fvwm2 wasto replaceits ad-hocconfigu-
rationlanguagewith Guile/Scheme[12].

Scheme for Extensibility

Guile [12] is theGNU project’sR4RS-compliantScheme[9]
systemdesignedspecificallyfor useasan embeddedinter-
preter. Schemeis a very simple,elegantdialectof the long-
popularLisp programminglanguage.It is easyto learnand
providesexceptionallypowerful abstractioncapabilitiesin-
cludinghigher-orderfunctions,lexically-scopedclosuresand
ahygienicmacrosystem.GuileextendsthestandardScheme
languagewith a modulesystemandnumerouswrappersfor
systemlibraries(e.g.,POSIX file operations).

Embed ded Constraint Solver

Cassowary is a constraintsolving toolkit that includessup-
port for arbitrarylinearequalitiesandinequalities[1]. Con-
straintsmay have varying strengths,and constrainthierar-
chy theory [6] defineswhat constitutesa correct solution.
We implementedthe Cassowary toolkit in C++, Java, and
Smalltalk,andcreatedawrapperof theC++ implementation
for Guile/Scheme.Thus,it is straightforwardto usethecon-
straintsolver in a broadrangeof targetapplications.

In addition,the Cassowary toolkit permitsnumeroushooks
for extension. Eachconstraintvariablehasan optionalat-
tachedobject,andthe constraintsolver canbe instructedto
invoke a callbackuponchangingthe valueassignedto any
variableandalsouponcompletionof there-solvephase(i.e.,
after all variableassignmentsare completed). SCWM ex-
ploits thesefacilities to isolatethe impactof the constraint
solveron existingcode.

CONSTRAINTS FOR LAYOUT
Ordinarywindow managerspermitonly direct-manipulation
asa meansof laying out their windows. Althoughthis tech-
niqueis useful,a constraint-basedapproachprovidesa more
dynamicandexpressive system.In SCWM, we usetheCas-
sowary constraintsolving toolkit. On top of the primitive
equation-solvingcapabilitiesof Cassowary, SCWM addsa
graphicaluserinterfacethatemploys an object-orientedde-
sign. We specify numerousconstraintclassesrepresenting
kindsof constraintrelationships,andinstancesof eachclass
areaddedto thesystemfor maintainingrelationshipsamong
actualwindows. The interfaceallows usersto createcon-
straintobjects,to manageconstraintinstances,andto create
new constraintclassesfrom existing classesby demonstra-
tion.

Appl ying Constraints
Applying constraintsto windows is done using a toolbar.
Eachconstraintclassin the systemis representedby a but-
ton on the toolbar(figure 1). The userappliesa constraint
by clicking a button, thenselectingthe windows to be con-
strained.Alternatively, the usercanfirst highlight the win-
dows to be constrainedand then click the appropriatebut-
ton. Iconsand tooltips with descriptive text assistthe user
in understandingwhat eachconstraintdoes. We consulted
with agraphicartiston thedesignof our iconsin aneffort to
make themintuitive andattractive. Preliminaryuserstudies
have demonstratedthatuserscandeterminethe represented
relationshipreasonablywell from theiconsevenwithout the
supportingtooltip text.

We provide the following constraintclassesin our system.
Many interestingrelationshipsare either presentor can be
createdby combiningclassesin thelist.

Constant Height/Width Sum Keepthe total of the height/
width of two windowsconstant.

Horizontal/Vertical Separation Keeponewindow always
to theleft of or aboveanother.

Strict Relative Position Maintain the relative positionsof
two windows.

Vertical/Horizontal Maximum Size Keepheight/widthof
a window below a threshold.

Vertical/Horizontal Minimum Size Keep height/width of
a window abovea threshold.

2

Figure 1: Our constraint toolbar. The text describes the constraint classes in the same order as they are laid out in the
toolbar (from left to right).

Vertical/Horizontal Relative Size Keep the change in
heights/widthsof two windows constant(i.e., resizethem
by thesameamount,together).

Vertical/Horizontal Alignment Align theedgeor centerof
onewindow alonga vertical/horizontalline with theedge
or centerof anotherwindow.

Anchor Keepawindow in place.

Someof theseconstrainttypescanconstrainwindowsin sev-
eral differentways. For example,the “Vertical Alignment”
constraintcan align the left edgeof one window with the
right edgeof anotheror the right edgeof onewindow with
themiddleof another. Usersspecifytheparametersof there-
lationshipby usingwindow “nonants,” theninefoldanalogue
of quadrants(figure2). Thenonantthattheuserclicksin dic-
tatesthepartof thewindow to which theconstraintapplies.
Forexample,if theuserselectsthe“VerticalAlignment” con-
straintandchoosesthefirst window by clicking in any of the
eastnonants,andthe secondwindow by clicking on its left
edge,theresultingconstraintwill align theright edgeof the
first window with theleft edgeof thesecond.This technique
makessomeconstraintclasses,suchasalignment,moregen-
erally useful. It alsodecreasesthenumberof buttonson the
toolbar, which couldotherwisebecomeunwieldywith many
narrowly-applicableconstraintclasses.

