
Provenance In Dynamic Data Systems∗

Jing Zhang
University of Michigan

H.V. Jagadish
University of Michigan

Abstract
Most digital data sets are subject to modifications. For
example, scientific data may be updated according to the
new experimental results, and sales data updated period-
ically according to new sales made. We often have data
derived from these digital data sets.

Our concern in this paper is the provenance of such
derived data. Can we explain what a particular derived
datum depends on, even if a value used in its derivation
has since been modified. Can we determine if a particular
derived value is still valid without performing full view
maintenance. Questions of this sort are likely to arise
when we derive results from modifiable data.

We present in this paper an overview of problems that
arise in this context, with regard to fine-grain data prove-
nance, and outline solutions to some of these problems.

1 Introduction

Digital data is ubiquitous. The ease of storing, querying,
and manipulating it has led to an explosion of its use. We
are consumers of digital data when we read blogs, check
emails, watch videos, etc. Digital data1, once created,
can be used to derive more data. The derivations can
serve many different purposes, e.g., reformatting, filter-
ing out irrelevant information, aggregating a big volume
of data into a small volume for better human comprehen-
sion, etc. We are all consumers of derived data when we
check hotel ratings, visit price comparison sites, and even
when we read blogs that rely on some data or statistics.

A consumer of a derived datum may request the prove-
nance of the derived datum for one or more reasons,
e.g., determining the reliability of the derived datum,
debugging the derivation process, meeting the audit re-
quirements, etc. The provenance of a derived datum in-

∗This work was supported in part by NIH grant #U54DA021519.
1In this paper, unless specified otherwise, we use the terminology

“data” to refer to the concept “digital data”.

cludes both the derivation process and the specific source
data used to derive this datum. This provenance can be
computed and stored when the derived datum is gener-
ated [3, 6] or when the database operations in the deriva-
tion process take place [1], also known as eager ap-
proaches [13], or retrieved only when it is requested [4],
also known as lazy approaches [13].

An eager approach usually couples the provenance
computation with the derivation process and modifies the
derivation process for this purpose: e.g., rewriting the
derivation query [6, 7] or propagating annotations during
the evaluation of the derivation query [8, 5]. The stor-
age overhead of this approach soon becomes intractable
if more and more derived data keep being generated.
Thus, this approach is not practical in applications where
derivations of data are frequent.

On the other hand, in an lazy approach, the provenance
computation is decoupled from the derivation process
and thus there is neither need for storage nor for modifi-
cations to the derivation process. However, this approach
needs to handle modifications of the source data [14],
i.e., insertion, deletion, updates, after the derivation. This
is because the modifications after the derivation of a
given derived datum may remove the provenance of the
given datum or invalidate it.

Studying provenance in the presence of modifications
is important since modifying existing data sets is a rather
common practice, e.g., new experimental results being
inserted, existing figures being corrected, erroneous facts
being deleted and etc. A single modification to a data set
can affect either part of the data set or the complete data
set. Multiple modifications can be applied sequentially
to the same part of a data set.

In this paper, we focus on retrieving provenance in the
lazy way in the presence of modifications and on deter-
mining the effect of the modifications on selected derived
data. Given a set of modifications that have taken place
to the source data set after the derivation of a derived da-
tum, we need to answer the following provenance related

1



questions.
1. What is the provenance of a given derived datum,

even when (part of) the provenance is not in the cur-
rent data set?

2. What is the part of the provenance of a given derived
datum that is not affected by the modifications?

3. Is a given derived datum affected by the set of mod-
ifications?

4. How is the given derived datum affected?
5. What in the source data or derivation can explain

the absence of an expected item in the derived data?
The above five provenance questions can be catego-

rized into four groups. The first question is about the
retrieval of the lost provenance due to the modifications,
which will be discussed in Section 3. The second ques-
tion is about the retrieval of the not-affected part of the
provenance from the modifications, which will be dis-
cussed in Section 4. The third and the fourth questions
are about figuring out the effect on some selected derived
data by examining how their provenance has been af-
fected by the modifications, which will be discussed in
Section 5. The fifth question has been addressed in [2]
and [9], with the former explaining what manipulations
in the derivation process (which is a query plan or a
workflow) lead to the absence of some expected derived
data and the latter explaining what values in the source
data leads to that, and both will be reviewed very briefly
in Section 6.