N NENW

W C E

SW S SE

3 4 5

6 7 8

0 1 3

Figure 2: The nine nonants of a window.

Managing Constraints
Oncea constraintis applied,the userstill needsto be able
to manageit. Usersmaywish to disabletheconstrainttem-
porarily or remove it entirely. They may encounteran odd
behavior while they are moving or resizinga window and
want to discover which constraint(s)causedthe unexpected
result,they maysimply becuriousto know whatconstraints
areappliedto a givenwindow andhow thatwindow will in-
teractwith otherwindows. Our constraintinvestigationin-
terfaceallows for all of thesekindsof interactions.

The constraintinvestigationwindow allows the userto en-
ableor disableconstraintsusingcheckboxes,andto remove
constraintsusingadeletebutton.Thewindow is dynamically
updatedasconstraintsareappliedandremoved,andchanges
madein theinvestigatorareimmediatelyreflectedin thelay-
out of windows.

Whentheusermoveshermousepointerovera constraintin
theinvestigator, therepresentationof thatconstraintis drawn
directly on thewindows relatedby theconstraint(figure3).
Thishint makesit easyfor theuserto make thecorrectasso-
ciationsbetweenwindows andconstraints.Eachconstraint
classdefinesits own visual representation,which in most
casescloselymatchestheicon in thetoolbar.

Enablingor disablingconstraintscan result in global rear-
rangementsof windows and large changesin position. To
make thesediscontinuitieslessconfusing,we animatewin-
dows fluidly from their old positionsandsizesto their new
configuration.Theanimationsborrow featuresfrom theSelf
programmingenvironmentthat mimic cartoon-styleanima-
tion [7].

Constraint abstractions

A problemwith theinterfaceasdescribedthusfar is thatthe
basicconstraintclasses,suchas “Vertical Alignment” and
“Horizontal Separation,” arenot alwayssufficient to convey
a user’s intentionfully. Our own useshowed thatoftenone
needsto combineseveralconstraintsto obtainthedesiredbe-
havior. A goodexampleof this situationis tiling (figure4),
wheretwo or morewindows arealignednext to eachother
suchthatthey appearto becomea window unit of their own.
A tiling configurationfor two windows cantake from three
to fiveconstraintsto implement.Addingtheconstraintsis te-
diouswhentiling many windows, or whenrepeatedlytiling
anduntiling two windows. Certainlya “tiled windows” con-
straintclasscouldbehard-codedinto thesystem,but thatjust
postponestheproblem—somemeansof abstractingrelation-
shipsshouldbeprovidedto theenduser.

Our solution to this problem is to support constraint
“compositions.” A compositionis createdusing a simple
programming-by-demonstrationtechnique. We record the
userapplyinga constraintarrangementto somewindows in
the workspace. The constraintsusedand the relationships
createdamongthewindows aresaved into a new constraint
classobject,which thenappearsin the toolbarlike all other
constraintclasses. Clicking the button in the toolbar will
prompt the user to selecta numberof windows equal to
that used in the recording. The constraintswill then be

3

Figure 3: Visual representation of constraints. XTerm A is constrained to be to the left of XTerm B, and above XTerm C.
Additionally, XTerm C is required to have a minimum width, and the XEmacs window’s southeast corner is anchored at its
current location. The constraint investigator that allows users to manage the constraints instances appears in the bottom
left of the screen shot.

Figure 4: Four windows tiled together. Unlike tiled-
only window managers, SCWM permits users to tile a
subset of their windows; other windows could overlap
arbitrarily.

applied in the sameorder as before. Compositionsallow
usersto accumulatea collection of often-usedconstraint
configurationsthatcanthenbeeasilyapplied.

Inferring Constraints

Ourtoolbar-baseduserinterfaceallowsflexible relationships
to be specified,but many commonuserdesiresreflectvery
simpleconstraints.For example,usersmayplacea window
directly adjacentto anotherwindow andwant themto stay
together. Somewindowing systemsprovide a basic“snap-
ping” behaviour that recognizeswhena userputsa window
nearlyexactly adjacentto anotherwindow andthenadjusts
thewindow coordinatesslightly to have themsnaptogether
precisely.

In SCWM, we supporta usefulextensionto basicsnapping
called“augmentedsnapping”[15]. Usingthis technique,the
userhastheoptionof transformingasnapped-torelationship
to a persistentconstraintthat is thenmaintainedduringsub-
sequentmanipulations.Whenasnapis performed,insteadof
simplymoving thewindow, theappropriateconstraintobject
is createdandaddedto thesystem.Suchinferredconstraints
canbemanipulatedvia theconstraintinvestigatordescribed
earlier. They alsocanberemovedby simply “ripping-apart”
thewindows by holdingdown theMeta modifierkey while
usingdirectmanipulationto movethemapart.