2 Provenance In Dynamic Data Sets

We focus our discussion on relational databases, and
consider four types of operations on a database: one is
querying the database and the other three are modifying
the database – inserting tuples, deleting tuples and updat-
ing tuples in place. During an interval of time, queries
and modifications take place interleaved. We assume
that those operations–queries and modifications–are lin-
earized.

The problem we want to solve is to answer the prove-
nance questions shown in Section 1, given (1) a rela-
tional database at the current time point, (2) a log of op-
erations over a period of time till the current time point,
(3) a sequence of delta tables resulting from the modifi-
cations over that time period. Depending on the specific
provenance question at hand, not all of the given infor-
mation is needed.

In order to answer the first provenance question, a
baseline approach is to adopt temporal databases. With
a temporal database, the contributing source tuples can
be retrieved by querying the proper historical database
using tracing queries [4], or by referencing to the his-
torical database by tuple IDs of the contributing source

tuples [5, 8]. However, there are a couple of downsides
to this baseline approach. First, the existing databases
need to be re-deployed using temporal databases if they
want to provide provenance support. Second, the tem-
poral databases have potentially inferior performance in
comparison to the normal databases due to the need for
a sophisticated timestamp mechanism [10]. Third, a log
and an archive of overwritten values is required to en-
able any kind of retrieval of the historical information
in the database. However, it is also well known that
logs and archives are expensive to maintain and can be
large in size. For example, most systems only keep logs
spanning over a certain period of time backward, and the
length of the time period depends on the specific appli-
cation in question. Thus, it is desirable to keep the logs
and archives as small as possible, which means only the
very necessary information that is needed to retrieve lost
provenance should be stored. Temporal databases, as de-
signed for a different and arguably more general purpose
than lost provenance retrieval, are not economical for lost
provenance retrieval purpose, because there is unneeded
information in logs/archives, such as the timestamp in-
formation.

In order to answer the second question, logs and delta
tables are not needed. A technique that can decorrelate
the nested subqueries and eliminate joins of the input ta-
bles will be sufficient. The decorrelation technique is
similar, however a little different, to the one used in the
complex query evaluation [12].

In order to answer the third and fourth provenance
questions, a baseline approach can be adopting the incre-
mental view maintenance [11]. However, this approach
has a downside of unnecessary computation because the
view maintenance updates the complete derived result set
instead of the selected derived tuple(s).

In order to answer the fifth question, it is necessary to
find what steps in the derivation have stopped the source
tuples that would otherwise produce the expected result
tuples from going through [2]. Moreover, to make the ex-
pected tuples to be in the result, some attribute values in
the failing source tuples can be changed in order to make
these source tuples go through the evaluation and pro-
duce the expected result tuples in the final result set [9].

In this paper, we are seeking for a solution to our prob-
lem such that

1. the solution can be applied with as few changes as
possible to the existing databases, e.g., without re-
deploying them;

2. the amount of computation in the solution should
scale with the size of selected result tuples whose
provenance is requested, and scale with the size of
the provenance requested, e.g., if a user is only in-
terested in part of the provenance of a result tuple,
she should not pay for the cost of computing the un-

2



requested part of the provenance.

3 Retrieval Of Lost Source Provenance

To answer the first provenance question, we need to re-
trieve the provenance of a given derived tuple whether or
not it is still in the current source database [14]. In order
to enable this type of provenance retrieval over an exist-
ing database, we need to have three extra data structures
added to the existing database, and then the retrieval can
make use of them to find the provenance efficiently.

First, we define the provenance of a given derived tu-
ple as follows. It is a modified version of the definition
introduced in [4].

Definition 1. Given a database D of tables T1, ...,Tn, a
query Q and a derived tuple t, there exists a set of tables
T ′1 , ...,T

′
n such that

• T ′i ⊆ Ti, where i = 1, ...,n

• {t}= Q(T ′1 , ...,T
′

n)

• ∀T ′k : ∀t ′ ∈ T ′k : Q(T ′1 , ...,T
′

k−1,{t ′},T ′k+1, ...,T
′

n) 6= /0

Notice that if a single table has more than one instance
in the query, each instance is considered as a separate
table.

Second, we describe the three extra data structures we
need in order to retrieve the possibly overwritten prove-
nance.

1. We need a log, denoted as provenance log, record-
ing the operations that have taken place over a
time period till the current time point. Every entry
records one operation and each entry has a unique
log ID, which can be used to identify the operation
in this entry.