USABILITY STUDY

Weappliedadiscountusabilityapproach[32] to improveour
constraintinterfaceto managingwindows.

4

Methodology
Six advancedcomputerusersthoughtaloudwhile perform-
ing threetasks. Eachtaskconsistsof two parts: discovery
andre-creation.First, usersmanipulatewindows with con-
straintsalreadyactive to discover and describethoserela-
tionships(without useof the constraintinvestigator).After
giving a correctdescription,they thenusethe interfaceon
a seconddisplayto constraina freshsetof windows identi-
cally. Usersweregivenonly a very minimal descriptionof
theinterface.

The three constraint configurations tested were: 1) a
NetscapeFind dialog kept in the upperright cornerof the
main browserwindow; 2) threewindows kept right-aligned
alongtheedgeof the screensuchthatnoneof thewindows
overlapnor leaves the top or bottom of the screen;and 3)
two windows tiled horizontally.

Results
All userswereableto completetheir tasks.Discoveringthe
constraintswasstraightforward—manipulatingthewindows
andobservingthebehaviour wassufficient to deducethere-
lationshipsalreadypresent. Re-creatingthe configurations
wasmoretroublesome,but usersstill succeeded.They of-
tenusedtheinvestigatorto remove incorrectconstraints,but
thencontinuedonwardwith analternatehypothesis.

Problems disco vered
Our study uncoverednumeroususability issues. The most
substantialprobleminvolvedselectingwindow partsfor the
alignmentconstraints. When performing a vertical align-
ment,all that mattersis whetherthe userclicks on the left,
center, or right third of thewindow—it is irrelevantwhether
the click is in the top, middle, or bottom of the window.
Our interface,however, still highlightedindividual corners
or edgesas it doesfor anchorconstraintswhereany of the
ninepositionsis significant.Userswereconfusedby theUI
distinguishingalong the irrelevant vertical dimension. We
revised SCWM to highlight whole edgesof windows when
applyinganalignmentconstraint.

Whenusersbeganaddinga constraintandwantedto cancel,
they wereunsureof how to abort their action. Someusers
clickedonthetoolbarthinkingthatis aspecialwindow. Oth-
ersdiscoveredthat clicking on the backgroundresultsin an
error that terminatesthe operation. No userrealizedthat a
right-click abortsandwe now alsosupportpressingtheEs-
cape key to cancelawindow selection.

Other obser vations
The userswho performedbeststudiedthe tooltip help for
each of the toolbar buttons before attempting their first
re-creationsub-task. We were surprisedat the variety
of constraintsused in re-creatingour configurations: no
usermatchedthe expectedsolution on all three tasks. In
particular, the “strict relative position” constraintwasused
especiallyadvantageouslyby userswho choseto configure
windows manuallybeforeapplying constraintsto keepthe

SCWM_PROC(X_property_get,
"X-property-get",
2, 1, 0,

(SCM win, SCM name, SCM consume_p))
/** Get X property NAME of window WIN. */
#define FUNC_NAME s_X_property_get
{
SCM answer;
VALIDARG_WIN_ROOTSYM_OR_NUM_COPY(1,win,w);
VALIDARG_STRING_COPY(2,name,aprop);
VALIDARG_BOOL_COPY_USE_F(3,consume_p,del);
...
XGetWindowProperty(...);
... answer = ...;
return answer;

}
#undef FUNC_NAME

Figure 5: An example SCWM primitive.

(define*-public (window-class
#&optional (win (get-window)))

"Return the class of window WIN."
(X-property-get win "WM_CLASS"))

Figure 6: The “window-class” procedure.

windowsasthey were.

Not all usersdiscoveredthe constraint-visualizationfeature
of the investigator. We now draw the visualizationswhen-
ever theuserpointsatany partof thedescription,not just the
enablecheckbox.Also, oneuserwantedto modify the pa-
rametersof a constraintin theinvestigatorwindow directly.

THE SYSTEM
SCWM is a complex softwaresystemthatemphasizesexten-
sibility andcustomizabilityto enablesophisticatedcapabili-
tiesto bedevelopedandtestedquickly andeasily.

The current implementationof SCWM contains roughly
32,500 non-comment,non-blank lines of C code, 800
lines of C++ code,and25,000lines of Schemecode. The
Guile/Schemesystem is about 44,000 lines of C code
and 11,500lines of Schemecode. Finally, the Cassowary
constraintsolving toolkit is about9,500lines of C++ code
in its core, plus about 1,400 lines of C++ code in the
Guile wrapper. The following subsectionsdescribevarious
technicalaspectsof the implementationof SCWM in greater
detail.