2. We associate with each tuple in the current database
an extra attribute, denoted as since, storing a log ID,
which indicates the operation that introduced this
tuple into the database.

3. We also associate with each table in the current
database a so-called shadow table that keeps the tu-
ples that were once in the database table but have
been removed at some time point. In particular, the
shadow table has the same schema as the database
table except for two extra attributes storing log IDs,
denoted as begin and end, with begin indicating the
operation that introduced the tuple into the database
and end indicating the operation that removed the
tuple from the database.

With these three data structures, we can have classical
tracing queries modified to make use of them and retrieve
the lost provenance. Details are in [14].

These three data structures incur certain space over-
head. However, some of it can be avoided. First of all,

the provenance log does not need to take extra space
in practice, since all the database management systems
keep some kind of logs and the provenance log can be
implemented as a view over the system maintained logs.
This is almost always possible since the really vital at-
tributes in the provenance log are the log ID and the
operation, which turn out to be the very basic informa-
tion an average system log will keep. As for the space
overhead due to the attribute since, the number of cells
of this attribute is equal to the number of tuples in the
database. Since the database tuples usually have multi-
ple attributes and some of them are of more space-costly
data types than integer type, the total cost of this extra
attribute in integer type is only a fraction of the total
size of the database. As for the shadow tables, they are
most costly as compared to the other two data structures.
The size of shadow tables grows with the number of tu-
ples that have been updated or removed. Therefore, in
a database with an moderate amount of changes of data,
the space cost due to shadow tables is acceptable; and
if the size of shadow tables grows above some thresh-
old, special treatments can be adopted, e.g., compression
of rarely used shadow tables or most ancient part of a
shadow table. However, these treatments also mean that
the queries over the shadow tables will take more time.

The book-keeping of these three data structures incurs
some time overhead during the execution of an opera-
tion. In particular, when an operation takes place in
the database, the provenance log should record it, the
shadow tables might need to be updated. The former
leads to a very small time cost, while the latter depends
on how many tuples are updated or removed during this
operation.

4 Retrieval Of Partial Provenance

The complete provenance can be overwhelmingly large
for a data item in the derived result set of a complex
derivation process. A good results explanation interface
must guide a user through this large amount of prove-
nance information. A typical user may explore only a
small part of this provenance depending on the ques-
tion they have in mind. For example, a user debug-
ging the data errors in a database may only want the part
of provenance within tables that are error-prone and not
care about the part of provenance within tables that are
known to be error-free.

In terms of a system architecture, a simple design of
a usable system is to leave the provenance system it-
self untouched and to layer a user interface on top of it,
to filter and present appropriate portions of the prove-
nance. However, unless all provenance has been pre-
computed, this system architecture leads to unnecessary
work: much provenance information is computed only to

3



be thrown away by the user interface. If there have been
modifications to source data, we may save ourselves the
bother of invoking all the machinery of the previous sec-
tion, if we can determine that it is going to be filtered out
by the user interface.

This motivates the need to compute partial prove-
nance as requested. We have developed techniques to
compute the part of provenance within each source ta-
ble separately, which is denoted as atomic provenance.
Then any partial provenance can be computed as com-
posing proper atomic provenance. The computation of
the atomic provenance needs to employ some techniques
to decorrelate the nested subqueries and to eliminate the
joins of input tables. Meanwhile, the composition of
atomic provenance involves matching the correlation val-
ues and the values of the joining attributes in each atomic
provenance.

5 Validating Derived Data

When modifications take place to a database, a user may
be concerned whether her derived data will become in-
valid or out of date because of the modifications. For
example, a previously derived average may change af-
ter new source tuples join the database. Therefore, the
user may want to validate her selected result tuples given
the modifications that have taken place after she derived
the selected result tuples. View maintenance can be used
for this purpose, but this can be expensive. To minimize
the cost of the validation, we should focus on the se-
lected result tuples and avoid the computation of other
result tuples in the same result set. Therefore, we ex-
plore the dependencies of the selected result tuples on
both the present and absent source tuples; and use the
discovered dependencies and the effect of modifications
on these present/absent source tuples to determine the ef-
fect of the modifications on the selected result tuples.