Basic philosoph y
Ourfirst versionof SCWM wasasimplederivativeof its pre-
decessor, fvwm2, with the ad-hocconfigurationlanguage
replacedby Guile/Scheme. Like fvwm2, SCWM readsa
startupfile containingall of the commandsto initialize the
settingsof variousoptions. Most fvwm2 commandshave
reasonablystraightforward translationsto SCWM sentential
expressions.For example,thesefvwm2 configurationlines:

5

Style "*" ForeColor black
Style "*" BackColor grey76

HilightColor white navyblue

AddToFunc Raise-and-Stick
+ "I" Raise
+ "I" Stick

Key s WT CSM Function Raise-and-Stick

arerewritten for SCWM in Guile/Schemeas:1

(window-style "*" #:fg "black"
#:bg "grey76")

(set-highlight-foreground! "white")
(set-highlight-background! "navyblue")

(define* (raise-and-stick
#&optional (win (get-window)))

(raise-window win)
(stick win))

(bind-key ’(window title) "C-S-M-s"
raise-and-stick)

The simplerand more regular syntaxis convenientfor the
enduser. An evengreateradvantageof usingarealprogram-
ming languageinsteadof a static configurationlanguage
stemsfrom the ability to extend the set of commands(ei-
therby writing C or Schemecode)andto combinethosenew
proceduresarbitrarily.

Adding a new SCWM primitive is easilydoneby writing a
new C functionthatregistersitself with theGuile interpreter.
For example,afterusingC to addthe“X-property-get”
primitive(figure5), wecanwrite anew procedureto reporta
window’sclass,whichis just thevalueof itsWM CLASS prop-
erty (figure6). Thenwe canusethatprocedureinteractively
by writing:

(bind-key ’all "C-S-M-f"
(lambda ()
(let* ((win (window-with-focus))

(class (window-class win)))
(if (string=? class "Emacs")

(resize-window 500 700 win)
(resize-window 400 300 win)))))

The above expressions,when evaluated in SCWM ’s in-
terpreter, will make the user’s “Control + Shift +

1Becausethe fvwm2 configurationlanguageis so limited, it is possi-
ble to mechanicallyconvert to SCWM commands;weprovide a reasonably-
completeautomatedtranslatorfor thispurpose.

Meta + f” keystroke resizethe window to either 500 �
700 pixels if the currently-focusedwindow is an Emacs
applicationwindow, or 400 � 300pixelsotherwise.

SCWM ’sextensiblearchitecturealsoallowsGuileextensions
to be accessiblefrom the window manager. Via standard
Guilemodules,SCWM canreadandparsewebpages,down-
loadfiles via ftp, do regularexpressionmatching,andmuch
more. In fact, nearly all of the user-interfaceelementsin
SCWM arebuilt usingguile-gtk, a Guile wrapperof the
GTk+ toolkit.

Binar y Modules
Becauseeachuseronly needsa subsetof the full function-
ality thatSCWM provides,it is importantthatusersonly pay
for the featuresthey require(in termsof sizeof the process
image).Guile, unlike EmacsLisp, allows new primitivesto
be definedby dynamically-loadablebinary modules.With-
out this feature,all primitiveswould needto becontainedin
the SCWM core, thuscomplicatingthe sourcecodeandin-
creasingthesizeof theresultingmonolithicsystem.

The voice recognitionmodulebasedon IBM’ s ViaVoicetm

softwareillustratesthebenefitsof dynamically-loadedexten-
sions. Thoseuserswho do not to usethat feature—perhaps
becausethe library is not availableon their platformor per-
hapsbecausethey have no audio input device—will never
havethemodule’scodeloaded.

Implementingthe module was also straightforward. Af-
ter gettinga sampleprogramfrom IBM’ s ViaVoicetm voice
recognitionengineworking, it requiredlessthansix hours
of developmenteffort to wrap the core functionality of the
enginewith a Schemeinterface. A grammardescribesthe
variousutterancesthat SCWM understands,andthe C code
asynchronouslyinvokesa Schemeprocedurewhena phrase
is recognized.Becausethoseactionproceduresarewritten
in Scheme,the responsesto phrasescanbe easilymodified
andextendedwithoutevenrestartingSCWM.

Graphical configuration
Another example of the extensibility that Guile provides
SCWM is the preferences systemfor graphical cus-
tomization. Novice SCWM users are unlikely to want
to write Schemecode to configure the basic settingsof
their window manager, such as the backgroundcolor of
the currently-active window’s titlebar. A graphical user
interface is necessaryto managethesesettings,but there
are potentially a hugenumberof configurableparameters.
Undisciplined maintenanceof a user interface for those
optionswould betediousanderror-prone.

Fortunately, SCWM can leverage its Scheme extension
languageto ease these difficulties. The defoption
module provides a macro define-scwm-option
that permits declarative specification of a configura-
tion option.2 To expose a graphical interface to the

2Recentversionsof Emacs[40] provide a similar featurein their “cus-

6

highlight-background configurationvariable,the
SCW

�
M developerneedsimply write:

(define-scwm-option
highlight-background "navy"

"The bg color for focused window."
#:type ’color
#:group ’face
#:setter (lambda (v)

(set-highlight-background! v))
#:getter (lambda () (highlight-background)))

This codestatesthat*highlight-background* is an
enduserconfigurablevariablethatwill containa valuethat
is a color. It alsospecifiesthat the variablecanbe grouped
with othervariablesinto aface category. Finally, setterand
getterproceduresarespecifiedto teachSCWM how to alter
andretrieve thevalue.

Thepreferences modulethenaccumulatesall of these
specificationsand dynamicallygeneratesthe userinterface
shown in figure 7.3 This modularapproachalso enforces
the separationof the visual appearancefrom the desired
functionality—a visually-distinct notebook-styleinterface
with thesamefunctionalityis alsoavailable.

Connecting to Casso wary
The most importantmodule for our researchon advanced
window layout paradigmsis the wrapperof the Cassowary
constraintsolving toolkit. To connectthe constraintsolver
with thewindow manager, thevariablesknown to thesolver
mustrelateto aspectsof the window layout. Eachapplica-
tion window objectcontainsfour constrainablevariables:x,
y—theoffsetsof thewindow from thetop-left cornerof the
virtual desktop);andwidth, height—thedimensionsof
the window framein pixels. WhenCassowary finds a new
solutionto the setof constraints,it invokesa hook for each
constraintvariablewhosevalueit changes,andinvokesan-
otherhookafterall changeshavebeenmade.For SCWM, the
constraint-variable-changedhookaddsthewindow thatem-
bedsthatconstraintvariableto its “dirty set,” andthesecond
hook repositionsandresizesall of the windows in the dirty
set.

In eachwindow object,the constrainablevariablesthatcor-
respondto the window’s positionandsizemirror the ordi-
nary integer variablesthat the rest of the applicationuses.
Thehookscopy thenew valuesassignedto theconstrainable
variablesinto the ordinaryvariables.This techniqueavoids
modifying thevastmajorityof thecodethatmanipulatesand
manageswindows. (Bjorn Freeman-Bensondiscussesthese
issuesin greaterdetail[11].)

To make it easyfor developersto expressconstraintsamong

tomize” package.The layoutof their user-interfacesis simpler, though,as
noattemptis madeto createa fully graphicalinterface.

3Theuserinterfaceis written in guile-gtk,a Guile wrapperof theGTk+
widgettoolkit [18] thatintegratesseamlesslywith SCWM.

windows,theconstraintvariablesembeddedin eachwindow
are available to Schemecode via the accessorprimitives
window-clv-

�
xl,xr,yt,yb,width,height � ,

where,for example,-xl namesthex coordinateof the left
sideof thewindow and-yb abbreviatesthey coordinateof
the bottomof the window.4 Thus, to keepthe topsof two
window objectsaligned,wecanuse:

(cl-add-constraint solver
(make-cl-constraint

(window-clv-yt win1) =
(window-clv-yt win2)))

RELATED WORK
Thereis considerableearlywork onwindowing systems[16,
17, 26, 25, 27, 23]. Many of theseprojectsaddressedlower-
level concernsthat a contemporaryX/11 window manager
can ignore. An issuethat doesremainis tiled vs. overlap-
ping windows. SCWM, like nearlyall windowing interfaces
of the 1990s,choosesoverlappingwindows for their gener-
ality andflexibility . However, unlikeothersystems,SCWM ’s
constraintsolver canpermit arbitrarysetsof windows to be
maintainedin a tiled formatof agivensize.

Althoughthereareliterally dozensof modernwindow man-
agersin commonuseontheX windowingplatform,only two
(besidesfvwm2) areespeciallyrelatedto SCWM. GWM, the
GenericWindow Manager, embedsa quirky dialectof Lisp
called“ WOOL” for Window ObjectOrientedLanguage[30].
It supportsprogrammability, andsomeof its packages,such
as directional focus changing,inspiredsimilar modulesin
SCWM. Sawfish [19] is a morerecentwindow managerwith
an architecturesimilar to GWM and SCWM. Like GWM, it
embedsits own uniquedialectof Lisp (called“rep”). Both
embracethe extensibility languagearchitectureandprovide
low level primitives,then implementother featuresin their
extensionlanguage.However, the embeddedLisp dialects
usedby GWM andSawfish bothsuffer from the lack of lex-
ical closuresthat Schemeprovides SCWM. Neither GWM

norSawfishhasany constraintcapabilities,thoughthehooks
they provide canpermit proceduralimplementationsto ap-
proximatesomeof the simplerconstraint-basedbehaviours
thatSCWM implements.

Variousotherscriptinglanguagesexist. As mentionedprevi-
ously, GNU Emacsandits EmacsLisp is similar to SCWM

in philosophy. The earliestpopulargeneral-purposescript-
ing languagesis Tcl, thetool commandlanguage[34]. John
Ousterhout,Tcl’s author, makes a compellingcasefor the
advantagesof scripting[35]. Tcl is anincrediblysimplebut
under-poweredlanguagethatonly in themostrecentversions
includesreal datastructures.Subsequentsimilar languages
includePython[22] andPerl[42]; botharefarmorefeature-
full languagesthan Tcl, but all threeare more commonly

4For eachwindow, explicit constraintsxr = x + width andyb =
y + height areaddedautomaticallyby SCWM.