6 Explanation Of The Absence Of Ex-
pected Result Data

When some result tuples that are expected to be in the
result set do not show up as expected, we can infer that
some steps in the derivation must have filtered out some
of their input data that are supposed to produce the ex-
pected result tuples in the end. In [2], such input data are
defined to be unpicked [2] and such manipulations are
defined to be picky manipulations [2] for these unpicked
data. [2] proposed both a top-down and a bottom-up ap-
proaches to search over the derivation process, e.g., a
query plan, to find the picky manipulations. Moreover,
[9] showed that proper changes can be made to some
attribute values in the source data that have previously

failed to produce the expected result tuples, such that
these modified source data can now go through the query
evaluation and produce the expected result tuples.

The bulk of provenance research has focused on data
present in the result. [2, 9] initiate a stream of work on
data absent in the result. All of the issues discussed
above, relating to changes in the source data, apply
equally to questions of absence in the result as to ques-
tions of presence in the result. We intend to conduct fu-
ture research in this direction.

7 Conclusions

Most data is subject to update. When source data is up-
dated upon which derived data depends, provenance can
provide a framework to reason about the effects of the
update. This argues for the importance of provenance
study in the presence of data set modifications.

In this paper, we outlined five provenance related
questions a user may want to ask in the presence of data
set modifications. For each of these questions, we sug-
gested a possible solution strategy. We make no claim
that this list of five questions is exhaustive. We look for-
ward to fruitful discussions at the workshop regarding
these and possible other questions to consider for fine
grain data provenance over dynamic data.

References
[1] BUNEMAN, P., CHAPMAN, A., AND CHENEY, J. Provenance

management in curated databases. In SIGMOD ’06: Proceedings
of the 2006 ACM SIGMOD international conference on Manage-
ment of data (New York, NY, USA, 2006), ACM, pp. 539–550.

[2] CHAPMAN, A., AND JAGADISH, H. V. Why not? In SIG-
MOD ’09: Proceedings of the 35th SIGMOD international con-
ference on Management of data (New York, NY, USA, 2009),
ACM, pp. 523–534.

[3] CHAPMAN, A. P., JAGADISH, H. V., AND RAMANAN, P. Ef-
ficient provenance storage. In SIGMOD ’08: Proceedings of the
2008 ACM SIGMOD international conference on Management of
data (New York, NY, USA, 2008), ACM, pp. 993–1006.

[4] CUI, Y., AND WIDOM, J. Practical lineage tracing in data ware-
houses. In In ICDE (1999), pp. 367–378.

[5] FOSTER, J. N., GREEN, T. J., AND TANNEN, V. Annotated
XML: Queries and provenance. In PODS (Vancouver, B.C., June
2008).

[6] GLAVIC, B., AND ALONSO, G. Perm: Processing provenance
and data on the same data model through query rewriting. In Data
Engineering, 2009. ICDE ’09. IEEE 25th International Confer-
ence on (mar. 2009), pp. 174 –185.

[7] GLAVIC, B., AND ALONSO, G. Provenance for nested sub-
queries. In EDBT ’09: Proceedings of the 12th International
Conference on Extending Database Technology (New York, NY,
USA, 2009), ACM, pp. 982–993.

[8] GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. Prove-
nance semirings. In PODS ’07: Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems (New York, NY, USA, 2007), ACM, pp. 31–
40.

4



[9] HUANG, J., CHEN, T., DOAN, A., AND NAUGHTON, J. F. On
the provenance of non-answers to queries over extracted data.
Proc. VLDB Endow. 1, 1 (2008), 736–747.

[10] JENSEN, C. S., AND LOMET, D. B. Transaction timestamping
in (temporal) databases. In In Proceedings of the 27th VLDB
Conference (2001), pp. 441–450.

[11] RAMAKRISHNAN, R., ROSS, K. A., SRIVASTAVA, D., AND SU-
DARSHAN, S. Efficient incremental evaluation of queries with
aggregation. In In SIGMOD (1994), pp. 204–218.

[12] SESHADRI, P., PIRAHESH, H., AND LEUNG, T. Y. C. Complex
query decorrelation. In ICDE ’96: Proceedings of the Twelfth
International Conference on Data Engineering (Washington, DC,
USA, 1996), IEEE Computer Society, pp. 450–458.

[13] TAN, W.-C. Research problems in data provenance. IEEE Data
Engineering Bulletin 27 (2004), 45–52.

[14] ZHANG, J., AND JAGADISH, H. Lost source provenance. In
EDBT ’10: Proceedings of the 13th International Conference on
Extending Database Technology (2010).

5