7

Figure 7: The automatically-generated options dialog.

usedfor scripting wherethe main control resideswith the
language.SCWM andEmacsbothexploit their languagesfor
embeddingandinvoke scriptingcodein responseto events
dispatchedby C code.

There are also several other Scheme-basedextensionlan-
guages.Elk [10] is anearlySchemeintendedasanextension
languagebut is no longer well supported. SIOD (Scheme
In One Defun) [39] is an especiallycompactimplementa-
tion of Schemethatin returncompromisescompletenessand
standards-compliance;it is embeddedin the popularGIMP

(GNU ImageManipulationProgram)application[14] to sup-
port user-programmabletransformationson images.

Numerousother applicationdomainshave usedconstraint
solvers.Earlywork includesthedrawing tool Sketchpad[41]
and the simulation laboratoryThingLab [5]. Many other
drawingprogramshaveembeddedconstraintsolversoverthe
yearsincluding Juno[31], Juno-2[21], Unidraw [20], and
Penguin[8]. Unidraw and Penguinboth leverageQOCA,
a constraintsolver that (like Cassowary) is ableto maintain
arbitrarylinear arithmeticconstraints[24]. SCWM includes
morethanjust constraintsin its supportfor intelligent win-
dow layout;anotherpaperdescribessomeof its otherlayout
capabilities[3].

Web browser layout presentschallengessimilar to window
layout. Our “ConstraintCascadingStyle Sheets”work also
embedsCassowary and exposesa declarative specification
languageto webauthorsfor describingpagelayout[2]. Wid-
get layout in userinterfacesis yet anothertwo-dimensional
layoutproblem.Amulet [29] andtheearlierGarnet[28] both
provided constraintsolversbasedon simple local propaga-
tion techniques. Thesesolvers suffer from an inability to
handleinequalitiesand simultaneousequations,which un-
fortunatelyariseall too oftenin thenaturaldeclarativespec-
ificationof layoutdesires.

CONCLUSIONS AND FUTURE WORK

Oneof themostusefulaspectsof this researchhasbeenthe
continuousfeedbackfrom our endusersthroughoutthe de-
velopmentof SCWM. Since1997,we have madethe latest
versionof SCWM (alongwith all of its sourcecode)available
on the Internet,andhave actively solicitedfeedbackon our

supportmailing lists. Many of thehigh-level layoutfeatures
weredevelopedin responseto real-world frustrationsandan-
noyancesexperiencedeither by the authorsor by our user
community. Althoughcultivating thatcommunityhastaken
time andeffort, we feel that thebenefitsfrom userfeedback
outweighthecosts.

Perhapsthemostsignificantimplementationissuefor SCWM

is its startuptime of nearly20 secondson a PentiumIII 450
classmachine. Loadingthe nearly20,000lines of Scheme
code at every restart is costly, and wasteful. To address
this,we shouldaddanEmacs-like “unexecing”capabilityto
dump the stateof a SCWM processthat hasall of the ba-
sic modulesloaded. Although this would increasethe size
of the executable,it alsowould substantiallyreducestartup
delays.Fortunately, afterstartup,SCWM ’sperformanceis in-
distinguishablefrom otherwindow managersthatarewritten
entirelyin C.

Anotherrich areafor futurework involvesour constraintin-
terface. Currently, we only supportconstraintsamongwin-
dows. It seemsusefulto permit theadditionof “guide-line”
and “guide-point” elementsandallow windows to be con-
strainedrelative to them.Thesecould,for example,beused
to ensurethatawindow staysin thecurrentviewport,or stays
in a specificregion of the display. It would alsobe intrigu-
ing to investigatethe possibility of ghost-frameobjectsthat
arecontrolledexclusively by SCWM. Thesewindow frames
could thenhold realapplicationwindows by draggingthem
into the frame. This featurewould permit hierarchicallyor-
ganizingwindows,while still allowing full accessto thecon-
straintsolver for non-hierarchicalrelationships.

We arealsoconsideringextendingour voice-basedinterface
to permit specifyingconstraints.In SCWM, a usercancen-
ter a window simply by sayingaloud “Centercurrentwin-
dow.” Thevoicerecognitioninterfaceto window layoutand
controlencouragestheuserto expresshigherlevel intention:
it is far moreawkward to say“move window to 379, 522”
thanit is to say“movewindow next to Emacs.” In this way,
the voice interfaceusefully contrastswith direct manipula-
tion whereexactcoordinatesnaturallyresultfrom the inter-
actiontechnique.Additionally, voice-basedinteractionsmay
proveespeciallyvaluablefor disabledusersfor whomdirect

8

manipulationis difficult.

Discerningauser’strueintentionis aninterestingcomplexity
of thedeclarative specificationof our currentconstraintsin-
terface.Considerauserwho is manipulatingthreewindows,
A, B, andC. SupposetheuserconstrainsA to beto theleft
of B, andB to theleft of C. Now supposetheapplicationdis-
playingin window B terminates,thusremoving thatwindow.
Shouldwindow A still beconstrainedto beto theleft of win-
dow C? In otherwords,shouldthetransitive constraintthat
wasimplicit throughwindow B be preserved? The answer
dependson the user’s underlyingdesire. Providing higher-
level abstractionsfor commonly-desiredsituationsmayalle-
viate this ambiguity. For example,if theuserhadpresseda
button to keepthreewindows horizontallynon-overlapping
in arow, it is clearthatwindow B’sdisappearanceshouldnot
removetheconstraintthatwindow A remainto theleft of C.

Finally, we areespeciallyinterestedin combiningour work
on constraintsand the web [2] with this work on window
layout. Web, window, andwidget layout areall fundamen-
tally related,andtheir similaritiesshouldideally befactored
out into a unifying framework sothatadvancesmadein any
areabenefitall kinds of flexible, dynamictwo-dimensional
layout.

ACKNOWLEDGMENTS
We thank Maciej Stachowiak, Sam Steingold, Robert
Bihlmeyer, andTodd Larasonfor their contributionsto the
SCWM project. Thanks to Craig Kaplan for his helpful
commentson a draft of this paper. This researchhasbeen
funded in part by both a National Science Foundation
GraduateResearchFellowship andthe Universityof Wash-
ington ComputerScienceand EngineeringWilma Bradley
fellowship for Greg Badros, and in part by NSF Grant
No. IIS-9975990.

Availability
SCWM andCassowary are both freely available on the In-
ternet[4, 1] andaredistributedunderthetermsof theGNU
GeneralPublicLicense.

REFERENCES

1. Greg J.BadrosandAlan Borning. TheCassowary lin-
ear arithmeticconstraintsolving algorithm: Interface
and implementation. TechnicalReportUW-CSE-98-
06-04,Universityof Washington,Seattle,Washington,
June 1998. http://www.cs.washington.
edu/research/constraints/cassowary/
cassowary-tr.pdf.

2. Greg J.Badros,Alan Borning,Kim Marriott, andPeter
Stuckey. Constraintcascadingstylesheetsfor theweb.
In Proceedingsof the 1999ACM Conferenceon User
InterfaceSoftwareandTechnology, November1999.

3. Greg J. Badros, Jeffrey Nichols, and Alan Born-

ing. SCWM—anintelligentconstraint-enabledwindow
manager. In Proceedingsof the AAAI SpringSympo-
siumon SmartGraphics, March2000.

4. Greg J. BadrosandMaciej Stachowiak. Scwm—The
SchemeConstraintsWindow Manager. Web page,
1999.http://scwm.sourceforge.net/.

5. Alan Borning. ThingLab—AConstraint-OrientedSim-
ulation Laboratory. PhD thesis,StanfordUniversity,
March 1979. A revised version is publishedas Xe-
rox Palo Alto ResearchCenterReportSSL-79-3(July
1979).

6. Alan Borning, Bjorn Freeman-Benson,and Molly
Wilson. Constraint hierarchies. Lisp and Sym-
bolic Computation, 5(3):223–270, September
1992. http://www.cs.washington.
edu/research/constraints/theory/
hierarchies-92.html.

7. Bay-Wei ChangandDavid Ungar. Animation: From
cartoonsto the user interface. In Proceedingsof the
1993ACM Conferenceon UserInterfaceSoftwareand
Technology, pages45–55,Atlanta,Georgia,November
1993.UserInterfaceSoftwareandTechnology.

8. Sitt SennChokandKim Marriott. Automaticconstruc-
tion of intelligent diagrameditors. In Proceedingsof
UIST1998, SanFrancisco,California,November1998.

9. William ClingerandJonathanRees.Revised4 Report
ontheAlgorithmicLanguageScheme, November1991.

10. Elk—the extension languagekit. Web page, 1999.
http://www-rn.informatik.uni-bremen.
de/software/elk.

11. Bjorn Freeman-Benson.Converting an existing user
interface to use constraints. In Proceedingsof the
ACM SIGGRAPHSymposiumon User InterfaceSoft-
ware and Technology, pages207–215,Atlanta, Geor-
gia,November1993.

12. FSF. Guile—The GNU Ubiquitous Intelligent Lan-
guagefor Extension.Webpage,1999.http://www.
gnu.org/software/guile/guile.html.

13. fvwm—the f? virtual window manager. Web page,
1999.http://www.fvwm.org.

14. Gimp—GNUimagemanipulationprogram.Webpage,
1999.http://www.gimp.org.

15. Michael Gleicher. Integrating constraintsand direct
manipulation. In Proceeding1992Symposiumon In-
teractive3D, pages171–174,1992.

9

16. JamesGosling. SunDew – a distributedandextensible
window system. In Methodology of Window Manage-
ment, chapter5, pages47–57.SpringerVerlag,Heidel-
berg, Germany, 1986.

17. JamesGoslingandDavid Rosenthal.A window man-
agerfor bitmappeddisplaysandunix. In Methodology
of Window Management, chapter13, pages115–128.
SpringerVerlag,Heidelberg, Germany, 1986.

18. GTk+—theGIMP toolkit. Web page,1999. http:
//www.gtk.org.

19. JohnHarper. Sawfish. Webpage,1999–2000.http:
//sawmill.sourceforge.net/.

20. Richard Helm, Tien Huynh, Kim Marriott, and
JohnVlissides. An Object-OrientedArchitecture for
Constraint-BasedGraphicalEditing, chapter14,pages
217–238.Springer, 1995.

21. Allan HeydonandGreg Nelson.TheJuno-2constraint-
baseddrawing editor. TechnicalReport131a,Digital
SystemsResearchCenter, Palo Alto, California, De-
cember1994.

22. Mark Lutz. ProgrammingPython. O’Reilly & Asso-
ciates,Inc., Sebastopol,California,1996.

23. Mark S. ManasseandGreg Nelson. TrestleReference
Manual. Digital SystemsResearchCenter, December
1991. http://gatekeeper.dec.com/pub/
DEC/SRC/research-reports/abstracts/
src-rr-068.html.

24. Kim Marriott, Sitt Sen Chok, and Alan Finlay. A
tableaubasedconstraintsolving toolkit for interactive
graphicalapplications.In InternationalConferenceon
Principles and Practice of Constraint Programming,
1998.

25. BradMyers. Issuesin window managementdesignand
implementation.In Methodology of Window Manage-
ment, chapter6, pages59–71.SpringerVerlag,Heidel-
berg, Germany, 1986.

26. Brad A. Myers. The user interface for Sapphire.
IEEE ComputerGraphicsandApplications, 4(12):13–
23,December1984.

27. BradA. Myers.A taxonomyof userinterfacesfor win-
dow managers.IEEEComputerGraphicsandApplica-
tions, 8(5):65–84,September1988.

28. Brad A. Myers, Dario Giuse, RogerB. Dannenberg,
Brad VanderZanden,David S. Kosbie,PhilippeMar-
chal,EdPervin,Andrew Mickish, andJohnA. Koloje-
jchick. TheGarnettoolkit referencemanuals:Support
for highly-interactivegraphicaluserinterfacesin Lisp.
TechnicalReportCMU-CS-90-117,ComputerScience
Dept,CarnegieMellon University, March1990.

29. BradA. Myers,RichardG.McDaniel,RobertC.Miller,
Alan S.Ferrency, Andrew Faulring,BruceD. Kyle,An-
drew Mickish, Alex Klimovitski, and Patrick Doane.
The Amulet environment: New modelsfor effective
user interfacesoftware development. IEEE Transac-
tions on Software Engineering, 23(6):347–365,June
1997.

30. Colas Nahaboo. GWM—the genericwindow man-
ager. Web page,1995. http://www.inria.fr/
koala/gwm.

31. Greg Nelson. Juno,a constraint-basedgraphicssys-
tem. In Proceedingsof SIGGRAPH1985, SanFran-
cisco,July1985.

32. Jakob Nielson. Usability Engineering. MorganKauf-
mann,1994.

33. Adrian Nye. Xlib ProgrammingManual. O’Reilly &
Associates,Inc., Sebastopol,California,1992.

34. JohnK. Ousterhout.Tcl and theTk Toolkit. Addison-
Wesley, Reading,Massachusetts,1994.

35. JohnK. Ousterhout.Scripting: Higher level program-
ming for the 21st century. IEEE Computer, March
1998.

36. David Rosenthal. Inter-client CommunicationsCon-
vention Manual, version 2.0 edition, 1994. http:
//www.talisman.org/icccm.

37. PeterH. Salus,editor. FunctionalandLogic Program-
ming Languages, volume4 of Handbookof Program-
mingLanguages, chapter4. MacMillan TechnicalPub-
lishin, Indianapolis,Indiana,1998.

38. Ben Schneiderman. Direct manipulation: A step
beyond programminglanguages. IEEE Computer,
16(8):57–69,August1983.

39. SIOD—schemein onedefun.Webpage,1999.http:
//people.delphi.com/gjc/siod.html.

40. RichardM. Stallman. EMACS: The extensible,cus-
tomizabledisplayeditor. TechnicalReport519a,Mas-
sachusettsInstitute of Technology Artificial Intelli-
genceLaboratory, March1981.http://www.gnu.
org/software/emacs/emacs-paper.html.

41. IvanSutherland.Sketchpad: A Man-MachineGraphi-
cal CommunicationSystem. PhDthesis,Departmentof
ElectricalEngineering,MIT, January1963.

42. Larry Wall, TomChristiansen,andRandalL. Schwartz.
ProgrammingPerl. O’Reilly & Associates,Inc., Se-
bastopol,California,1996.

10

